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Summary
Alzheimer disease (AD) is the most common form of senile dementia, with high incidence late in life in many populations including

Caribbean Hispanic (CH) populations. Such admixed populations, descended from more than one ancestral population, can present

challenges for genetic studies, including limited sample sizes and unique analytical constraints. Therefore, CH populations and other

admixed populations have not been well represented in studies of AD, andmuch of the genetic variation contributing to AD risk in these

populations remains unknown. Here, we conduct genome-wide analysis of AD in multiplex CH families from the Alzheimer Disease

Sequencing Project (ADSP). We developed, validated, and applied an implementation of a logistic mixed model for admixture mapping

with binary traits that leverages genetic ancestry to identify ancestry-of-origin loci contributing to AD. We identified three loci on chro-

mosome 13q33.3 associated with reduced risk of AD, where associations were driven by Native American (NAM) ancestry. This AD

admixture mapping signal spans the FAM155A, ABHD13, TNFSF13B, LIG4, and MYO16 genes and was supported by evidence for asso-

ciation in an independent sample from the Alzheimer’s Genetics in Argentina—Alzheimer Argentina consortium (AGA-ALZAR) study

with considerable NAM ancestry. We also provide evidence of NAM haplotypes and key variants within 13q33.3 that segregate with

AD in the ADSP whole-genome sequencing data. Interestingly, the widely used genome-wide association study approach failed to iden-

tify associations in this region. Our findings underscore the potential of leveraging genetic ancestry diversity in recently admixed pop-

ulations to improve genetic mapping, in this case for AD-relevant loci.
Introduction

Alzheimer disease (AD) is a neurodegenerative disorder

that progress slowly from mild cognitive impairment to

severe dementia. It is the most common form of dementia

and the sixth leading cause of death in the United States,

affecting 5.8 million Americans age R65.1 However,

the estimated risk of AD can vary in different ethnic

groups, particularly if these groups have diverse genetic

ancestries; for example, Caribbean Hispanic (CH) individ-
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uals have higher prevalence and incidence rates of AD

and other dementias than non-Hispanic White individ-

uals.2,3 Despite increased AD risk and significant eco-

nomic impacts of AD and need for long-term care,1 CH in-

dividuals remain underrepresented in medical genetic

research.4–6 While recent research is beginning to uncover

the genetic factors affecting AD among Hispanic popula-

tions,7–11 more studies are necessary to better understand

the pathogenesis of AD in Hispanic and other admixed

populations.
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Admixture mapping is a powerful approach for complex

trait mapping in multi-ethnic, recently admixed popula-

tions. The rationale behind admixture mapping is that

causative genetic variants may be more frequent on haplo-

types derived from parental populations with a higher

incidence of the disease, and leveraging genetic ancestry

diversity of the admixed individuals can improve the dis-

covery of genomic regions harboring variants associated

positively or negatively with the disease. In this way,

genome-wide admixture and association testing can yield

complementary as well as differing results.12–14 Although

the concept has existed for >20 years,15 applications of

admixture mapping were limited in the early years because

of insufficient number of genetic markers that both blan-

keted the genome and had substantially different allele fre-

quencies across ancestral populations. The availability of

dense SNPs from genotyping arrays and sequencing data

has therefore relatively recently facilitated the identifica-

tion of segments originating from particular ancestral pop-

ulations genome-wide.

Admixture mapping faces similar statistical analysis is-

sues as genome-wide association studies (GWASs). One

common issue of concern is spurious association caused

by population structure and relatedness in the sample if

not properly accounted for. Linear mixed models (LMMs)

have become a method of choice for genetic association

testing of continuous outcomes because they have been

shown to provide valid associations in the presence of

sample structure.16,17 Although LMMs have also been

used to analyze categorical outcomes, simply treated as

continuous, the assumption of homoscedasticity can be

violated in the presence of population structure and covari-

ates, incurring an inflated type I error. The generalized LMM

association test (GMMAT) method18 uses a logistic model

framework for valid genome-wide association testing of

dichotomous outcomes in thepresence of sample structure.

Although LMMs have been previously used in admixture

mapping studies to accommodate population structure

and relatedness in the sample,19–22 to our knowledge there

have not been any methods proposed that implement a lo-

gistic mixed model for admixture mapping with proper

analysis of binary traits that also allow for relatedness

among sampled individuals. Here, we introduce the gen-

eral framework of a linear or logistic admixture mapping

analysis (LLAMA) for samples with relatedness and popula-

tion structure. The approach is an extension of the

GMMAT logistic-mixed-model framework that provides

valid admixture mapping of outcomes (dichotomous or

continuous) in samples derived from an arbitrary number

of ancestral populations. We apply our LLAMA approach

to data from CH families from the Alzheimer Disease

Sequencing Project (ADSP), where we identify a region

with evidence of association between late-onset AD and

ancestry of origin on chromosome 13q33.3. This region

is supported by association results in an independent sam-

ple from the Alzheimer’s Genetics in Argentina - Alzheimer

Argentina consortium (AGA-ALZAR) with more Native
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American (NAM) ancestry than the ADSP sample, followed

by haplotype reconstructed using whole genome

sequencing (WGS) variants in the ADSP sample that

further narrows the variants of greatest interest.
Material and methods

Samples and phenotypes
The ADSP CH data (ADSP Hispanic; dbGaP: phs000572.v7.p4)

comprised 545 subjects of the ADSP discovery set, distributed

among 68 families. The genotype data were obtained using Illu-

mina HumanOmniExpress12.v1.18, Human650Y.v2 and Human

Omni1-Quad.v1.0.H SNP arrays and combined using PLINK,23

keeping markers with a genotyping rate of >90% across panels. A

subset of 526 individuals had APOE genotypes. Details about the

study design and sample selection are described elsewhere24;

sequencing and quality control analyses are also described else-

where.25 A total of 541 subjects had available phenotype data

(Table 1). For analysis purposes, individuals were considered

affected if theirADstatuswas codedaspossibleorprobableAD.Def-

initions of AD are detailed elsewhere.26 There were no individuals

with autopsy data to provide the information needed to provide a

diagnosis of definite AD. Individuals with AD reported by family

or who showed amixed diagnosis were treated as unknown status.

Agewas the age at onset for affected and age at last examination for

unaffected subjects andwas available for all subjectswithADstatus.

The studywas carried out underHuman Subjects Approval number

STUDY00001230 from the University of Washington.

We used SNP genotype data from publicly available population

reference samples for our principal component and local ancestry

analyses. We selected 165 European (EUR) (CEU, Utah residents)

and 203 African (AFR) (YRI, Yoruba) samples from HapMap phase

3 (https://ftp.ncbi.nlm.nih.gov/hapmap/)27 and 63 NAM (Colom-

bian, Pima, Maya, Karitiana, Surui) samples from the Human

Genome Diversity Project (HGDP: https://hagsc.org/hgdp/files.

html).28,29 We additionally used 1000 Genomes phase 3 reference

samples (https://www.internationalgenome.org/data)30 for phasing

and to obtain population-specific allele frequencies of variants

within NAM haplotypes.

Two independent samples were used for the validation study

(Table 1). The Columbia University Study of Caribbean Hispanics

with Familial and Sporadic Late Onset Alzheimer Disease dataset

(CU Hispanic; dbGaP: phs000496.v1.p1)10,31 had 3,056 subjects

with phenotype data and SNP genotyping performed on the Illu-

mina HumanOmni1-Quad_v1-0_B SNP array. The AGA-ALZAR

samples were recruited in the Buenos Aires, Jujuy, Córdoba, and

Mendoza provinces. The study (protocol CBFIL#22) was approved

by the ethics committee (HHS IRB#00007572, IORG#006295,

FWA00020769), and all participants and/or family members

gave their informed consent.32 The diagnosis of AD followed diag-

nostic criteria from the National Institute of Neurological and

Communicative Disorders and Stroke and the Alzheimer disease

and Related Disorders Association.33 The samples were genotyped

using the Illumina Infinium Global Screening Array (GSA) v.1.0

combined to a GSA shared custom content. Only GWAS summary

statistics were available to conduct the validation study in the

AGA-ALZAR samples.

We used WGS data from the ADSP for haplotype analysis of

sequence variation in the region of interest on chromosome 13.

The samples used for admixture mapping were sequenced in the

early ADSP discovery-extension sequencing, but then called again

https://ftp.ncbi.nlm.nih.gov/hapmap/
https://hagsc.org/hgdp/files.html
https://hagsc.org/hgdp/files.html
https://www.internationalgenome.org/data


Table 1. Descriptive characteristics of the subjects across datasets

Trait ADSP Hispanic (n ¼ 541) CU Hispanic (n ¼ 3056) AGA-ALZAR (n ¼ 962)

Males (%) 42.1 33.6 34.7

Agea (years) 71.9 5 10.0 73.9 5 9.2 74.6 5 7.0

ε2b (%) 3.8 5.6 4.2

ε3b (%) 78.9 73.8 77.8

ε4b (%) 17.3 20.6 18.0

Unaffected

Number 173 1659 490

Agea (years) 67.7 5 9.7 73.0 5 8.9 73.4 5 7.3

Affected

Number 368 1397 388

Agea (years) 73.8 5 9.6 74.9 5 9.4 76.4 5 6.4

Ancestry proportionsc

AFR 0.27 5 0.14 (0.22–0.89) 0.33 5 0.19 (0.00–0.99) 0.05 5 0.03 (0.00–0.20)

EUR 0.64 5 0.13 (0.06–0.76) 0.58 5 0.17 (0.01–0.99) 0.71 5 0.26 (0.00–1.00)

NAM 0.09 5 0.03 (0.01–0.27) 0.09 5 0.08 (0.00–0.96) 0.25 5 0.27 (0.00–0.99)

aAge: mean 5 standard deviation.
bFrequency of APOE ε2/ε3/ε4 alleles.
cAncestry proportions: mean 5 standard deviation (minimum – maximum).
together with additional samples (a total of 16,905 subjects), to

Human Genome sequence build GRCh38. For the analysis, here,

we used data from both accession number NIAGADS: fsa000003

(release NG00067.v2 – the 5K sample), which provided the orig-

inal WGS variant calls for 4,788 subjects, and NNIAGADS:

fsa000006 (release NG0067v7 – the 17K sample) on 16,905 sub-

jects, which included the earlier 5K sample. Both are available

from NIAGADS, and the NG00067.v2 release is also available

from dbGaP. For consistency with the other analyses performed

on the earlier data release here, we focused haplotype analyses

only on the same subjects. The later, larger release was used only

to provide the larger sample of reference sequences needed for ac-

curate phasing the WGS data within the single jointly called and

quality controlled sample; the use of external WGS is contraindi-

cated in this situation because of strong batch effects introduced

by different sequence-calling pipelines. To maintain consistency

of presentation for purposes of this paper, all variant positions

are provided as original GRCh37 sequence build coordinates.

Local ancestry inference
HapMap phase 3 and HGDP population samples, described above,

were used here as reference samples. We merged reference datasets

with PLINK,23 keeping 603,611 SNPs with an overall genotyping

rate of 0.998. We then merged the reference and ADSP Hispanic

datasets, leaving 273,523 common autosomal SNPs with a geno-

type missing rate of <7% (overall genotyping rate of 0.996). For

CU Hispanic analysis, we updated the physical positions of the

reference data to build NCBI37/hg19 using LiftOver34 to match

the CU Hispanic data, and randomly removed CEU and YRI sam-

ples to keep the reference populations balanced. Merging of the

reference and CU Hispanic datasets left 294,252 autosomal

markers with a genotype missing rate of <5% and a total genotyp-

ing rate of 0.993. We phased reference and inference samples

jointly. The phasing of the ADSP Hispanics was performed using
Hu
Beagle version 3.3.2,35 while the CU Hispanics were phased using

Shapeit version 236 with 1000 Genomes Phase 3 samples30 as a

reference. Both programs impute sporadic missing genotypes in

the dataset during the phasing.We obtained high-confidence local

ancestry calls with RFMix version 1.5.4.37 Proportions of AFR,

EUR, and NAM global ancestries for ADSP Hispanics and CU His-

panics were estimated by averaging the local ancestry estimates

across all chromosomes.
Principal components and genetic relatedness matrix
Principal components (PCs) and the genetic relatedness matrix

(GRM) were estimated in a recursive manner using the PC-AiR38

and PC-Relate39 methods implemented in the GENESIS R pack-

age.40 PC-AiR uses measures of ancestry divergence estimated us-

ing the KING-Robust algorithm41 to partition samples into related

and unrelated ancestry representative sets. The population refer-

ence dataset used for local ancestry inference was included here

to improve inference of the population structure. Standard PCs

were estimated on the unrelated set and PC values were projected

for the related samples. PC-Relate then uses these ancestry repre-

sentative PCs to estimate pairwise kinship coefficients adjusted

for population structure. A second round of PC-AiR and PC-

Relate analyses were performed starting with the GRM obtained

in the previous step to obtain PCs robust to relatedness and an

ancestry adjusted GRM.
Admixture mapping
Weextended theGMMAT logisticmixedmodel framework for asso-

ciation testing to admixture mapping. Our admixture mapping lo-

gistic mixed model22 is implemented in LLAMA, available in the

GENESIS R package.40 We performed a joint admixture mapping

test, in which all AFR, EUR, and NAM ancestries are tested simulta-

neously,42 using genotype data from the ADSP and CU Hispanic
man Genetics and Genomics Advances 4, 100207, July 13, 2023 3



samples. To test the association between ancestry at each locus, j;

and AD, we first fit the model under the null hypothesis of no SNP

effect, using the top four PCs as fixed effect covariates and the

GRM as random effect. GENESIS uses a penalized quasi-likelihood

approximation to the generalized LMM, implemented as the

GMMAT.18 The full admixture mapping logistic mixed model is

described by:

logitðpÞ ¼ Xaþ Ajbj þ g;

where p ¼ Pðy ¼ 1
�
�X;Aj; gÞ represents the Nx1 column vector of

probabilities of being affected for the N individuals conditional

oncovariate, local ancestry calls, and randomeffects;X is thevector

of covariates; and a is the vector of fixed covariate effects including

an intercept. We assume that g � Nð0;s2aFÞ is a vector g ¼
ðg1;.; gNÞ of random effects for the N subjects, where s2a is the ad-

ditive genetic variance andF is theGRM.Letting the third ancestral

population be the reference population, Aj represents a NxðK �1Þ
matrix of the local ancestry dosages at the locus j for the K� 1

parental populations, with the corresponding effect size vector bj
of length K � 1. The null hypothesis bj ¼ 0 was assessed via a

multivariate score test. Single-ancestry admixture mapping ana-

lyseswere also performed to identifywhichpopulationwas driving

the signal. The significance threshold (p<4.5310�5)was obtained

by simulating a null phenotype,42 and accounts for the number of

independent tests performed under historical population structure

and time depth of this population.

Evaluation of the admixture mapping logistic approach
The performance of our admixture mapping logistic approach was

evaluated by (a) conducting a simulation study, and (b) comparing

how much better it fits to the data in relation to an admixture

mapping LMM when analyzing a binary trait.

Simulation study

We conducted a simulation study using simulated binary pheno-

types and real genetic data. This framework permits admixture

mapping signals that are more realistic than those observed using

simulated genotypes. Binary phenotypes for 545 individuals were

simulated in R43 using a logistic approach, considering a similar

complex correlation structure as that observed in the ADSP data.

We selected a subset of 1,027 causal SNPs from a set of 5,134

SNPs in linkage equilibrium across the genome (selecting one

out of each set of five SNPs to guarantee the correct representation

for each chromosome). Risk was assigned according to the number

of EUR alleles, considering increasing effect sizes for the causal

SNPs from 0.5 to 1.5 in increments of 0.25. In total, we performed

5,135 simulations. The vector of probabilities of being affected for

the N individuals was estimated from:

logitðpÞ ¼ b0 þ Ajbj þ g;

where b0 was set to �2, representing a probability of approxi-

mately 1% of being affected under no other predictor or random

effects, bj is the effect size of the causal locus j, Aj is the vector of

EUR allelic dosages for the N individuals at locus j, and

g � Nð0;s2aFÞ is the vector of random effects estimated from a

multivariate normal distribution, with s2a set to 5 and a semi-defi-

nite positive kinship matrix based on the real ADSP kinship ma-

trix. The affected and unaffected AD status was randomly set based

on the uniform distribution.

Genome-wide admixture mapping was conducted on real geno-

type data, adjusting the logistic mixedmodel for population struc-

ture and dependence effects, as described above. Power and type I

error were assessed as performancemeasures of ourmethod. Power
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was recorded as the proportion of simulations that capture a sig-

nificant p value for the causal SNP at different effect sizes and sig-

nificance levels. Type I error of the admixture mapping logistic

approach was assessed as the mean proportion of false-positive re-

sults across the genome at different significance levels.

Comparing admixture mapping logistic and LMMs

The full admixture mapping LMM is described by:

y ¼ Xaþ Ajbj þ g þ ε;

where y is the vector of binary outcomes for the N individuals, X is

the vector of covariates, a is the vector of fixed covariate effects

including an intercept, and Aj represents a NxðK �1Þ matrix of

the local ancestry dosages at locus j for the K � 1 parental popula-

tions, with the corresponding effect size vector bj of length K � 1.

Weassumethat g � Nð0;s2aFÞ is a vector g ¼ ðg1;.; gNÞof random
effects for the N subjects, where s2a is the additive genetic variance

andF is theGRM,and ε � Nð0; s2e IÞ is a vector ε ¼ ðε1;.; εNÞof re-
sidual effects, where s2e represents the residual variance and I is an

identity matrix. GENESIS uses the average information restricted

maximum likelihood procedure to estimate the variance compo-

nents of the random effects under the nullmodel. Generalized least

squares are used to fit this LMMto test the null hypothesisH0 : bj ¼
0. Admixturemapping for ADusing the LMMwas conducted using

the stepsdescribedabove for the logisticmixedmodel, including the

same adjustments for the fixed and random effects.
Haplotype analysis
We investigated the existence of potential variants of interest in the

ADSPHispanic subjects withNAMancestry via haplotype analysis,

using the ADSPWGSdata. Thiswas the only analysis performed on

genotypes derived fromWGS; all other analyses used SNP array ge-

notypedata. Theapproachwaspredicatedon theassumption that a

previously unknown admixture mapping signal that is driven by

NAM local ancestry implies a low-frequency or rare variant that is

more common on NAM chromosomes than on chromosomes of

EUR or AFR ancestry. This context also suggests the possibility of

a unique haplotypic context of such variants. For these analyses,

therefore, the initial exploratory analysis limited attention to a sub-

set of genotypes extracted from the post-quality control discovery

phase vcf files.25 This was followed by a deeper analysis of haplo-

types that were further informed by the larger approximately 17K

data release. Both parts of the analysis made use of the same set of

individual admixture proportions estimated for SNPs at the associ-

ated GWAS-marker loci at 13q33.3 for the group of 356 subjects

noted previously. For these purposes, each subject was classified

into one of six groups, defined by being homozygous or heterozy-

gous for EUR, AFR, or NAM ancestral chromosome(s).

Exploratory analyses consisted of ancestry-based variant prioriti-

zation of 2363 polymorphic variants in the three genomic loci

defined by admixture mapping. Allele frequencies were computed

by direct counting from the initial data release of this 356-member

sample for each ancestral chromosome group. We prioritized vari-

ants for which alleles were uniquely present or absent in individ-

uals with NAM ancestry, or were close to this ideal (i.e., the minor

allele existed in at most two families out of all subjects who did

not have estimated NAM ancestry at that variant position). We

used the absence of an alternative allele in all individuals from

the ADSP non-Hispanic White families from fsa000003 as further

evidence to justify the selectionof variants. The existenceof similar

allele frequencies among variants identified through this approach

was used as an initial prediction of the presence of a shared



Figure 1. Population structure and admix-
ture proportions of ADSP Hispanic samples
(A) Population structure captured by the two
first PCs (PC1 and PC2); AFR, EUR, and NAM
populations are represented by YRI and CEU
samples from HapMap phase 3, and NAM
samples from HGDP, respectively.
(B) Vertical bars represent the ancestry pro-
portions of each individual, arranged in or-
der of increasing estimated EUR ancestry.
haplotype among NAM carriers. Finally, for the variants that were

prioritized through these procedures, we additionally referred to

and report allele frequencies in reference samples (1000 Genomes

phase 3 and HGDP) containing independent representative major

geographic populations, as well as other populations with NAM

ancestry. For further variant prioritization, we considered a com-

bined annotation dependent depletion (CADD) scaled score44 cut-

off of >10 as suggestive of potential deleteriousness.

Variants suggested by this initial analysis were further evaluated

by more formal haplotype analyses. We used the same general

approach for initial steps here as we used for the initial local

ancestry estimation: we used BEAGLE (v. 5.4)35 to perform popula-

tion-based phasing of theWGS data from the full 17Kmulti-ethnic

sample to provide reference genomes. We used the following

variant inclusion filters: minor allele count >2, missingness <5%,

Phred score >40, FILTER ¼ PASS, and read depth >10. We did not

use an HWE filter because of the existence of related individuals

in the multi-ethnic sample. After the phasing, we tabulated the

haplotypes from our most highly prioritized region with reference

to the inferred haplotypes within families for the whole

356-member sample, togetherwith the comparable ancestry labels.

Linkage disequilibrium plots were prepared using LDmatrix, a

tool of the LDlink suite (https://ldlink.nci.nih.gov). All 1000 Ge-

nomes AFR, EUR, and NAM (admixed American) population sam-

ples were used as reference.
GWAS
The association analyses were performed on the ADSPHispanic us-

ing a set of 504,628 autosomal SNPs, which passed on filters for a

minor-allele frequency of >0.01 and a genotype missing rate of

<5%. For comparison, we fit a logistic mixed model to the data

applying the same fixed and random effects of the admixturemap-

ping logistic mixedmodel. The analyses were conducted using the

GENESIS R package.40 The full statistical model is described by:

logitðpÞ ¼ Xaþ Gjbj þ g;

where p ¼ Pðy ¼ 1
�
�X;Gj; g represents the Nx1 column vector of

probabilities of being affected for the N individuals conditional

to covariates, allelic dosages; and random effects; X, a, and g are

defined as above; Gj is a vector with the allelic dosages (0, 1, or 2

copies of the reference allele) at the locus j; and bj is its correspond-

ing effect size. The null hypothesis of bj ¼ 0 was assessed using a

multivariate score test.

Samples and markers of the AGA-ALZAR dataset were submitted

to quality control procedures using PLINK version 1.9.45 The re-
Human Genetics and Gen
maining samples (n ¼ 962) had <3% of

missing genotypes and passed sex-check

and identity-by-state filters. The remaining

SNPs had >97% call rate, a minor-allele fre-

quency of >1% and were in Hardy-
Weinberg equilibrium (p > 10�6). No differences in call rate were

observed between cases and controls (p< 13 10�5). We estimated

the ancestry proportions of the samples using ADMIXTURE46

from a panel of 446 ancestry informative markers developed else-

where47 for Latin American populations. The GWAS was per-

formed fitting a simple logistic regression model, which included

an adjustment for sex, age, and the top four PCs.
Results

Sample description

We analyzed data from CH samples from the family-based

ADSP Discovery and Extension study. The multiplex ADSP

Hispanic families were selected with the goal of improving

the detection of genomic regions harboring extremely rare

causal variants. The potential enrichment of multiple

copies of rare causal variants segregating in pedigrees is

an advantage for discovery purposes; however, their effects

can be very difficult to detect in unrelated cases and con-

trols from the general population. We additionally

analyzed GWAS data from Columbia University (CU) His-

panics, and Argentinian samples from the AGA-ALZAR

study in our validation studies (Table 1). The datasets differ

in sample size, with the CU Hispanic sample being much

bigger than the other two samples. The CU Hispanic and

AGA-ALZAR samples are more similar in terms of propor-

tion of affected subjects (45.7% and 40.3%, respectively)

and sex distribution, compared with ADSP Hispanic

(68% affected individuals, 42.1% males). The frequency

of APOE alleles is comparable across studies (ε2, 3.8%–

5.6%; ε3, 73.8%–78.9%; ε4, 17.3%–20.6%), with lower ε2

and ε4 and higher ε3 frequencies observed in the ADSP

Hispanic cohort, likely because of the ascertainment for in-

clusion in the ADSP.24 The subjects also have equivalent

mean age (72–75 years), but unaffected subjects are slightly

younger in the ADSP (68 years vs. 73–74 years).

The population structure of ADSP Hispanic, captured by

the two first PCs, showed clustering primarily toward the

AFR and EUR reference samples (Figure 1A). The genome-

wide global ancestry proportions for each individual,

calculated by averaging the local ancestry calls, confirmed
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Figure 2. Admixture mapping for AD in ADSP Hispanic samples
(A) Admixture mapping joint test, in which all AFR, EUR, and NAM ancestries are tested simultaneously for association.
(B) Single ancestry admixture mapping analyses on chromosome 13 testing the ancestry noted against the combined remaining
ancestries.
(C) Regional association plot on 13q33.3 admixture mapping associated region, with blue dots denoting association results that are
genome-wide significant. Red lines in (A) and (B) represent the genome-wide significance threshold (p < 4.5 3 10�5).
the ancestry background of the ADSP Hispanic samples

(Figure 1B; Table 1). As expected, the CU Hispanic

andAGA-ALZAR samples showed different ancestry compo-

sition and population structure (Figure S1) that reflects their

different geographic origins within the Americas and corre-

sponding colonization histories. On average, CU Hispanic

individuals had a smaller proportion of EUR ancestry and

greater AFR proportion, whereas AGA-ALZAR showed a

considerably greater NAM proportion (Table 1).

Admixture mapping and GWAS in the ADSP Hispanic

sample

Admixture mapping for AD in the ADSP Hispanic sample

identified genome-wide significant association between

AD and local ancestry at 13q33.3 (p< 4.53 10�5) (Figure 2;

Table 2). Figure 2A shows the results for the joint admix-

ture mapping test, in which all ancestries were tested

simultaneously for association with AD. Further single-

ancestry admixture mapping analyses were conducted

and showed that the association signal on chromosome

13 is driven by NAM ancestry (Figure 2B).

The 13q33.3 AD association signal represents three loci in

the region (108.0–109.4Mb,p%4.2310�5), inwhich theas-

sociations were driven by the NAM background and sug-

gested an a protective effect against AD risk (odds ratio

[OR], 0.37–0.41; p< 4.13 10�5) (Table 2). This region spans

five protein-coding genes (FAM155A [MIM: 619899],MYO16

[MIM: 615479], ABHD13, TNFSF13B [MIM: 603969], and

LIG4 [MIM: 601837]) and includes variants with regulatory

features (Figure 2C; Table S1). Additional evidence of the

NAM contribution at 13q33.3 was provided by the linkage

disequilibrium (LD) structure in the region. We observed

three well-defined LD blocks exhibiting higher correlation
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between SNPs within each locus when NAM samples were

usedas the reference, suggesting theexistenceofNAMhaplo-

types in the region (Figure 3). Conditional admixture map-

pinganalyses includingthe leadSNPofeachassociated locus,

either jointly or separately as covariates, removed the signal

at 13q33.3 (Figure S2), suggesting that the admixture-LD

blocks are equally contributing to the association signal.

A standard GWAS that used PCs to adjust for population

structure did not identify any genome-wide significant asso-

ciations between SNPs in the 13q33.3 region and AD (using

p < 5 3 10�8) (Figure S3). We performed the GWAS using a

similar logistic mixedmodel as used for the admixture map-

ping to avoid any bias caused by adjustments. There are 95

SNPs within the 13q33.3 region defined by the three loci.

None of these 95 SNPs were found to be significant in the

standard GWAS. However, we identified significant

association between AD and a single SNP at 10q26.13

(Figure S3A; p ¼ 4.5 3 10�8, rs7082865, chr10:124,

066,652:G:A, ADSP Hispanic minor-allele frequency ¼
0.44). SNP rs7082865 is an intronic variant in BTBD16, a

gene thathaspreviouslyshownasuggestivepleiotropiceffect

on AD,48 and suggestive or significant associations with

related traits superior parietal cortex volume,49 and type 2

diabetes,48 as well as with bipolar disorder.50 However, it is

worth noting that the genomic region surrounding this

genecontainsextensive structuralvariation,whichcaneasily

lead to spurious conclusions.

Evaluation of the admixture mapping logistic approach

To investigate the performance of the admixture mapping

logistic mixed model, we applied simulations that used

simulated binary outcome and real genetic data to measure

the power and type I error; additionally, we performed



Table 2. Admixture mapping results for AD in the 13q33.3 region in ADSP Hispanic samples

Locus SNPsa Physical positionb Lead SNP AM joint p valuec OR (95% CI)

Ancestry background

Ancestry p value

1 14 108025668–108085618 rs4444189 4.2 3 10�5 0.41 (0.27–0.63) NAM 1.3 3 10�5

2 19 108811734–108921373 rs16972067 3.3 3 10�5 0.37 (0.23–0.59) NAM 6.1 3 10�6

3 11 109282805–109359834 rs16972815 3.0 3 10�5 0.38 (0.24–0.59) NAM 5.3 3 10�6

aSNPs: number of SNPs included in the admixed-LD block.
bPhysical position in genome build GRCh37.p13.
cAM Joint p value: p value for the admixture mapping joint test, in which AFR, EUR, and NAM ancestries are tested simultaneously.
admixture mapping of AD in ADSP Hispanic samples using

a LMM to examined howmuch better the logistic approach

fits to the data.

As expected, the power of the logistic approach increased

with increasing effect sizes at all significance levels

(Figure 4A). At a significance level (a) of 10�5, the same

magnitude of the nominal significance level applied to the

ADSP Hispanic data, the true-positive rate increases from

1.5% to 91.1% when the effect size goes from 0.5 to 1.5.

The type I error rates, measured as the mean proportion of

false positive results across the genome at different signifi-

cance levels, were contained within the respective confi-

dence intervals (CIs): CI(a ¼ 1 3 10�4)[–5.2 3 10�4; 7.2 3

10�4], and CI(a ¼ 1 3 10�5)[–1.8 3 10�4; 2.1 3 10�4])

(Table 3).

A comparison of admixture mapping for AD using logis-

tic and LMMs is described in Table 4, and Figures 4B and

4C. Both logistic and LMMs identified the NAM ancestry-

derived region at 13q33.3 associated with AD. However,

the logistic approach yielded slightly stronger p values in

the extremes, conformed more closely to the null distribu-

tion than the LMM over most of the distribution

(Figures 4B and 4C), and identified an additional AD asso-

ciated locus (108.02–108.08 Mb) in this region (Table 4).

Validation analyses in CU Hispanic and AGA-ALZAR

samples

We performed a validation study in two independent sam-

ples. An admixture mapping validation analysis in the CU

Hispanic samples failed to provide evidence for association

between local ancestry in the 13q33.3 loci and AD

(Figure S4). The smallest p value within the ADSP signifi-

cant loci was observed in a variant that is also part of the

most significant AD locus but failed to reach statistical sig-

nificance (rs16972815; chr13:109,282,805:G:T; p¼ 0.132).

There are several factors that may explain the lack of vali-

dation in CU Hispanic samples: (1) the average proportion

of NAM ancestry across all SNPs within 13q33.3 was 37.5%

higher in ADSP Hispanic individuals (Table S2), suggesting

that CU Hispanic samples may have an insufficient num-

ber of NAM alleles to capture the association in this region.

We analyzed the ADSP and CU local ancestry calls to

compare the frequency of NAM alleles within the

13q33.3 loci. The number of SNPs in this region was

similar (44 for ADSP Hispanic vs. 46 for CU Hispanic),
Hu
but the frequency of the NAM alleles differed across data-

sets (Figure S5). ADSP Hispanic samples showed a higher

frequency in cases and more balanced frequency between

AD cases and controls compared to CU Hispanic individ-

uals (mean frequency, 0.05 [ADSP cases] vs. mean fre-

quency, 0.03 [CU cases] and mean frequency, 0.05 [ADSP

controls] vs. mean frequency, 0.05 [CU controls]. (2)

ADSP and CU samples have a different ancestry composi-

tion and population structure (Figures 1 and S1), which im-

plies that different LD structures may determine the occur-

rence of distinct haplotypes at 13q33.3. (3) ADSP Hispanic

is a family-based cohort, where AD genetic variants should

be enriched, and CUHispanic is a case-control sample. The

effect size may not be the same in both samples, since the

method needs to deal with the complexity of family rela-

tionships in the ADSP Hispanic but not in CU Hispanic.

(4) The occurrence of NAM substructure across Central

and South American native populations have been previ-

ously discussed.51,52 ADSP and CU Hispanic samples may

have a different NAM substructure that also influences

the differentiation of NAM haplotypes in this region.

The AD 13q33.3 admixture mapping signal was sup-

ported by results from GWAS summary statistics from the

AGA-ALZAR sample (Table S3). This sample was used

because of its greater NAM ancestry, with the hope that

there would be sufficient power for validation of the genes

implicated by our original results. From a total of 1,080 var-

iants within the region of interest (chr13:108,025,668–

109,359,834), 34 SNPs showed suggestive association un-

der a nominal p value of <0.05 (Table S3). Most of the var-

iants are intronic in the FAM155A and MYO16 genes, and

the results suggest the occurrence of at least three NAM

haplotypes in this region. Only one SNP (rs9284245; p ¼
0.05), in a MYO16 intron, was also included in the ADSP

admixture mapping analysis.

Haplotype analysis

We further investigated the apparent protective effect of the

NAM ancestry against AD by using theWGS data to identify

haplotype(s) with elevated frequency on only the NAM

ancestral background. Initial investigation identified 18

haplotype-defining variants within two of the three admix-

turemapping loci locatedatLIG4andMYO16. Thesevariants

contained alternative alleles for AD that were specific to

ADSPHispanicwithNAMancestry inthe region,wereabsent
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Figure 3. LD within the 13q33.3 region in 1000 Genomes AFR, EUR, and NAM reference samples
inADSPhomozygotes forbothAFRorEURancestry in the re-

gion, and were present only in heterozygotes with these an-

cestries. These variant allele frequencies were also constant

across variants on the NAM ancestral background

(Table S4). An additional check of the allele frequencies in

the 1000G and HGDP reference samples (Table S5) showed

near constancy across the SNPs of the alternate allele fre-

quencies within our data and across members from popula-

tions with diverse ancestral backgrounds. This supports

NAM ancestry as the major source of the haplotypes. There

is evidence of the haplotype, at low to moderate frequency,

in East Asian reference samples, consistent with current un-

derstanding of the origin of the origins of the peoples of the

Americas.53 Inaddition, there is evidence forat least twohap-

lotypes (one at each locus). These haplotypes are virtually

non-existent on a EUR background in both regions, while

the AFR ancestry might be the only other minor source for

some of these alternative alleles in theMYO16 gene region.

Population-based phasing strongly supports the exis-

tence of a NAM-specific haplotype in the LIG4 gene re-

gion, while potentially slightly shrinking the most likely

boundaries of the critical region. Fifteen of the 21 families

with NAM ancestry had at least one copy of the haplo-

type. Thirty-one of the 62 chromosomes with NAM

ancestry represent the full 11-SNP haplotype, and 4

more (from a single family) represent a 1-SNP shorter

haplotype formed by dropping rs144294080 (Table S6).

While there were only three individuals in three separate

families where both chromosomes had NAM ancestry,

two of these individuals were homozygous for the haplo-

type. None of the 148 chromosomes of AFR ancestry car-

ried any of the ALT alleles that define the 11-SNP haplo-

type. Of the 502 chromosomes with EUR ancestral

background, 3 chromosomes from 2 families carried an

abbreviated 8-SNP haplotype.
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Furtherevaluationof thehaplotypeandpossible risk-modi-

fying variants comes from available functional annotation. It

is worth noting that one of these variants, rs12585114, has a

high CADD44 score of 14, suggesting a potential deleterious/

pathogenic effect in the top fourth percentile of variants. In

addition, rs12428235 and rs12430274 are regulatory region

variants in the same enhancer and are nominally associated

with LIG4 expression. The region of interest also includes

several promoter-like and enhancer-like elements active in

neurons (http://screen.encodeproject.org),54 again pointing

to LIG4 (Table S5).
Discussion

We implemented and applied an admixturemapping logis-

tic mixed model approach, LLAMA, which is suitable for

binary outcomes in recently admixed populations. This

both permits proper control of population structure and

relatedness in the data by inclusion of multiple fixed and

random effects and leverages ancestry to permit admixture

mapping. We do not expect that the broad differences in

the AFR, EUR, and NAM ancestry proportions among ad-

mixed individuals have any influences in either the model

performance or the admixture mapping results. Assessed

on real data from the ADSP and on simulated data, our

admixture mapping logistic framework demonstrated po-

wer to identify true-positive associations under different

significance levels with suitable control of the type I error.

Analysis of the ADSP CH family sample detected an associ-

ated region by admixture analysis at 13q33.3

(13:108,025,668–108,085,618) that was not identified us-

ing the standard LMM. Therefore, the proposed logistic

mixed model approach can improve gene discovery

when conducting admixture mapping for binary traits.

http://screen.encodeproject.org


Figure 4. Evaluation of the admixture mapping logistic approach
(A) Power, assessed as the proportion of simulations capturing a significant p value for the causal SNP at different effect sizes (beta) and
significance levels.
(B) Scatterplot of the -log(p value).
(C) Quantile difference QQ-plot (difference of -log[p value]) for the admixture mapping performed using logistic and LMMs.
The admixture mapping logistic mixed model identified

a NAM ancestry-derived region at 13q33.3 associated with

AD in ADSP Hispanic samples (p < 4.5 3 10�5). This

included three loci with potential AD protective variants

(OR, 0.37–0.41). A protective effect of the NAM ancestry

against AD has been previously reported and may be

partially related to a lower frequency of the APOE ε4 allele

among NAM populations.55–57 Despite not being able to

validate the ADSP admixture mapping association at a

Bonferroni-corrected value to 13q33.3 in the CU Hispanic

cohort, there is suggestive evidence using GWAS summary

statistics from the AGA-ALZAR study. Additionally, the

implication of the NAM ancestry background with AD

was supported by evidence of a uniquely NAM haplotype

segregating in this region. The copies of a partial haplotype

found in two families with local EUR ancestry are so rare

that existing GWAS are considerably underpowered to

detect association with the haplotype in Eurocentric popu-

lations. This sub-haplotype therefore does not contribute

to fine mapping of the region. Our validation and haplo-

type analyses prioritized the LIG4, MYO16, and FAM155A

genes within 13q33.3, with a NAM-specific haplotype

identified for LIG4. However, further analyses should be

conducted to more thoroughly explore and understand

the implications of these genes on AD risk.

LIG4 encodes aDNA ligase, which is a core component of

the non-homologous end-joining pathway to repair the

DNA double-strand breaks (DSBs) in the mature nervous

system.58 DSBs are highly detrimental for neurons. The

accumulation of DSBs coupled with a defectivemechanism

of DNA repair plays an important role in the onset and/or

progression of AD, contributing to neuronal damage and

impaired learning and memory, as documented in models

and postmortem AD brains.59,60 LIG4 shows evidence of

differential expression in AD (https://agora.ampadportal.

org/) and its gene expression pattern is similar to two of

the therapeutic targets for AD that were nominated by the

Accelerating Medicines Partnership in Alzheimer Disease

consortium (https://adknowledgeportal.synapse.org/).
Hu
MYO16 encodes a class of myosin proteins involved in

morphogenesis of neuronal cells. It acts through the phos-

phoinositide3-kinase signalingpathway,61,62withdifferential

expression in excitatory and inhibitory neurons of aged

brains.63 It has been previously associated with different

neurological disorders,64–66 including slower AD cognitive

decline,67 AD age-at-onset delay,68 and an AD phenotype

combining affection status and age at onset.69 MYO16 is

overexpressed in the prefrontal cortex of individuals with

major depressive disorder through an enrichment of

5-hydroxymethylcytosine (5hmC).70 One of the epigenetic

markers that is altered in AD is 5hmC. This epigenetic mark

is involved in the regulation of learning, synaptic plasticity,

and memory processes. Its levels are significantly increased

in AD middle frontal gyrus and middle temporal gyrus

(MTG) brain regions, two areas that are vulnerable to AD,

and positively correlated with neurofibrillary tangles, b-amy-

loid peptides, and ubiquitin levels in the MTG region. This

suggests that 5hmC epigenetic marks play an important role

in the determination and progression of AD.71 A gene expres-

sion study in the offspring of male rats exposed to prenatal

stress has also suggested anoverrepresentationof thenicotine

acetylcholine receptor signaling pathway, in whichMYO16 is

one of the participant genes.72 Nicotine acetylcholine recep-

tors are linked to different neuroprotection pathways, which

control the cell death and secretion of b-amyloid peptides.73

The third gene implicated, FAM155A, also known as

NLF-1, is an auxiliary subunit of the sodium leak channel

(NALCN). FAM155A is a critical component for neuronal

excitability; it regulates NALCN ion permeation by protect-

ing the ion-selectivity filter against neurotoxin attack, and

is conserved across species.74,75 It is highly expressed in

the brain and, as other genes of the NALCN complex, and

has been previously implicated in several neurological

and cognitive-related disorders.76 Associations with AD in

a trans-ethnic meta-analysis that included samples of Japa-

nese and EUR ancestries,77 and with AD cerebrospinal fluid

Ab42/Ab40 ratio biomarker in EUR samples,31 suggests that

FAM155A is a gene with a trans-ethnic effect on AD.
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Table 3. Mean proportion of false positive associations (type I error) across the genome observed for the admixture mapping logistic
mixed model in a simulation study

Effect size

Significance level

1 3 10�4 1 3 10�5

0.50 5.3 3 10�4 8.1 3 10�5

0.75 5.4 3 10�4 8.2 3 10�5

1.00 5.0 3 10�4 7.7 3 10�5

1.25 5.0 3 10�4 7.7 3 10�5

1.50 4.3 3 10�4 6.4 3 10�5
The identificationof haplotypes that are specific toNAMs

within the three genetic ancestries lends further support for

the presence of AD risk modifiers in the 13q33.3 region.

These haplotypes are supported by well-defined LD blocks

in 1000GenomesNAMpopulations andbyhaplotype anal-

ysis using ADSP WGS data. Admixture mapping leverages

the information from coarse blocks of different ancestries

that occur in recently admixed populations. An identifiable

haplotype that is heavily enriched in one diagnostic group

in one genetic ancestry, such as the haplotype identified in

LIG4, as seems tobe the casehere, suggests the existenceof a

single risk-altering event, which should improve the prog-

nosis of downstream analyses.

A challenge and limitation of our study and others that

include admixed samples is the lack of a genetically similar

population to validate the findings. Although Hispanic

and Latino populations share the AFR, EUR, and NAM

ancestry components, the ancestry proportions and popu-

lation structure are very diverse across admixed popula-

tions from different geographic regions as a result of their

historical process and migration.78–80 Along with the fact

that these populations remain underrepresented in genetic

studies, genetic heterogeneity complicates replication.

Here, we used two independent samples to validate the

NAM-derived loci associated with AD. The CU Hispanic

sample had a similar NAM global ancestry to ADSP Hispan-

ic, but the smallest number of NAM alleles at 13q33.3. Our

results suggest that validation may depend on both global

and local (at the region of interest) ancestries, which brings

an additional problem to find the right sample for replica-

tion. The AGA-ALZAR Argentinian sample had a greater

NAM component, which was an advantage for validating
Table 4. Admixture mapping for AD in ADSP Hispanic data using log

Locus SNPsa Physical positionb Lead SNP

Logistic mixed

AM joint
p valuec

1 14 108025668–108085618 rs4444189 4.2 3 10�5

2 19 108811734–108921373 rs16972067 3.3 3 10�5

3 11 109282805–109359834 rs16972815 3.0 3 10�5

aSNPs: number of SNPs included in each associated locus.
bPhysical position in genome build GRCh37.p13.
cAM Joint p value: p value for the admixture mapping joint test, in which all AFR
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the NAM-derived region, but only GWAS summary statis-

tics were available. Unlike GWAS, admixture mapping cap-

tures ancestry-specific regions associated with an outcome

and has no resolution to detect the underlying risk or pro-

tective genetic variants. Although we validated the

13q33.3 region with a suggestive threshold in the AGA-

ALZAR samples, distinct variants could be adjacent to the

admixture mapping NAM loci because of the different ge-

netic architectures influencing AD in the ADSP Hispanic

and AGA-ALZAR samples. In addition, the occurrence of

population substructure in Hispanic and Latino popula-

tions have been discussed,81 including substructure across

Central and South American native populations.51,52 ADSP

Hispanic and AGA-ALZAR samples may have a NAM sub-

structure that was not accounted for in our study. Working

with NAM populations is really challenging. There are no

publicly available datasets to broadly represent the diver-

sity of NAM populations, and, for the few available data-

sets, the number of samples is small. Like ours, other

studies in such admixed populations have struggled with

replication,13,82,83 which highlights the needs of discus-

sion about the replication requirements for genetic studies

involving admixed populations.

In summary, we implemented an admixturemapping lo-

gistic mixed model approach, LLAMA, to analyze binary

outcomes that correctly considered the sources of structure

anddependence of thedata and showedadequate statistical

power to detect true positive associations while controlling

for type I error. By applying this logistic framework to ADSP

Hispanic samples, we identified an association between

three NAM ancestry-derived loci at 13q33.3 and AD that

is not detected by the traditional GWAS. While only 34
istic vs. LMMs

model LMM

Ancestry background
AM joint
p valuec

Ancestry background

Ancestry p value Ancestry p value

NAM 1.3 3 10�5 – – –

NAM 6.1 3 10�6 4.4 3 10�5 NAM 8.4 3 10�6

NAM 5.3 3 10�6 3.2 3 10�5 NAM 5.9 3 10�6

, EUR, and NAM ancestries are tested simultaneously.
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SNPs from the 13q33.3 association were nominally signifi-

cant in theAGA-ALZAR samples, the occurrence of a unique

AD-protective NAM variant in this region was suggested

by haplotype analysis using the ADSP whole-genome

sequencing data. Genes in this region (LIG4, MYO16, and

FAM155A) have been previously implicated in AD and

other neurological and cognitive disorders. Our study

adds to the understanding of the genetic contributions

to AD, providing new insights into ancestry-specific

genetic regions influencing AD in Hispanic and Latino

populations.
Data and code availability

The Alzheimer Disease Sequencing Project (ADSP Hispanic)

data supporting the findings of this study is available in the

dbGaP repository at dbGaP: https://www.ncbi.nlm.nih.gov/

gap/, under the accession number dbGaP: phs000572.v7.p4

[GWAS data], and dbGap: fsa000003 [WGS data;

NG00067.v2 release]. The ADSP WGS data is also available

in the NIAGADS repository (https://www.niagads.org/), un-

der the accession number NIAGADS: fsa000003 (release

NG00067.v2; 5K sample), and NIAGADS: fsa000006 (release

NG0067.v7; 17K sample). The CU Hispanic dataset is avail-

able in the dbGaP repository (accession number dbGaP:

phs000496.v1.p1). The AGA-ALZAR AD GWAS results are

currently under publication process; once published,

the GWAS summary statistics will be available upon request.

Reference samplesused in thePCsand local ancestry analyses

are publicly available at NCBI: https://ftp.ncbi.nlm.nih.gov/

hapmap/ (HapMapphase3),HGDP:https://hagsc.org/hgdp/

files.html (HGDP), and IGSR: https://www.international

genome.org/data (1000 Genomes phase 3). The LLAMA

framework is implemented in the GENESIS R package freely

available at http://bioconductor.org/packages/release/bioc/

html/GENESIS.html.
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CADD, https://cadd.gs.washington.edu/.

GENESIS, https://bioconductor.org/packages/release/bioc/

html/GENESIS.html.

KING, https://www.kingrelatedness.com/.

LDMatrix, https://ldlink.nci.nih.gov/?tab¼ldmatrix.

LiftOver, https://genome.ucsc.edu/cgi-bin/hgLiftOver.

OMIM, https://www.omim.org/.

PLINK 1.0.7, https://zzz.bwh.harvard.edu/plink/.
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SCREEN, http://screen.encodeproject.org/.

Shapeit 2, https://mathgen.stats.ox.ac.uk/genetics_soft

ware/shapeit/shapeit.html.
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