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Purpose. Tumor metastasis remains the leading cause of cancer-related mortality in biliary tract cancer. )e etiology and
mechanism of bile tract carcinoma metastasis are unclear. Methods. )e primary tumor and blood samples of 14 patients with
biliary tract cancer were collected, followed by nucleic acid extraction and library construction. Target sequencing with 556 panel
genes and WES were performed to detect the hot spot genes variations. Bioinformatics was used to comprehensively analyze the
sequencing data of these samples, including the differences of tumor mutation burden and signaling pathways. Results. )e results
showed that the mutation frequency of TP53 gene was the highest and the mutations of CTNNB1, EPHA7, ARID2, and PIK3CA
were only found in metastatic samples. )e TMB mean values of metastatic and non-metastatic groups were 12.97 and 10.38
mutations perMb, respectively.)ere were significant differences in the enrichment pathways of cellular components between the
tumor metastasis and non-metastatic samples. Conclusions. We identified multiple pathway differences, which helps us better
understand metastatic biliary tumors and design clinical therapy for personalized medicine.

1. Introduction

Biliary tract carcinoma (BTC) is an invasive adenocarci-
noma that originates from the epithelial cells of the biliary
tract, including the intrahepatic and extrahepatic bile ducts
and the gallbladder [1]. Although BTCs are considered a rare
tumor, they account for about 10%–15% of all primary liver
cancers [2]. Only 10% of patients have early disease and are
considered candidates for surgical excision, and the recur-
rence rate is high despite therapeutic surgery. Most patients

with locally advanced or metastatic BTCs have poor prog-
nosis and overall survival (OS) is less than 12 months [3].

In recent years, advances in sequencing technology have
promoted the application of sequencing technology in
cancer research, giving scientists an in-depth understanding
of these cancers at the molecular level [4, 5]. However,
metastases that cause 90% of cancer deaths have been re-
ported in prostate, breast, and colorectal cancers [6–8]. Even
with a small number of metastatic cancers in tumors of the
biliary tract carcinomas, only a few specific genes have been
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studied [9]. Some studies have shown that the process of
biliary cancer tumor metastasis has complex signal pathway
crossover. Neurotensin can enhance EGFR/AKT signal
pathway and promote the metastasis of cholangiocarcinoma
cells [10]. LncRNA-UCA1 promoted the activation of ERK/
MAPK pathway by regulating the expression of miR-122 and
its downstream gene mRNA CLIC1 [11]. )erefore, a better
understanding of the biological and phenotypic evolution of
BTCs and their molecular and genetic mechanisms during
the metastatic process is crucial.

In order to further study the genetic characteristics of
tumor metastasis in the biliary tract cancer system, we
conducted high-depth sequencing in 14 patients with biliary
tract cancer. Somatic cell mutations, tumor mutation bur-
den, TITV, and molecular signaling pathways of mutated
genes in patients with metastasis and non-metastasis were
analyzed. Exploring the mechanism of metastasis in biliary
tract cancer can provide effective guidance for potential
clinical interventions, thus improving the long-term prog-
nosis of patients.

2. Methods

2.1. Patient Specimen Acquisition. Primary tumor tissue and
blood from 14 patients with BTCs were collected. According
to the digestive system tumor classification of WHO in 2010,
tumor samples were identified by hematoxylin and eosin
stained slides. )e tumor tissue samples included were
histologically confirmed to be adenocarcinoma by two
molecular pathologists, and the tumor cell content exceeded
70%. )is study was conducted in accordance with the
Helsinki Declaration and was approved by the first affiliated
southern hospital ethics committee [12]. Prior to inclusion
in the study, all patients received informed written consent
and all groups participating in this study approved this work.

2.2. DNA Extraction and Qualification. DNA was extracted
from tissue sections of tumor samples and matched with the
DNA of leukocytes as germline mutation. DNeasy Blood and
Tissue Kit (69504, Qiagen, Venlo, Netherlands) was used
according to the manufacturer’s instructions. )e content of
DNA was determined by Agilent Bioanalyzer (USA).

2.3. Target Genes Sequencing and Whole-Exome Sequencing.
)e targeted capture pulldown and exon-wide libraries from
genomic DNA were generated through the xGen® Exome
Research Panel (Integrated DNA Technologies, Inc., Illinois,
USA) and the TruePrep DNA Library Prep Kit V2 for
Illumina (#TD501, Vazyme, Nanjing, China). )e captured
libraries sequencing was performed as paired-end reads on
the Illumina NoveSeq platform.

2.4. Variant Annotation Analysis and Visual Mapping.
Split-reads were re-aligned to hg19/GRch37 using blast to
exclude false positive results. We used Picard tool (http://
broadinstitute.github.io/picard/command-line-overview.
html#CollectHsMetrics) on the computational efficiency of

WES data capture.)e tool is used to filter low-quality bases,
repetitive bases, bases that deviate from the target, and ends
that are overlapped to read at both ends due to short inserts.
)is tool calculated the strictest depth distribution. If the
mean bait coverage of sequencing data was more than 100,
we defined the data quality control as qualified. Further local
rearrangements were performed with SpeedSeq to improve
the alignment of individual reads [13]. Somatic mutations
identification and indels were annotated through Mutect
[14] and Somatic Indel Detector software [15]. ANNOVAR
[16] and Oncotator [17] annotated the variant data in use
and converted it to a MAF file through the maf tool [18].)e
cancer driver genes were analyzed using Intogen [19], in-
cluding Oncodrive FM and Oncodrive CLUST. )e land-
scape of top driver mutation spectrum predicted by Intogen
for tumors was visualized via R Script, including mutation
rate and mutation subclass/subtypes (ONCODRIVEFM P

value≤ 0.1).

2.5. Pathway Enrichment Analysis. Wayne map was used to
show that there were differences in the frequency of somatic
gene mutation between metastatic and non-metastatic
group, because some mutation genes exist only in the
metastatic group or in the non-metastatic group, while some
genes were mutated in both. GO or Gene Ontology ca-
nonical pathways with R packages: clusterProfiler were used
to analyze the genes that contain single nucleotide variants
(SNV) or SV [20]. )e calculation of P value was based on
hypergeometric distribution, and Benjamin and Hochberg
methods were used for FDR correction [21].

2.6. Statistical Analyses. All the correlate clinical and bio-
logical variables were employed using the SPSS Statistics 22.0
package and ggpubr package [22] in R [23] by methods of a

Table 1: Patient characteristics.

Characteristic No. of cases Proportion (%)
Total number n� 14
Age, years (mean) 53.28 (30–70)
Sex

Male 7 50.0
Female 7 50.0

Drinking history
Drinker 3 16.7
Nondrinker 11 83.3

Metastatic 9 64.3
Non-metastatic 5 35.8
Tumor staging

I 2 14.3
IIA 1 7.1
IIIB 3 21.4
IVA 2 14.3
IVB 6 42.9

State
Alive 6 42.9
Dead 8 57.1
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non-parametric test (such as Welch’s t test and Wilcoxon)
when necessary.

3. Result

3.1. Patient Characteristics. To better understand the mo-
lecular mechanism of BTC metastasis, fresh-frozen tumor
tissue and corresponding blood specimens from 14 BTC
patients were selected for bioinformatics analysis based on
stringent criteria. S08 and S09 samples were sequenced by
whole exome sequencing (WES), the other 12 samples se-
quenced by 556 panel genes. A total of three patients had a
history of alcohol consumption, and half had HBV.
According to the clinical stages, there were two patients in
stage I, one patient in stage IIA, three patients in stage IIIB,

two patients in stage IVA, and six patients in stage IVB. In
addition, nine samples including S01, S03, S04, S05, S06, S08,
S09, S10, and S14 were assigned to the metastatic group,
while the remaining 5 samples of S02, S07, S11, S12, and S13
were in the non-metastatic group. )e detailed clinical
characteristics of the patients are shown in Table 1 and
Supplementary Table 1.

3.2. Identification of Somatic Mutations in 14 Patients with
BTCs. We performed NGS sequencing on DNA from 14
primary tumor tissues along with matched blood and an-
notated several somatic mutations using Mutect and So-
matic Indel Detector: WES depth with a mean depth of
200.2X and 556 panel sequencing with a mean depth of
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Figure 1: Somatic mutation in biliary tumors. )e top figure shows the variation number of each sample. )e middle picture shows the
mutated genes and mutation types of the samples. )e bottom chart shows the clinical information such as age, gender, clinical diagnosis,
drinking history, survival status, etc. )e red bars on the right represent the mutation frequency of somatic cell genes in patients with
cholangiocarcinoma metastasis, and the blue bars represent the mutation frequency of somatic genes in patients without metastasis.
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2559.95X Overall. We detected 119 nonsynonymous single
nucleotide variations (SNVs) in all samples, including 31
nonsynonymous SNVs detected in WES and 88 non-
synonymous SNVs detected in 556 panel sequencing, which
were all missense mutations (Supplementary Table 2). As
shown in Figure 1, case S08 had the most SNVs, followed by
case S07. We listed the top 29 genes based on the frequency of
somatic mutations. Among them, TP53 (64%) was the highest
mutation gene. Missense mutation was the most common type
of mutation, along with nonsense, multi hit, and so on (Fig-
ure 1). Driver genes, such as CTNNB1 (22%), EP300 (22%),
KMT2C (22%), and IDH1 (22%), were mutated only in the
metastatic group, while XPO1 (40%) mutation was found only
in non-metastatic group.

We also calculated tumor mutation burden (TMB)
using only somatic nonsynonymous mutations. On the
whole, the TMB mean values of metastatic and non-met-
astatic groups were 12.97 and 10.38 mutations per Mb,
respectively, and there was no significant difference be-
tween these two groups, P � 0.6885 (Welch’s t test)
(Figures 2(a) and 2(b)). In addition, the TMB value of this
study (8.635829) was significantly higher than that of

TCGA-CHOL database (1.433684), with statistical signif-
icance (Wilcoxon, P � 0.000032) (Figure 2(c)).

3.3. Characteristics of Signaling Pathways in BTCs. In order
to further characterize the functions of mutational genes and
pathways involved in BTC, we used PANTHER classification
system [24], an ontology-based pathway database coupled
with data analysis tools. According to the metastasis of the
patient, we used a Venn diagram to divide the mutant genes
detected by 556 gene panel sequencing into three clusters,
including metastatic genes cluster (44 genes), non-meta-
static genes cluster (50 genes), and intersection genes cluster
(9 genes) (Figure 3(a)).

In the metastatic cluster, the mutant somatic genes were
mainly enriched in the transferase complex, SWI/SNF com-
plex, ATPase complex, and nBAF complex pathway
(Figure 3(b)). However, the altered somatic genes in the non-
metastatic cluster weremainly enriched in extrinsic component
of membrane, chromosome-telomeric region, cytoplasmic ri-
bonucleoprotein granule, DNA repair complex, and lateral
plasma membrane in the pathway of cellular components
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Figure 2: Comparative analysis of TMB difference. (a) Tumor mutation burden in metastatic and non-metastatic samples; (b) comparison
of TMB between metastatic and non-metastatic samples; (c) comparison of TMB between the data in this study and the TCGA-CHOL.
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(Figure 3(c)). In addition, the cellular components of mutant
genes in the intersection of metastatic and non-metastatic
clusters were mainly in histone removal factor TFIID complex,
components of synaptic membrane, intrinsic components of
presynaptic membrane, postsynaptic membrane, and activity
of postsynaptic membrane enzyme modulator (Figure 3(d)).

4. Discussion

BTC is a rare malignant tumor [25]. At the initial diagnosis
stage, about 60% or 70% of cholangiocarcinomas are
pathologically advanced [26], and the overall survival time is

between 8 and 715 days, with an average of 302 days, which is
consistent with the previous statement that OS is less than 12
months [27]. Metastatic clones can occur in the early and
late stages of primary tumors [8, 28]. Better understanding of
the genetic characteristics of metastatic diseases may reveal
the differences between the treatment weaknesses of primary
and metastatic tumors and provide insights into the biology
of metastasis. )e metastasis of biliary malignancies is often
accompanied bymutations or changes in expression levels of
multiple pathway genes, including abnormal activation of
proto-oncogenes and inactivation of tumor suppressor
genes. We designed 556 genes panel of tumor mutation hot
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Figure 3: Analysis of pathways involving nonsynonymous genes in BTCs. (a) Venn diagram of gene distribution in three clusters. (b) )e
cellular component pathway of mutant genes in the metastatic group. (c) )e cellular component pathway of mutant genes in the non-
metastatic group. (d) )e cellular component pathway of mutant genes in the intersection group.
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spot gene and sequenced it in high depth. We also found
high frequency mutated genes in tumors of the biliary
system that have been reported, such as TP53, ARID1B,
CTNNB1, EPHA7, IDH1, and so on [29–31], while CTNNB1,
EPHA7, ARID2, and PIK3CA were mutated in patients with
metastasis (Figure 1). It has been reported that, in intra-
hepatic biliary cell carcinoma, mutations in CTNNB1 are
mostly associated with alcohol intake risk factors, while
mutations in TP53 are caused by HBV risk factors [32].
Frequent mutations of TP53 and ARID1A associated with
chromatin remodeling and chromosomal organization may
be involved in the carcinogenesis and development of
intrahepatic cholangiocarcinoma [33]. We also analyzed 51
samples from the TCGA-CHOL database and found that the
mutation frequency of TP53 was only (4/51) 8%, far lower
than the targeted sequencing (9/14) 62% in this study
(Supplementary Figure 1). )is indicates that the target gene
sequencing method is more accurate in detecting target
genes.

Previous studies have reported that, in univariate
analysis, TP53 and ARID1A were predictors of poor prog-
nosis in cholangiocarcinoma [29]. We calculated the rela-
tionship between TP53 mutation and overall survival time,
indicating that no significant difference was found
(P � 0.325), which may be largely due to the low sample size
(Supplementary Figure 2).

Currently, there are dozens of biomarkers related to
checkpoint inhibitors, among which TMB, PD-L1, and MSI/
dMMR have been verified by phase III clinical trials and are
widely used in clinical practice [34–36]. TMB is a biomarker
for predicting PD-1/PD-L1 immune response [37, 38]. Even
though it has been reported that TMB-H alone is not suitable
for predicting the immunotherapy effect of solid tumor type
[39], we found that there was a significant difference in TMB
between this study and TCGA, but the TMB did not exceed
20 mutations per Mb (Figure 2). For different cancer types,
the setting of high TMB threshold may need more clinical
studies and a large number of patient information statistics.
A Japanese paper suggests that TMBs are overestimated in
targeted sequencing compared to WES [40]. )erefore, we
compared the TMB value of BTC samples in this study with
TCGA-CHOL and found that the depth of targeted se-
quencing was significantly higher than that of WES.

Signaling pathways are characterized by mutations in a
single gene or changes in expression, which usually involve
simultaneous changes in multiple pathways, such as an-
giogenesis and notch signaling pathway [41]. During the
process of tumor metastasis, cellular components such as the
transferase complex, SWI/SNF complex, ATPase complex,
and nBAF complex pathway are all adjusted accordingly.
SWI/SNF, including BRM or BRG-1, ATPase subunits,
controls many aspects of normal cellular function [42].
Ribonucleoprotein promotes tumor metastasis by induction
of genes involved in extracellular matrix, cell movement, and
angiogenesis [43]. Functional recovery is promising in
cancer therapy because epigenetic inhibition regulates the
expression of SWI/SNF components at least in some cases.
More research is needed to unblock the role of SWI/SNF in
cancer and determine how it affects tumor metastasis.)is is

an exciting but poorly understood molecule that may play a
role in causing cancer.

5. Conclusion

Our study identified somatic mutations, TMB in metastatic
and non-metastatic groups.)e GO analysis showed that the
metastatic and non-metastatic groups were completely
different in terms of cellular composition pathways. Al-
though the sequencing depth of 556 panel gene was very
high, the detected genes were known or have been reported,
and new site mutations cannot be found. In addition, our
556 panel was designed for the locus with high mutation
hotspots in the Asian population, which was suitable for the
detection of mutated genes in the whole cancer species, not
specifically for the cholangiocarcinoma, so the detection
range of mutated genes is still limited. In addition, the small
sample size and the lack of matched BTC transfer samples
were also limitations of this study. In conclusion, the current
findings could help identify specific pathways and hot spots
that altered during metastasis and provide a direction for
targeted therapy of these tumors.
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