

Citation: Shen D-K, Blocker AJ (2016) MxiA, MxiC and IpaD Regulate Substrate Selection and Secretion Mode in the T3SS of *Shigella flexneri*. PLoS ONE 11 (5): e0155141. doi:10.1371/journal.pone.0155141

Editor: Eric Cascales, Centre National de la Recherche Scientifique, Aix-Marseille Université, FRANCE

Received: October 1, 2015

Accepted: April 25, 2016

Published: May 12, 2016

Copyright: © 2016 Shen, Blocker. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Funding: These studies were supported mainly by UK Medical Research Council (MRC) project grant MR/J002097/1 and briefly by UK Wellcome Trust Investigator Award WT104634AIA to AJB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

RESEARCH ARTICLE

MxiA, MxiC and IpaD Regulate Substrate Selection and Secretion Mode in the T3SS of *Shigella flexneri*

Da-Kang Shen¹, Ariel J. Blocker²*

1 School of Cellular & Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom, 2 Schools of Cellular & Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom

* ariel.blocker@bristol.ac.uk

Abstract

Type III secretion systems (T3SSs) are central virulence devices for many Gram-negative bacterial pathogens of humans, animals & plants. Upon physical contact with eukaryotic host cells, they translocate virulence-mediating proteins, known as effectors, into them during infection. T3SSs are gated from the outside by host-cell contact and from the inside via two cytoplasmic negative regulators, MxiC and IpaD in Shigella flexneri, which together control the effector secretion hierarchy. Their absence leads to premature and increased secretion of effectors. Here, we investigated where and how these regulators act. We demonstrate that the T3SS inner membrane export apparatus protein MxiA plays a role in substrate selection. Indeed, using a genetic screen, we identified two amino acids located on the surface of MxiA's cytoplasmic region (MxiA_C) which, when mutated, upregulate late effector expression and, in the case of MxiA_{1674V}, also secretion. The cytoplasmic region of MxiA, but not MxiA_{N373D} and MxiA_{I674V}, interacts directly with the C-terminus of MxiC in a two-hybrid assay. Efficient T3S requires a cytoplasmic ATPase and the proton motive force (PMF), which is composed of the $\Delta \Psi$ and the ΔpH . MxiA family proteins and their regulators are implicated in utilization of the PMF for protein export. However, our MxiA point mutants show similar PMF utilisation to wild-type, requiring primarily the $\Delta\Psi$. On the other hand, lack of MxiC or IpaD, renders the faster T3S seen increasingly dependent on the ApH. Therefore, MxiA, MxiC and IpaD act together to regulate substrate selection and secretion mode in the T3SS of Shigella flexneri.

Introduction

Type III secretion systems (T3SSs) are central virulence devices for many Gram-negative bacterial pathogens of humans, animals & plants. They translocate virulence proteins into eukaryotic host cells to manipulate them during infection. T3SSs are key to the virulence of enteric pathogens such as *E. coli*, *Salmonella* and *Shigella* species. Bacterial diarrheal illnesses lead to ~10% of deaths in children <5 yrs in the developing world [1]. *Enterobacteriaceae* also lead to serious disease outbreaks in rich societies.

Shigella is the agent of human bacillary dysentery. Its T3SS consists of a cytoplasmic portion and a transmembrane region traversing both bacterial membranes, into which a hollow needle is embedded protruding from the bacterial surface [2]. Physical contact with eukaryotic host cells activates the secretion system, which initiates secretion and leads to formation of a pore, formed by the bacterial proteins IpaB & IpaC in *Shigella*, in host-cell membranes [3]. Through the needle [4] and pore channels, the effectors are translocated to facilitate host cell invasion [3]. The needle tip complex (TC), which contains IpaD and IpaB, is the host cell sensor and transforms itself into the translocation pore [5, 6] via addition of IpaC upon secretion activation [7, 8]. IpaD is hydrophilic and required for tip recruitment of the other two proteins, which are hydrophobic. Together, they are called the translocators.

Effectors acting late in the host cell manipulation cascade are only expressed once presynthesised early effectors have been secreted at host cell contact, but via differing mechanisms from one T3SS-carrying organism to another [9]. Yet, one regulatory cascade is conserved, that allowing hierarchical secretion of substrates [10]. How this cascade functions in animal pathogens is the focus of this work. There, effector secretion is initially prevented through concerted action of surface TC proteins and regulators controlling secretion from within the bacterial cytoplasm. The TC may prevent premature effector secretion by allosterically constraining the T3SS in a secretion "off" conformation [11, 12]. Upon physical contact of the TC with host cells [13], a signal is transmitted via the TC [13] and needle [14] to the cytoplasm where it triggers secretion [11]. Next, translocators are secreted to form the pore in the host membrane. Successful pore formation at the needle tip generates a second needle-transmitted signal [11, 14, 15], allowing inactivation or T3S-mediated removal of a conserved cytoplasmic regulatory protein, MxiC in *Shigella* [16]. Third, early effector proteins are secreted and translocated into the host cell [11] and expression of late effectors, including the family of *ipaH* genes [17], is activated via activation of the transcription factor MxiE [18].

Members of the MxiC family [19] are termed "gate-keepers" as they regulate initial substrate selection hierarchies. In animal pathogens, all MxiC-class proteins prevent effector secretion in the absence of an activation signal: when *mxiC* or its homologues are deleted, bacteria constitutively secrete effectors [16]. Deletion of *mxiC* and some of its homologs also leads to decreased translocator secretion [11], indicating the proteins can also promote translocator secretion. The gate-keepers have conserved structures [20, 21]: after an N-terminal secretion signal and chaperone binding domain (CBD), three α -helical X-bundles form a flat and elongated structure [21] typical for "hub proteins" regulating processes via interaction with multiple partners. In some species, gate-keepers are composed of two proteins where the second polypeptide covers the C-terminal X-bundle (domain 3; [20]).

Several gate-keepers bind heterodimeric intrabacterial chaperones [20, 22] but, no chaperone was found in *Shigella* [16, 23]. Some MxiC homologues also interact with effector proteins and this can help regulate the secretion hierarchy [24]. However, none of these partners are conserved, making them unlikely mediators of conserved gate-keepers functions. Instead, MxiC homologs may control secretion by interacting with the cytoplasmic face of the T3SS export apparatus (EA), blocking an acceptor site for effectors and/or altering its activity [11, 12, 15, 25, 26].

The conserved EA is composed of 5–6 inner membrane proteins (IMEA) and some peripheral/cytoplasmic ones (CEA) (Fig 1A). The latter includes 1–2 "C-ring" components that bind cytoplasmic IMEA portions and 3 components of an ATPase complex interacting with the IMEA and C-ring and evolutionarily related to F1Fo-ATPases [27]. F1-ATP synthase's hexameric ring connects to F0 via a central stalk, rotated for catalysis through the ring by proton

Fig 1. Schematic of *Shigella* T3SS and location of MxiA_c mutations altering substrate selection. (A) Shematic of *Shigella* T3SS. Needle components in blue-greens, transmembrane base dark purple, IMEA light purple, CEA components (C-ring and ATPase complex) in light blues. A curved arrow shows the proposed direction of proton flow during protein export, which may be coupled to ATP hydrolysis. *Pseudomonas* vT3SS and *Salmonella* TT3SS homologs mentioned in the text are shown in italics. (B) MxiA_c monomer (chain B [36]), putative oligomerisation domain (indicated by aas with charges shown) facing viewer. *Grey*, domain 4, facing cytoplasm; *light blue*, aa involved in chaperone binding within domain 2; mutations in both of these affect substrate selection in FlhA [44, 45]. *Pink*, location of mutations found in this work; *top right* N373, in an unstructured loop; *bottom*, 1674. *Orange*, Q608 and *green*, location of two activating mutations identified by Rietsch [31] (homologous to Y587 and M667 in PcrD). Mutations in pink and orange aas are all surface located and affect interaction with MxiC. *Right: cyan*, chain A of oligomer. Assembly rotated left to show mutations do not cluster at oligomer interfaces (inside of nonamer ring facing viewer). (D) Schematic presenting the sequence homologies and functional correspondences between *Shigella* and *Pseudomonas* regulatory proteins mentioned in this work. Proteins are presented linearly, from N- to C-terminus; SS, secretion signal; CBD, chaperone binding domain; XB, X-bundle.

doi:10.1371/journal.pone.0155141.g001

motive force (PMF)-driven rotation of Fo in the membrane. A peripheral stalk connecting F1 and Fo functions as a stator. The flagellum, which also uses a T3SS (fT3SS) to assemble, and the *Pseudomonas* and *Yersinia* virulence mediating T3SS (vT3SS), all use the PMF to catalyse protein export [28–31]. In the fT3SS, IMEA part(s), including FlhA, function as a proton-protein antiporter [32], the activity of which is initiated and/or stimulated by the hexameric

ATPase FliI [33, 34]. FliI's activity is coupled to the IMEA's by FliJ's interaction with FlhA [32]. FlhA, known as MxiA in the *Shigella* vT3SS, is a polytopic membrane protein with a large C-terminal transmembrane region essential for the secretion process [35], which may form a nonameric ring within the IMEA [36]. It binds FliJ, Spa13 in the *Shigella* vT3SS, via an extended linker region connecting the cytoplasmic region to the membrane [32, 37]. FliJ shows structural similarity to the rotating subunit of F1Fo-ATPases [38], whilst FliH, probably MxiN in the *Shigella* vT3SS, is homologous to their stator region.

The only IMEA components so far involved in substrate selection are those of the FlhB and FlhA families. In FlhB homologs, an autocleavage/conformational change allows export of the next appropriate substrates upon base completion [27, 39]. FlhA family proteins suppress premature export of these substrates [27, 31] and may then selectively stimulate their export [40, 41] (Fig 1B and 1C). Yet, no MxiC homolog was identified in fT3SSs. But, in several vT3SSs, a MxiC homologue fraction is membrane-associated [24, 42]. In one case, its departure from this location correlates with effector secretion [26]. MxiC also interacts with the ATPase and the needle periplasmic rod [15, 16], although its action(s) on them is undefined. In addition, a "sorting platform" composed of C-ring and ATPase components is selectively "loaded" with translocators and effectors through action of their chaperones and a MxiC homolog [43]. Recently, *Pseudomonas* Pcr1, a homolog of MxiC's domain 3 (Fig 1D), was found to interact directly with PcrD, an FlhA homolog [31].

MxiC homologues also interact with the hydrophobic translocators' chaperone, IpgC in *Shigella* [15, 42], via a domain 3 site [22, 46]. Furthermore, alteration of IpaD's self-chaperone domain [13] or, in other species, its separately encoded intrabacterial chaperone [12], upregulates translocator export. As chaperones are not secreted, the latter control gate-keeper activity intrabacterially [12]. This is supported by genetic dissociation of IpaD's intracellular and TC regulatory roles [13]. IpaD's intracellular role also requires MxiC [11, 13]. This suggests all these factors interact intrabacterially to prevent premature translocator secretion. Indeed, PcrG, the *Pseudomonas* equivalent of the IpaD self-chaperone domain (Fig 1D), interacts with Pcr1 [31]. Furthermore, MxiC, IpaD, IpgC, IpaB and IpaC interact, albeit weakly [23].

IpaD removal from the cell increases the secretion rate. $\Delta ipaD$ is one of only two mutants identified as a "fast" constitutive secreter in *Shigella*, the other being $\Delta ipaB$ [5]. By comparison, the constitutive secretion observed in $\Delta mxiC$ is slower [11]. Lack of IpaB liberates IpgC, a transcriptional co-activator of late effectors genes in *Shigella*. However, IpaB is present at wild-type levels in $\Delta ipaD$ [23], indicating the cause of rapid secretion in $\Delta ipaD$ lies elsewhere. It may result from absence of an inhibitory complex containing IpaD associated with the secretion apparatus. Indeed, *Pseudomonas* PcrG interacts with PscO, a FliJ/Spa13 homolog, and with PcrD (FlhA/MxiA), to hinder fast PMF-dependent activity of the EA prior to activation signal reception, which then requires a rapid secretion burst [31].

Here, we sought to validate the role of PrcD/FlhA homolog MxiA in regulation of substrate selection and the role of the homologs of proteins known to interact with it in the *Pseudomonas* vT3SS and the *Salmonella* fT3SS, MxiC, IpaD and Spa13 in *Shigella*, in controlling the secretion rate. Using a genetic screen, we identified two amino acids located on the surface of MxiA's cytoplasmic region (MxiA_C) which, when mutated, upregulate late effector expression and secretion. We find these do not affect PMF-utilization during export but abolish the interaction of MxiA_C with MxiC in a 2-hybrid assay. Using this assay we also mapped the site of interaction with MxiA_C to the extreme C-terminus of MxiC. Finally we show that lack of MxiC and IpaD renders T3S in *Shigella* increasingly dependent on the Δ pH, rather than on the $\Delta\Psi$ component of the PMF, suggesting these proteins also regulate a switch in secretion mode.

Methods

Bacterial strains and cell culture

All bacterial strains and plasmids used in this study are listed in <u>Table 1</u>. *S. flexneri* strains were maintained and selected on CR agar plates [47] and grown at 37°C in trypticase soy broth (TCSB; Becton Dickinson) supplemented with antibiotics when necessary (100 μ g of ampicillin ml⁻¹, 50 μ g of kanamycin ml⁻¹, 20 μ g of chloramphenicol ml⁻¹; Sigma). *E. coli* strains were maintained and selected on LB agar plates supplemented with antibiotics when necessary as for *S. flexneri*.

Knockout and complementation of mxiA

In-frame deletion of inner membrane export apparatus protein MxiA was carried out by using the λ Red system [52]. A kanamycin resistance cassette was amplified from plasmid pKD4 using primers *mxiA*_KO_kanF and *mxiA*_KO_kanR and electroporated into *S. flexneri* wildtype carrying the Red recombinase to replace *mxiA*, giving rise to $\Delta mxiA$, which was verified via sequencing primers *mxiA*_KO_ver_F and *mxiA*_KO_ver_R. Complementation was achieved by *in trans* expression of *mxiA* in the low copy plasmid pWSK29 [53], giving rise $\Delta mxiA/mxiA$. *mxiA* mutants were obtained via in-fusion cloning (Clontech) using template pWSK29 *mxiA* and corresponding primers, such as MxiA_N373D-For and MxiA_N373-D-Rev, as listed in Table 2. All constructs were verified by DNA sequencing (Eurofins).

MxiA mutant library screening

For reporter plasmid construction mxiA, followed by two transcription terminators, was cloned upstream of the reporter gene *cepH*, which encodes resistance to cephalosporins [54]. A 1485 bp DNA sequence (Figure A in <u>S1 File;</u> [17, 55]), modified from plasmid pQF50 and encoding two transcription terminators, the minimal promoter of *ipaH9.8*, and the *cepH* gene, flanked by EcoRI and XhoI restriction sites was synthesized by Eurofins and cloned downstream of mxiA in pWSK29 [53]. The resulting plasmid complemented $\Delta mxiA$ and the complemented strain was sensitive to 60–120 ng/ml cefotaxime (Sigma) on plates containing CR. mxiA was then amplified by error-prone PCR with 2.5–5 mM Mg⁺⁺ and Taq DNA Polymerase (New England BioLabs) using primers *mxiA*_XbaI_RBS_F and *mxiA*_EcoRI_R, cloned into the reporter plasmid, transformed into DH5 α to generate a library of MxiA mutants. The size of the libraries was estimated by plating a portion of the transformation mix on LB Ampicillin agar plates and the mutation rate was evaluated as 70% of sequences carrying one or more non-silent single base pair substitutions (predominantly to As and Ts) by randomly sequencing 10 transformants. Based on PEDEL, Programme for Estimating Diversity in Error-prone PCR Libraries (http://guinevere.otago.ac.nz/cgi-bin/aef/pedel.stats.pl), if we assume the mean number of point mutations per sequence is 0.7, 54,000 transformants are required to cover 95% of single point mutations in MxiA. The MxiA mutant libraries were transformed into $\Delta mxiA$ and screened on plates containing 60 ng/ml cefotaxime without CR and 120 ng/ml cefotaxime with CR, respectively.

PMF inhibition assays

To test the role of the $\Delta\Psi$ and Δ pH in Ipa proteins export, we used carbonyl cyanide *m*-chlorophenyl hydrazone (CCCP, Sigma) as previously described [29, 31]. Briefly, cells at mid-log growth stage were washed twice in TCSB medium (pH ~7.3) containing 120 mM Tris (pH 7.0), and resuspended in TCSB containing either 0.5% DMSO or CCCP at concentrations up to 40 μ M at 37°C for 30 min. To test the role of the $\Delta\Psi$ alone, we used valinomycin (Sigma) as

StrainGenotype (strain; plasmid)ReferenceShigella llexneriShigella llexneriWTWild-type M907, serotype 5a[49]WTpHluorinWT; pYVM007This study and [49]JapaDSF622[50]JanxiAWT with deletion of mx/AThis study AmxiA, mx/A; pWSK29 mx/AThis study AmxiA/mx/A (MTWAIA)AmxiAWT with deletion of mx/AThis study AmxiA/mx/A (MTWAIA)This study AmxiA, pWSK29 mx/A (Accessed)AmxiA/mxiAAmxiA; pWSK29 mx/Accessed (Maccessed)This study AmxiA; pWSK29 mx/Accessed)This study (MTWAIA)AmxiA/mxiAMTXA; pWSK29 mx/Accessed (Maccessed)This study (MTWAIA)This studyAmxiA/mxiApRA02 pPA03 (pRA02 and pRA03 contain RNAP a (Statessed)[51]Positive controlpRA02 mx/C pRA03 mxiAccessed (Accessed)This studyMxiC:MxiAccessed (MacCessed)pRA02 mx/C pA03 mxiAccessed (Accessed)This studyMxiC:MxiAccessed (MacCessed)pRA02 mx/C pA03 mxiAccessed)This studyMxiC:MxiAccessed PRA02 mxiC pA03					
Shigella flexneri Viiii Wiid-type M90T, serotype 5a [48] WTT pHuorin WT; pVVM007 [49] <i>AjpaD</i> SF622 [50] <i>AmxiC</i> WT with deletion of <i>mxiC</i> [11] <i>AmxiA</i> WT with deletion of <i>mxiA</i> This study <i>AmxiA</i> MT with deletion of <i>mxiA</i> This study <i>AmxiA</i> /mxiA _A <i>AmxiA</i> ; pWSK29 <i>mxiA_{AD270}</i> This study <i>AmxiA/mxiA_{AD2740} AmxiA</i> ; pWSK29 <i>mxiA_{AD270}</i> This study <i>AmxiA/mxiA_{AD260001} AmxiA</i> ; pWSK29 <i>mxiA_{AD270}</i> This study <i>AmxiA/mxiA_{AD260001} AmxiA</i> ; pWSK29 <i>mxiA_{AD270}</i> This study <i>AmxiA/mxiA_{AD26001} AmxiA</i> ; pWSK29 <i>mxiA_{AD270}</i> This study MxiC MxiA _{AD210} pRA02 <i>pRA03</i> (pRA02 and pRA03 contain RNAP a subuti and k cl, respectively) [51] Positive control pRA02 <i>mxiC</i> pRA03 <i>mxiA_{C2180680}</i> N3730 This study MxiC MxiA _{C2180680} pRA02 <i>mxiC</i> pRA03 <i>mxiA_{C2180680}</i> N3730 This study MxiC MxiA _{C2180680} pRA02 <i>mxiC</i> pRA03 <i>mxiA_{C2180680}</i> N3730 This study MxiC MxiA _{C2180680} pRA02 <i>mxiC</i> pRA03 <i>mxiA_{C2180680}</i> N3730 This study MxiC MxiA _{C2180680} pRA02 <i>mxiC</i> pRA03 <i>m</i>	Strain	Genotype (strain; plasmid)	Reference		
WT Wild-type M807, serotype 5a [46] WT/pHluorin WT; pYVM007 This study and [49] <i>dipaD</i> SF622 [50] <i>dipaD</i> WT with deletion of <i>mxiA</i> [11] <i>dmxiA</i> WT with deletion of <i>mxiA</i> This study <i>dmxiA</i> MT with deletion of <i>mxiA</i> This study <i>dmxiAmiAmaNarsab dmxiA</i> ; pWSK29 mxiA _{Assrab} This study <i>dmxiAmiAmiAnarsab dmxiA</i> ; pWSK29 mxiA _{Assrab} This study <i>dmxiAmiAmiAnarsab dmxiA</i> ; pWSK29 mxiA _{Assrab} This study <i>dmxiAmiAmiAnarsab dmxiA</i> ; pWSK29 mxiA _{Assrab} This study <i>dmxiAmiAnarsab fmxiA</i> ; pWSK29 mxiA _{Assrab} This study <i>dmxiAmiAnarsab pRA02</i> pRA03 (pRA03 and pRA03 contain RNAP a [51] NeiC and MxiAc, interaction pRA02 pRA03 mxiAc ₂₁₈₋₆₈₆ nsrab This study MxiC MxiAc ₂₁₈₋₆₈₆ pRA02 mxiC pRA03 mxiAc ₂₁₈₋₆₈₆ nsrab This study MxiC MxiAc ₂₁₈₋₆₈₆ pRA02 mxiC pRA03 mxiAc ₂₁₈₋₆₈₆ nsrab This study MxiC MxiAc ₂₁₈₋₆₈₆ nsrab pRA02 mxiC pRA03 mxiAc ₂₁₈₋₆₈₆ nsrab This study MxiC MxiAc ₂₁₈₋₆₈₆ nsrab pRA02 mxiC pRA03 mxiAc ₂₁₈₋₆₈₆ nsrab This study MxiC MxiAc ₂₁₈₋₆₈₆ nsrab pRA02 mxiC QFA03 mxiAc ₂₃₈₋₆₈₆ nsrab This study MxiC MxiAc ₂₃₈₋₆₆₈₆ nsrab<	Shigella flexneri				
WT/pHluorinWT; pYVM007This study and [49] <i>dipaD</i> SF622[50] <i>dipaD</i> SF622[50] <i>dmxiA</i> WT with deletion of <i>mxiC</i> [11] <i>dmxiA</i> WT with deletion of <i>mxiC</i> [11] <i>dmxiA</i> WT with deletion of <i>mxiA</i> This study <i>dmxiA/mxiAdmxiA</i> ; pWSK29 <i>mxiA</i> _{AS773D} This study <i>dmxiA/mxiAdmxiA</i> ; pWSK29 <i>mxiA</i> _{AS774D} [51]Negative controlpRA02 pRA03 (pRA02 and pRA03 contain FINAP α subunit and A cl, respectively)[51]Positive controlpRA02 <i>mxiC</i> pRA03 <i>mxiA</i> _{C318-666} is73DThis studyMxiC:MxiA_C318-666pRA02 <i>mxiC</i> pRA03 <i>mxiA</i> _{C318-666} is73DThis studyMxiC:MxiA_C318-666pRA02 <i>mxiC</i> pRA03 <i>mxiA</i> _{C318-666} is74VThis studyMxiC:MxiA_C318-666pRA02 <i>mxiC</i> pRA03 <i>mxiA</i> _{C318-666} is74VThis studyMxiC:MxiA_C38-668pRA02 <i>mxiC</i> pRA03 <i>mxiA</i> _{C386-668} is73DThis studyMxiC:MxiA_C38-668pRA02 <i>mxiC</i> pRA03 <i>mxiA</i> _{C386-668} is74VThis studyMxiC:MxiA_C38-668pRA02 <i>mxiC</i> CPRA03 <i>mxiA</i> _C38-668This studyMxiC:MxiA_C38-668pRA02 <i>mxiC</i> CA14 pRA03 <i>mxiA</i> _C38-668This studyMxiC:MxiA_C38-668pRA02 <i>mxiC</i> CA2 pRA03 <i>mxiA</i> _C38-668This studyMxiC:MxiA_C38-668pRA02 <i>mxiC</i> CA2 pRA03 <i>mxiA</i> _C38-668This studyMxiC:MxiA_C38-668pRA	WT	Wild-type M90T, serotype 5a	48		
ÁjpaDSF622[50]ArnxiAWT with deletion of mxi/C[11]ArnxiAWT with deletion of mxi/CThis studyArnxiA, InviAArnxiA; pWSK29 mxiAThis studyArnxiA/mxiAoceanArnxiA; pWSK29 mxiAoceanThis studyE. coli KS1 for two-hybrid assay (only fused genes are shown in the plasmid)[51]Positive controlpRA02 ur/A1-252 pRA03 mxiAc316-680[51]MxiC:MxiAc316-680pRA02 ur/A1-252 pRA03 mxiAc316-680This studyMxiC:MxiAc316-680pRA02 mxiC pRA03 mxiAc366-680This studyMxiC:MxiAc316-680pRA02 mxiC pRA03 mxiAc366-680This studyMxiC:MxiAc366-680pRA02 mxiC pRA03 mxiAc366-680This studyMxiC:MxiAc366-680pRA02 mxiC Ac40 pRA03 mxiAc366-680This study <t< td=""><td>WT/pHluorin</td><td>WT; pYVM007</td><td>This study and [<u>49]</u></td></t<>	WT/pHluorin	WT; pYVM007	This study and [<u>49]</u>		
ΔmxiCWT with deletion of mxiC[11]ΔmxiAWT with deletion of mxiAThis studyΔmxiA/mxiAMmxiA; pWSK29 mxiAThis studyΔmxiA/mxiAΔmxiA; pWSK29 mxiAThis studyΔmxiA/mxiA _{PDX} ΔmxiA; pWSK29 mxiA _{AGGGER} This studyΔmxiA/mxiA _{PDX} ΔmxiA; pWSK29 mxiA _{AGGGER} This studyΔmxiA/mxiA _{PDX} ΔmxiA; pWSK29 mxiA _{AGGGER} This studyE. coli KS1 for two-hybrid assay(only fused genes are shown in the plasmid)[51]Negative controlpRA02 pRA03 (pRA02 and pRA03 contain RNAP α subunit and \ cl, respectively)[51]Positive controlpRA02 mxiC pRA03 mxiA _{C318-686} M37a0This studyMxiC:MxiA _{C318-686} cosenpRA02 mxiC pRA03 mxiA _{C318-686} M37a0This studyMxiC:MxiA _{C318-686} ms7a0pRA02 mxiC pRA03 mxiA _{C318-686} M37a0This studyMxiC:MxiA _{C318-686} ms7a0pRA02 mxiC pRA03 mxiA _{C318-686} m37a0This studyMxiC:MxiA _{C318-686} ms7a0pRA02 mxiC pRA03 mxiA _{C356-686} M37a0This studyMxiC:MxiA _{C356-686} ms7a0pRA02 mxiC pRA03 mxiA _{C356-686} M37a0This studyMxiC:MxiA _{C356-686} ms7a0pRA02 mxiC QFA03 mxiA _{C356-686} m37a0This studyMxiC:MxiA _{C356-686} ms7a0pRA02 mxiC QC4 pRA03 mxiA _{C356-686} m37a0This studyMxiC:MxiA _{C356-686} ms7a0pRA02 mxiC QC4 pRA03 mxiA _{C356-686} m37a0This studyMxiC:MxiA _{C356-686} ms7a0pRA02 mxiC QC4 pRA03 mxiA _{C356-686} m37a0This studyMxiC:MxiA _{C356-686} ms7a0pRA02 mxiA _{C356-686} m37a0This studyMxiC:MxiA _{C356-686} ms7a0pRA02 mxiA _C	ΔipaD	SF622	50		
ΔmxiAWT with deletion of mxiAThis studyΔmxiA/mxiAΔmxiA; pWSK29 mxiA, syrapThis studyΔmxiA/mxiA_posenΔmxiA; pWSK29 mxiA_boosnThis studyΔmxiA/mxiA_00000ΔmxiA; pWSK29 mxiA_boosnThis studyΔmxiA/mxiA_000000ΔmxiA; pWSK29 mxiA_boosnThis studyΔmxiA/mxiA_000000pRA02 pR030 (pRA02 and pRA03 contain RNAP α[51]Negative controlpRA02 pR030 (pRA02 and pRA03 contain RNAP α[51]Positive controlpRA02 ur/A1-252 pRA03 mri/Ac19-696 N3730This studyMxiC:MxiA_C318-686 N3730pRA02 mxiC pRA03 mxiA_C318-696 N3730This studyMxiC:MxiA_C318-686 C60000pRA02 mxiC pRA03 mxiA_C318-696 N3730This studyMxiC:MxiA_C318-686 C60000pRA02 mxiC pRA03 mxiA_C318-696 N3730This studyMxiC:MxiA_C318-686 C60000pRA02 mxiC pRA03 mxiA_C318-696 N3730This studyMxiC:MxiA_C318-686 C600000pRA02 mxiC pRA03 mxiA_C386-696This studyMxiC:MxiA_C386-686pRA02 mxiC pRA03 mxiA_C386-686This studyMxiC:MxiA_C386-686pRA02 mxiC pRA03 mxiA_C386-686This studyMxiC:MxiA_C386-686pRA02 mxiC pRA03 mxiA_C386-686This studyMxiC:MxiA_C386-686pRA02 mxiC pA03 mxiA_C386-686This studyMxiC:MxiA_C386-686pRA02 mxiC CAC4 pRA03 mxiA_C386-686This studyMxiC:MxiA_C386-686pRA02 mxiC CAC4 pRA03 mxiA_C386-686This studyMxiC:MxiA_C386-686pRA02 mxiC CAC4 pRA03 mxiA_C386-686This studyMxiC:AC386-686pRA02 mxiC CAC4 pRA03 mxiA_C386-686This studyMxiC:AC386-686 <td>ΔmxiC</td> <td>WT with deletion of <i>mxiC</i></td> <td>[11]</td>	ΔmxiC	WT with deletion of <i>mxiC</i>	[11]		
ΔmxiA/mxiAΔmxiA; pWSK29 mxiAThis studyΔmxiA/mxiAo _{c00000} ΔmxiA; pWSK29 mxiAo _{c000000000000000000000000000000000000}	ΔmxiA	WT with deletion of mxiA	This study		
ΔmxiA/mxiA ₀₂₀₆₈ B ΔmxiA; pWSK29 mxiA ₀₂₀₆₈ B This study ΔmxiA/mxiA ₀₂₀₆₈ B ΔmxiA; pWSK29 mxiA ₀₂₀₆₈ B This study ΔmxiA/mxiA _{0274V} ΔmxiA; pWSK29 mxiA ₀₂₀₆₈ B This study LonxiA/mxiA _{0274V} ΔmxiA; pWSK29 mxiA ₀₂₀₆₈ B This study LonxiA/mxiA _{0274V} Description PRA02 pRA03 (pRA02 and pRA03 contain RNAP α [51] Negative control pRA02 uvrA1-252 pRA03 mriA_218-686 This study MxiC:MxiA ₀₂₁₈₋₆₈₆ pRA02 mxiC pRA03 mxiA ₀₂₁₈₋₆₈₆ N373D This study MxiC:MxiA ₀₂₁₈₋₆₈₆ pRA02 mxiC pRA03 mxiA ₀₂₁₈₋₆₈₆ N373D This study MxiC:MxiA ₀₂₁₈₋₆₈₆ Bis74V PRA02 mxiC pRA03 mxiA ₀₂₁₈₋₆₈₆ Bis74V This study MxiC:MxiA ₀₂₃₈₋₆₈₆ N373D PRA02 mxiC pRA03 mxiA ₀₂₃₈₋₆₈₆ N373D This study MxiC:MxiA ₀₂₃₈₋₆₈₆ N373D PRA02 mxiC pRA03 mxiA ₀₂₃₈₋₆₈₆ Cooren This study MxiC:MxiA ₀₂₃₈₋₆₈₆ N373D PRA02 mxiC DRA03 mxiA ₀₂₃₈₋₆₈₆ Cooren This study MxiC AC4:MxiA ₀₂₃₈₋₆₈₆ N373D PRA02 mxiC DA4 PRA03 mxiA ₀₂₃₈₋₆₈₆ Cooren This study MxiC AC4:MxiA ₀₂₃₈₋₆₈₆ N373D PRA02 mxiC DC4 PRA03 mxiA ₀₂₃₈₋₆₈₆ Cooren This study MxiC AC4:MxiA ₀₂₃₈₋₆₈₆ N373D <t< td=""><td>ΔmxiA/mxiA</td><td>ΔmxiA; pWSK29 mxiA</td><td>This study</td></t<>	ΔmxiA/mxiA	ΔmxiA; pWSK29 mxiA	This study		
AmxiA/mxiA DecomeDmxiA; pWSK29 mxiA DecomeThis studyAmxiA; pWSK29 mxiA DecomeThis studyAmxiA; pWSK29 mxiA DecomeThis studyNegative controlpRA02 pRA03 (pRA02 and pRA03 contain RNAP a subunit and A cl, respectively)Positive controlpRA02 mxiA - 252 pRA03 m/d1-219bPositive controlpRA02 mxiC pRA03 mxiA_c318-666MxiC and MxiA_c interactionMxiC:MxiA_c318-666pRA02 mxiC pRA03 mxiA_c318-666 N373DMxiC:MxiA_c318-666 N373DpRA02 mxiC pRA03 mxiA_c318-666 N373DMxiC:MxiA_c386-666 N373DpRA02 mxiC pRA03 mxiA_c386-668MxiC:MxiA_c386-666 N373DpRA02 mxiC pRA03 mxiA_c386-668MxiC:MxiA_c386-668 N373DpRA02 mxiC pRA03 mxiA_c386-668MxiC:MxiA_c386-668 N373DpRA02 mxiC pRA03 mxiA_c386-668MxiC:MxiA_c386-668 N373DpRA02 mxiC CA04 pRA03 mxiA_c386-668MxiC:MxiA_c386-668pRA02 mxiC CA04 pRA03 mxiA_c386-668MxiC AC14:MxiA_c386-668pRA02 mxiC AC29 pRA03 mxiA_c386-668MxiC AC14:MxiA_c386-668pRA02 mxiA C386-668MxiC AC14:MxiA_c386-668pRA02 mxiA c386-668MxiA c386-668pRA02 mxiA c386-668 <t< td=""><td>∆mxiA/mxiA_{N373D}</td><td><i>∆mxiA</i>; pWSK29 <i>mxiA</i>_{N373D}</td><td>This study</td></t<>	∆mxiA/mxiA _{N373D}	<i>∆mxiA</i> ; pWSK29 <i>mxiA</i> _{N373D}	This study		
ΔmxiA/mxiA _{1674V} ΔmxiA; pWSK29 mxiA _{1674V} This study E. coll KS1 for two-hybrid assay (only fused genes are shown in the plasmid) [51] Negative control pRA02 pRA03 (pRA02 and pRA03 contain RNAP α subunit and h cl, respectively) [51] Positive control pRA02 mxiC pRA03 mxiA _{C318-666} (mstandard) [51] MxiC:MxiA _{C318-666} pRA02 mxiC pRA03 mxiA _{C318-666} (mstandard) [51] MxiC:MxiA _{C318-666} pRA02 mxiC pRA03 mxiA _{C318-666} (mstandard) This study MxiC:MxiA _{C318-666} pRA02 mxiC pRA03 mxiA _{C318-666} (mstandard) This study MxiC:MxiA _{C318-666} pRA02 mxiC pRA03 mxiA _{C318-666} (mstandard) This study MxiC:MxiA _{C356-666} pRA02 mxiC pRA03 mxiA _{C336-668} This study MxiC:MxiA _{C356-666} pRA02 mxiC pRA03 mxiA _{C356-668} This study MxiC:MxiA _{C356-666} pRA02 mxiC pRA03 mxiA _{C356-668} This study MxiC:MxiA _{C356-666} pRA02 mxiC AC4 pRA03 mxiA _{C356-668} This study MxiC:MxiA _{C356-666} pRA02 mxiC AC4 pRA03 mxiA _{C356-666} This study MxiC:MxiA _{C356-666} pRA02 mxiC AC14 pRA03 mxiA _{C356-666} This study MxiC:MxiA _{C356-6666} pRA02 mxiC AC14 pRA03 mxiA _{C356-666}	∆mxiA/mxiA _{Q608R}	<i>∆mxiA</i> ; pWSK29 <i>mxiA</i> Q608R	This study		
E. coli KS1 for two-hybrid assay (only fused genes are shown in the plasmid) Negative control pRA02 pRA03 (pRA02 and pRA03 contain RNAP a subunit and \k cl, respectively) [51] Positive control pRA02 uvrA1-252 pRA03 mr/d-219b [51] MxiC and MxiAc interaction MxiC:MxiAc318-686 This study MxiC:MxiAc318-686 pRA02 mxiC pRA03 mxiAc318-686 N373D This study MxiC:MxiAc318-686 N373D pRA02 mxiC pRA03 mxiAc318-686 N373D This study MxiC:MxiAc318-686 N373D pRA02 mxiC pRA03 mxiAc318-686 N373D This study MxiC:MxiAc318-686 N373D pRA02 mxiC pRA03 mxiAc338-686 N373D This study MxiC:MxiAc386-686 N373D pRA02 mxiC pRA03 mxiAc386-686 N373D This study MxiC:MxiAc386-686 N373D pRA02 mxiC pRA03 mxiAc386-686 C608R This study MxiC:MxiAc386-686 N373D pRA02 mxiC CA40 pRA03 mxiAc386-686 This study MxiC:AC41:MxiAc386-686 pRA02 mxiC CA40 pRA03 mxiAc386-686 This study MxiC:AC41:MxiAc386-686 pRA02 mxiC AC4 pRA03 mxiAc386-686 This study MxiC AC41:MxiAc386-686 pRA02 mxiC AC4 pRA03 mxiAc386-686 This study MxiC AC41:MxiAc386-686 pRA02 mxiA c386-686 This study MxiC AC41:MxiAc386-686 pRA02 mxiAc3	∆mxiA/mxiA _{I674V}	<i>∆mxiA</i> ; pWSK29 <i>mxiA</i> _{I674V}	This study		
Negative controlpRA02 pRA03 (pRA02 and pRA03 contain RNAP a subunit and A cl, respectively)[51]Positive controlpRA02 uvrA1-252 pRA03 mtA1-219b[51]MxiC and MxiAc interactionMxiC:MxiAc318-686pRA02 mxiC pRA03 mxiAc318-686 N373DThis studyMxiC:MxiAc318-686 is773DpRA02 mxiC pRA03 mxiAc318-686 N373DThis studyMxiC:MxiAc318-686 is773DpRA02 mxiC pRA03 mxiAc318-686 N373DThis studyMxiC:MxiAc318-686 is74VpRA02 mxiC pRA03 mxiAc318-686 is74VThis studyMxiC:MxiAc318-686 is74VpRA02 mxiC pRA03 mxiAc318-686 is74VThis studyMxiC:MxiAc366-686 N373DpRA02 mxiC pRA03 mxiAc386-686 N373DThis studyMxiC:MxiAc366-686 is74VpRA02 mxiC pRA03 mxiAc386-686 N373DThis studyMxiC:MxiAc366-686 pRA02 mxiC pRA03 mxiAc386-686 N373DThis studyMxiC:MxiAc366-686 pRA02 mxiC CAC PRA03 mxiAc386-686This studyMxiC AC37MiAc386-686pRA02 mxiC CAC4 pRA03 mxiAc386-686This studyMxiC AC37MiAc386-686pRA02 mxiC CAC14 pRA03 mxiAc386-686This studyMxiC AC37MiAc386-686pRA02 mxiC AC14 pRA03 mxiAc386-686This studyIpaD:MxiAc386-686pRA02 ipaD pRA03 mxiAc386-686This study	E. coli KS1 for two-hybrid as	ssay (only fused genes are shown in the plasmid)			
Positive control pRA02 uvrA1-252 pRA03 mt/d1-219b [51] MxiC and MxiA _C interaction MxiC:MxiA _{C318-686} pRA02 mxiC pRA03 mxiA _{C318-686} N373D This study MxiC:MxiA _{C318-686} exore pRA02 mxiC pRA03 mxiA _{C318-686} N373D This study MxiC:MxiA _{C318-686} exore pRA02 mxiC pRA03 mxiA _{C318-686} exore This study MxiC:MxiA _{C318-686} exore pRA02 mxiC pRA03 mxiA _{C318-686} exore This study MxiC:MxiA _{C356-686} pRA02 mxiC pRA03 mxiA _{C356-686} N373D This study MxiC:MxiA _{C356-686} pRA02 mxiC pRA03 mxiA _{C356-686} N373D This study MxiC:MxiA _{C356-686} pRA02 mxiC pRA03 mxiA _{C356-686} N373D This study MxiC:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This study MxiC AC14:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This study MxiC AC14:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This study MxiC AC14:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This study MxiC AC14:MxiA _{C356-686} pRA02 mxiC AC14 pRA03 mxiA _{C316-686} This study MxiC AC14:MxiA _{C356-686} pRA02 mxiC AC14 pRA03 mxiA _{C316-686} This study IpaD:MxiA _{C316-686}	Negative control	pRA02 pRA03 (pRA02 and pRA03 contain RNAP α subunit and λ cl, respectively)	[<u>51]</u>		
MxiC and MxiA _C interactionMxiC:MxiA _{C318-686} pRA02 mxiC pRA03 mxiA _{C318-686} N373DThis studyMxiC:MxiA _{C318-686} B073DpRA02 mxiC pRA03 mxiA _{C318-686} N373DThis studyMxiC:MxiA _{C318-686} B074VpRA02 mxiC pRA03 mxiA _{C318-686} B074VThis studyMxiC:MxiA _{C318-686} pRA02 mxiC pRA03 mxiA _{C318-686} B074VThis studyMxiC:MxiA _{C356-686} pRA02 mxiC pRA03 mxiA _{C356-686} B074VThis studyMxiC:MxiA _{C356-686} pRA02 mxiC pRA03 mxiA _{C356-686} B074VThis studyMxiC:MxiA _{C356-686} pRA02 mxiC pRA03 mxiA _{C356-686} B074VThis studyMxiC:MxiA _{C356-686} pRA02 mxiC QPRA03 mxiA _{C356-686} B074VThis studyMxiC:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This studyMxiC AC14:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This studyMxiC AC14:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This studyMxiC AC14:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This studyIpaD:MxiA _{C318-686} pRA02 mxiC AC14 pRA03 mxiA _{C318-686} This studyIpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} N373DThis studyIpaD:MxiA _{C318-686} <td< td=""><td>Positive control</td><td>pRA02 uvrA1-252 pRA03 mfd1-219b</td><td>51</td></td<>	Positive control	pRA02 uvrA1-252 pRA03 mfd1-219b	51		
MxiC:MxiA _{C318-686} pRA02 mxiC pRA03 mxiA _{C318-686} This study MxiC:MxiA _{C318-686} pRA02 mxiC pRA03 mxiA _{C318-686} pravid pravid </td <td>MxiC and MxiA_C interaction</td> <td></td> <td></td>	MxiC and MxiA _C interaction				
MxiC:MxiA _{C318-868} N373D PRA02 mxiC pRA03 mxiA _{C318-868} N373D This study MxiC:MxiA _{C318-866} 0608R PRA02 mxiC pRA03 mxiA _{C318-866} 0608R This study MxiC:MxiA _{C318-866} 1674v PRA02 mxiC pRA03 mxiA _{C318-866} 1674v This study MxiC:MxiA _{C356-686} PRA02 mxiC pRA03 mxiA _{C356-686} This study MxiC:MxiA _{C356-686} 0808R PRA02 mxiC pRA03 mxiA _{C356-686} This study MxiC:MxiA _{C356-686} 0808R PRA02 mxiC pRA03 mxiA _{C356-686} 0608R This study MxiC:MxiA _{C356-686} PRA02 mxiC QRA03 mxiA _{C356-686} 0608R This study MxiC:MxiA _{C356-686} PRA02 mxiC QC4 PRA03 mxiA _{C356-686} This study MxiC ΔC4-MxiA _{C356-686} PRA02 mxiC ΔC4 PRA03 mxiA _{C356-686} This study MxiC ΔC14-MxiA _{C356-686} PRA02 mxiC ΔC4 PRA03 mxiA _{C356-686} This study MxiC ΔC14-MxiA _{C356-686} PRA02 mxiC ΔC4 PRA03 mxiA _{C356-686} This study MxiA _{C318-686} PRA02 mxiC ΔC4 PRA03 mxiA _{C356-686} This study MxiA _{C318-686} PRA02 mxiC ΔC4 PRA03 mxiA _{C356-686} This study MxiA _{C318-686} PRA02 mxiC ΔC40 PRA03 mxiA _{C356-686} This study MxiA _{C318-686} PRA02 mxiC ΔC14 pRA03 mxiA _{C318-686}	MxiC:MxiA _{C318-686}	pRA02 mxiC pRA03 mxiA _{C318-686}	This study		
MxiC:MxiA _{C318-686} Geogen pRA02 mxiC pRA03 mxiA _{C318-686} Geogen This study MxiC:MxiA _{C318-686} BerAv pRA02 mxiC pRA03 mxiA _{C318-686} BerAv This study MxiC:MxiA _{C356-686} pRA02 mxiC pRA03 mxiA _{C356-686} M373D This study MxiC:MxiA _{C356-686} BerAv pRA02 mxiC pRA03 mxiA _{C356-686} M373D This study MxiC:MxiA _{C356-686} BerAv pRA02 mxiC pRA03 mxiA _{C356-686} BerAv This study MxiC:MxiA _{C356-686} BerAv pRA02 mxiC pRA03 mxiA _{C356-686} BerAv This study MxiC AC4:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This study MxiC AC14:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This study MxiC AC14:MxiA _{C356-686} pRA02 mxiC AC4 pRA03 mxiA _{C356-686} This study MxiC AC14:MxiA _{C356-686} pRA02 mxiC AC14 pRA03 mxiA _{C356-686} This study IpaD:MxiA _{C318-686} ifMxiC pRA02 mxiC AC14 pRA03 mxiA _{C318-686} This study IpaD:MxiA _{C318-686} ifMxiC pRA02 ipaD pRA03 mxiA _{C318-686} N373D This study IpaD:MxiA _{C318-686} ifFav pRA02 ipaD pRA03 mxiA _{C318-686} N373D This study IpaD:MxiA _{C318-686} ifFav pRA02 ipaD pRA03 mxiA _{C318-686} N373D This study IpaD:MxiA _{C318-686} ifFav pRA02 ipaD pRA03 mxiA _{C318-686} N	MxiC:MxiA _{C318-686 N373D}	pRA02 mxiC pRA03 mxiA _{C318-686 N373D}	This study		
MxiC:MxiA _{C318-686} Israv pRA02 mxiC pRA03 mxiA _{C318-686} Israv This study MxiC:MxiA _{C356-686} pRA02 mxiC pRA03 mxiA _{C356-686} This study MxiC:MxiA _{C356-686} Asrap pRA02 mxiC pRA03 mxiA _{C356-686} Asrap This study MxiC:MxiA _{C356-686} Asrap pRA02 mxiC pRA03 mxiA _{C356-686} Asrap This study MxiC:MxiA _{C356-686} Asrap pRA02 mxiC pRA03 mxiA _{C356-686} Asrap This study MxiC:MxiA _{C356-686} Brav pRA02 mxiC CA4 pRA03 mxiA _{C356-686} This study MxiC AC4:MxiA _{C356-686} BrA02 mxiC AC4 pRA03 mxiA _{C356-686} This study MxiC CA14:MxiA _{C356-686} PRA02 mxiC AC14 pRA03 mxiA _{C356-686} This study MxiA _{C316-686} BrA02 mxiC Ac14 pRA03 mxiA _{C318-686} This study IpaD:MxiA _{C318-686} Israp pRA02 ipaD pRA03 mxiA _{C318-686} Msrap This study IpaD:MxiA _{C318-686} Brarap pRA02 ipaD pRA03 mxiA _{C318-686} Brarap This study IpaD:MxiA _{C318-686} Israp pRA02 ipaD pRA03 mxiA _{C318-686} Brarap This study IpaD:MxiA _{C318-686} Brarap pRA02 ipaD pRA03 mxiA _{C318-686} Brarap This study IpaD:MxiA _{C318-686} Brarap pRA02 ipaD pRA03 mxiA _{C318-686} Brarap This study Spa13 mtAiA _{C318-686} Brarap pRA02 ipaD pRA03 mxiA _{C3}	MxiC:MxiA _{C318-686} Q608R	pRA02	This study		
MxiC:MxiA _{C356-686} pRA02 mxiC pRA03 mxiA _{C356-686} This study MxiC:MxiA _{C356-686} N373D pRA02 mxiC pRA03 mxiA _{C356-686} N373D This study MxiC:MxiA _{C356-686} O608R pRA02 mxiC pRA03 mxiA _{C356-686} O608R This study MxiC:MxiA _{C356-686} O608R pRA02 mxiC pRA03 mxiA _{C356-686} O608R This study MxiC ΔC4:MxiA _{C356-686} pRA02 mxiC ΔC4 pRA03 mxiA _{C356-686} This study MxiC ΔC2:MxiA _{C356-686} pRA02 mxiC ΔC4 pRA03 mxiA _{C356-686} This study MxiC ΔC14:MxiA _{C356-686} pRA02 mxiC ΔC4 pRA03 mxiA _{C356-686} This study MxiA_C356-686 pRA02 mxiC ΔC14 pRA03 mxiA _{C356-686} This study IpaD and MxiA _C pRA02 ipaD pRA03 mxiA _{C318-686} This study IpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} N373D This study IpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} O606R This study IpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} O606R This study IpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} N373D This study IpaD:MxiA _{C318-686} pRA02 spa13 pRA03 mxiA _{C318-686} This study IpaD:MxiA _{C318-686} pRA02 spa13 pRA03 mxiA _{C318-686}	MxiC:MxiA _{C318-686 1674V}	pRA02	This study		
MxiC:MxiAc356-686 N373D pRA02 mxiC pRA03 mxiAc356-686 N373D This study MxiC:MxiAc356-686 Qe08R pRA02 mxiC pRA03 mxiAc356-686 Qe08R This study MxiC:MxiAc356-686 Qe08R pRA02 mxiC pRA03 mxiAc356-686 Qe08R This study MxiC:MxiAc356-686 pRA02 mxiC QA03 mxiAc356-686 This study MxiC AC4:MxiAc356-686 pRA02 mxiC AC4 pRA03 mxiAc356-686 This study MxiC AC4:MxiAc356-686 pRA02 mxiC AC4 pRA03 mxiAc356-686 This study MxiC AC14:MxiAc356-686 pRA02 mxiC AC14 pRA03 mxiAc356-686 This study MxiAc366-686:MxiC pRA02 mxiC AC14 pRA03 mxiAc356-686 This study IpaD:MxiAc318-686 pRA02 ipaD pRA03 mxiAc318-686 This study IpaD:MxiAc318-686 pRA02 ipaD pRA03 mxiAc318-686 N373D This study IpaD:MxiAc318-686 pRA02 ipaD pRA03 mxiAc318-686 N373D This study IpaD:MxiAc318-686 Ge08R pRA02 ipaD pRA03 mxiAc318-686 Ge08R This study IpaD:MxiAc318-686 Ge08R pRA02 ipaD pRA03 mxiAc318-686 Ge08R This study IpaD:MxiAc318-686 Ge08R pRA02 spa13 pRA03 mxiAc318-686 This study Spa13 and MxiAc/IpaD/MxiC interaction This study Spa13:MxiAc318-686 Ge08R<	MxiC:MxiA _{C356-686}	pRA02	This study		
MxiC:MxiA _{C356-686} Q608R pRA02 mxiC pRA03 mxiA _{C356-686} Q608R This study MxiC:MxiA _{C356-686} I674V pRA02 mxiC pRA03 mxiA _{C356-686} I674V This study MxiC ΔC4:MxiA _{C356-686} pRA02 mxiC ΔC4 pRA03 mxiA _{C356-686} This study MxiC ΔC9:MxiA _{C356-686} pRA02 mxiC ΔC9 pRA03 mxiA _{C356-686} This study MxiC ΔC9:MxiA _{C356-686} pRA02 mxiC ΔC9 pRA03 mxiA _{C356-686} This study MxiC ΔC14:MxiA _{C356-686} pRA02 mxiC ΔC14 pRA03 mxiA _{C356-686} This study MxiA _{C356-686} pRA02 mxiA _{C356-686} pRA03 mxiA _{C318-686} This study IpaD and MxiA _C interaction IpaD:MxiA _{C318-686} Na73D pRA02 ipaD pRA03 mxiA _{C318-686} Na73D This study IpaD:MxiA _{C318-686} Na73D pRA02 ipaD pRA03 mxiA _{C318-686} G608R This study IpaD:MxiA _{C318-686} Na73D pRA02 ipaD pRA03 mxiA _{C318-686} G608R This study MxiA _{C356-686} pRA0 mxiA _{C356-686} This study Spa13 and MxiA _C /IpaD/MxiC interaction This study Spa13:MxiA _{C318-686} Na73D pRA02 spa13 pRA03 mxiA _{C318-686} G608R This study Spa13:MxiA _{C318-686} pRA02 spa13 pRA03 mxiA _{C318-686} G6	MxiC:MxiA _{C356-686 N373D}	pRA02	This study		
MxiC:MxiA _{C356-686} pRA02 mxiC pRA03 mxiA _{C356-686} This study MxiC ΔC4:MxiA _{C356-686} pRA02 mxiC ΔC4 pRA03 mxiA _{C356-686} This study MxiC ΔC9:MxiA _{C356-686} pRA02 mxiC ΔC9 pRA03 mxiA _{C356-686} This study MxiC ΔC14:MxiA _{C356-686} pRA02 mxiC ΔC14 pRA03 mxiA _{C356-686} This study MxiC ΔC14:MxiA _{C356-686} pRA02 mxiA _{C356-686} pRA03 mxiA _{C356-686} This study MxiA _{C356-686} mXiC pRA02 mxiA _{C318-686} pRA03 mxiA _{C318-686} This study IpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} lof ₇₄ This study IpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} lof ₇₄ This study IpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} lof ₇₄ This study IpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} lof ₇₄ This study Spa13:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} lof ₇₄ This study Spa13:MxiA _{C318-686} pRA02 ipaD 3	MxiC:MxiA _{C356-686 Q608R}	pRA02	This study		
MxiC ΔC4:MxiA _{C356-686} pRA02 mxiC ΔC4 pRA03 mxiA _{C356-686} This study MxiC ΔC9:MxiA _{C356-686} pRA02 mxiC ΔC9 pRA03 mxiA _{C356-686} This study MxiC ΔC14:MxiA _{C356-686} pRA02 mxiC ΔC14 pRA03 mxiA _{C356-686} This study MxiC ΔC14:MxiA _{C356-686} pRA02 mxiC ΔC14 pRA03 mxiA _{C356-686} This study MxiA _{C356-686} pRA02 mxiA _{C356-686} pRA03 mxiA _{C356-686} This study IpaD and MxiA _C interaction IpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} N373D This study IpaD:MxiA _{C318-686} 06068 pRA02 ipaD pRA03 mxiA _{C318-686} 06068 This study IpaD:MxiA _{C318-686} 06068 pRA02 ipaD pRA03 mxiA _{C318-686} 1674v This study IpaD:MxiA _{C318-686} 1674v pRA02 ipaD pRA03 mxiA _{C318-686} 1674v This study Spa13:MxiA _{C318-686} 06068 pRA02 spa13 pRA03 mxiA _{C318-686} 06068 This study Spa13:MxiA _{C318-686} 06068 pRA02 spa13 pRA03 mxiA _{C318-686} 60668 This study Spa13:MxiA _{C318-686} 06068 pRA02 spa13 pRA03 mxiA _{C318-686} 60668 This study Spa13:MxiA _{C318-686} 06068 pRA02 spa13 pRA03 mxiA _{C318-686} 60668 This study Spa13:MxiA _{C318-686} 06068 pRA02 spa1	MxiC:MxiA _{C356-686 1674V}	pRA02	This study		
MxiC ΔC9:MxiA _{C356-686} pRA02 mxiC ΔC9 pRA03 mxiA _{C356-686} This study MxiC ΔC14:MxiA _{C356-686} pRA02 mxiC ΔC14 pRA03 mxiA _{C356-686} This study MxiA _{C356-686} :MxiC pRA02 mxiC ΔC14 pRA03 mxiA _{C356-686} This study IpaD mxiA _{C356-686} pRA02 mxiA _{C356-686} pRA03 mxiC This study IpaD mxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} N373D This study IpaD:MxiA _{C318-686} N373D pRA02 ipaD pRA03 mxiA _{C318-686} N373D This study IpaD:MxiA _{C318-686} N373D pRA02 ipaD pRA03 mxiA _{C318-686} Q6008R This study IpaD:MxiA _{C318-686} N373D pRA02 ipaD pRA03 mxiA _{C318-686} Q6008R This study IpaD:MxiA _{C318-686} N373D pRA02 ipaD pRA03 mxiA _{C318-686} Q6008R This study IpaD:MxiA _{C318-686} N373D pRA02 ipaD pRA03 mxiA _{C318-686} G6008R This study Spa13 and MxiA _C /IpaD/MxiC interaction Spa13:MxiA _{C318-686} N373D pRA02 spa13 pRA03 mxiA _{C318-686} N373D This study Spa13:MxiA _{C318-686} N373D pRA02 spa13 pRA03 mxiA _{C318-686} N373D This study Spa13:MxiA _{C318-686} N373D pRA02 spa13 pRA03 mxiA _{C318-686} N373D This study	MxiC ∆C4:MxiA _{C356-686}	pRA02 <i>mxiC</i> ΔC4 pRA03 <i>mxiA</i> _{C356-686}	This study		
MxiC ΔC14:MxiA _{C356-686} pRA02 mxiC ΔC14 pRA03 mxiA _{C356-686} This study MxiA _{C356-686} :MxiC pRA02 mxiA _{C356-686} pRA03 mxiC This study IpaD and MxiA _C interaction IpaD:MxiA _{C318-686} pRA02 ipaD pRA03 mxiA _{C318-686} This study IpaD:MxiA _{C318-686} 0sr3aD pRA02 ipaD pRA03 mxiA _{C318-686} N3r3aD This study IpaD:MxiA _{C318-686} 0sr3aD pRA02 ipaD pRA03 mxiA _{C318-686} Q608R This study IpaD:MxiA _{C318-686} 0sr3aD pRA02 ipaD pRA03 mxiA _{C318-686} Q608R This study IpaD:MxiA _{C318-686} 0sr3aD pRA02 ipaD pRA03 mxiA _{C318-686} Q608R This study IpaD:MxiA _{C318-686} 0sr3aD pRA02 ipaD pRA03 mxiA _{C318-686} G608R This study MxiA _{C356-686} lipaD pRA02 ipaD pRA03 mxiA _{C318-686} G608R This study Spa13 and MxiA _C /IpaD/MxiC interaction Spa13:MxiA _{C318-686} N3r3aD pRA02 spa13 pRA03 mxiA _{C318-686} N3r3aD This study Spa13:MxiA _{C318-686} N3r3aD pRA02 spa13 pRA03 mxiA _{C318-686} N3r3aD This study Spa13:MxiA _{C318-686} N3r3aD pRA02 spa13 pRA03 mxiA _{C318-686} N3r3aD This study Spa13:MxiA _{C318-686} N3r3aD pRA02 spa13 pRA03 mxiA _{C318-686} N3r3aD <td< td=""><td>MxiC ∆C9:MxiA_{C356-686}</td><td>pRA02 mxiC ΔC9 pRA03 mxiA_{C356-686}</td><td>This study</td></td<>	MxiC ∆C9:MxiA _{C356-686}	pRA02 mxiC ΔC9 pRA03 mxiA _{C356-686}	This study		
MxiAc356-686:MxiCpRA02 mxiAc356-686 pRA03 mxiCThis studyIpaD and MxiAc interactionpRA02 ipaD pRA03 mxiAc318-686This studyIpaD:MxiAc318-686pRA02 ipaD pRA03 mxiAc318-686 N373DThis studyIpaD:MxiAc318-686 N373DpRA02 ipaD pRA03 mxiAc318-686 N373DThis studyIpaD:MxiAc318-686 GeosenpRA02 ipaD pRA03 mxiAc318-686 GeosenThis studyIpaD:MxiAc318-686 I674vpRA02 ipaD pRA03 mxiAc318-686 I674vThis studySpa13:MxiAc318-686pRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 I674vpRA02 spa13 pRA03 mxiAc318-686 I674vThis studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc318-686 I674vThis studySpa13:MxiAc318-686 I674vpRA02 spa13 pRA03 mxiAc318-686 I674vThis studySpa13:MxiAc318-686 I674vpRA02 spa13 pRA03 mxiAc318-686 I674vThis studySpa13:MxiAc318-686 I674vpRA02 spa13 pRA03 mxiAc318-686 I674vThis studySpa13:MxiAc356-686 N373DpRA02 spa13 pRA03 mxiAc318-686 I674vThis studySpa13:MxiAc356-686 N373DpRA02 spa13 pRA03 mxiAc366-686 N373DThis studySpa13:MxiAc356-686 N373DpRA02 spa13 pRA03 mxiAc366-686 N373DThis studySpa13:MxiAc356-686 N373DpRA02 spa13 pRA03 mxiAc366	MxiC ∆C14:MxiA _{C356-686}	pRA02 <i>mxiC</i> ΔC14 pRA03 <i>mxiA</i> _{C356-686}	This study		
IpaD and MxiAc interactionPRA02 ipaD pRA03 mxiAc318-686This studyIpaD:MxiAc318-686pRA02 ipaD pRA03 mxiAc318-686 N373DThis studyIpaD:MxiAc318-686 N373DpRA02 ipaD pRA03 mxiAc318-686 N373DThis studyIpaD:MxiAc318-686 G608RpRA02 ipaD pRA03 mxiAc318-686 G608RThis studyIpaD:MxiAc318-686 I674vpRA02 ipaD pRA03 mxiAc318-686 I674vThis studyIpaD:MxiAc318-686 I674vpRA02 ipaD pRA03 mxiAc318-686 I674vThis studyIpaD:MxiAc356-686pRA02 ipaD pRA03 mxiAc356-686This studyMxiAc356-686pRA02 ipaD pRA03 mxiAc356-686This studySpa13:MxiAc318-686 N373DpRA02 mxiAc356-686This studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 O608RpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc318-686 N608RThis studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc318-686 N608RThis studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc318-686 N608RThis studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc36-666 N373DThis studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc36-666 N373DThis study </td <td>MxiA_{C356-686}:MxiC</td> <td>pRA02</td> <td>This study</td>	MxiA _{C356-686} :MxiC	pRA02	This study		
IpaD:MxiAc318-686pRA02 ipaD pRA03 mxiAc318-686This studyIpaD:MxiAc318-686 N373DpRA02 ipaD pRA03 mxiAc318-686 N373DThis studyIpaD:MxiAc318-686 Q608RpRA02 ipaD pRA03 mxiAc318-686 Q608RThis studyIpaD:MxiAc318-686 G608RpRA02 ipaD pRA03 mxiAc318-686 G608RThis studyIpaD:MxiAc318-686 G608RpRA02 ipaD pRA03 mxiAc318-686 G74VThis studyIpaD:MxiAc318-686 G74VpRA02 ipaD pRA03 mxiAc318-686 G74VThis studyIpaD:MxiAc356-686pRA02 ipaD pRA03 mxiAc318-686 G74VThis studySpa13 and MxiAc/IpaD/MxiC interactionThis studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 Q608RpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 Q608RpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 G608RpRA02 spa13 pRA03 mxiAc318-686 I674VThis studySpa13:MxiAc318-686 G608RpRA02 spa13 pRA03 mxiAc318-686 I674VThis studySpa13:MxiAc318-686 G608RpRA02 spa13 pRA03 mxiAc318-686 I674VThis studySpa13:MxiAc36-686 N373DpRA02 spa13 pRA03 mxiAc366-686 N373DThis studySpa13:MxiAc36-686 G608RpRA02 spa13 pRA03 mxiAc366-686 G608RThis study </td <td>IpaD and MxiA_C interaction</td> <td></td> <td></td>	IpaD and MxiA _C interaction				
IpaD:MxiAc318-686 N373DpRA02 ipaD pRA03 mxiAc318-686 N373DThis studyIpaD:MxiAc318-686 Q608RpRA02 ipaD pRA03 mxiAc318-686 Q608RThis studyIpaD:MxiAc318-686 I674VpRA02 ipaD pRA03 mxiAc318-686 I674VThis studyIpaD:MxiAc318-686 I674VpRA02 ipaD pRA03 mxiAc318-686 I674VThis studyIpaD:MxiAc356-686pRA02 ipaD pRA03 mxiAc356-686This studyMxiAc356-686:IpaDpRA02 ipaD pRA03 mxiAc356-686This studySpa13 and MxiAc/IpaD/MxiC interactionThis studySpa13:MxiAc318-686pRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 Q608RpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 I674VpRA02 spa13 pRA03 mxiAc318-686 Q608RThis studySpa13:MxiAc318-686 I674VpRA02 spa13 pRA03 mxiAc318-686 G608RThis studySpa13:MxiAc318-686 I674VpRA02 spa13 pRA03 mxiAc318-686 I674VThis studySpa13:MxiAc318-686 I674VpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 I674VpRA02 spa13 pRA03 mxiAc3656-686 N373DThis studySpa13:MxiAc366-686 N373DpRA02 spa13 pRA03 mxiAc366-686 N373DThis studySpa13:MxiAc366-686 N373DpRA02 spa13 pRA03 mxiAc366-686 N373DThis studySpa13:MxiAc366-686 N373DpRA02 spa13 pRA03 mxiAc366-686 Q608RThis studySpa13:MxiAc366-686 N373DpRA02 spa13 pRA03 mxiAc366-686 N373DThis studySpa13:MxiAc366-686 N373DpRA02 spa13 pRA03 mxiAc366-686 N373DThis studySpa13:MxiAc366-686 N373DpRA02 spa13 pRA03 mxiAc366-686 N373DThis study<	IpaD:MxiA _{C318-686}	pRA02	This study		
IpaD:MxiAc318-686 Q608RpRA02 ipaD pRA03 mxiAc318-686 Q608RThis studyIpaD:MxiAc318-686 I674VpRA02 ipaD pRA03 mxiAc318-686 I674VThis studyIpaD:MxiAc356-686pRA02 ipaD pRA03 mxiAc318-686 I674VThis studyIpaD:MxiAc356-686pRA02 ipaD pRA03 mxiAc356-686This studyMxiAc356-686:IpaDpRA02 mxiAc356-686 pRA03 ipaDThis studySpa13 and MxiAc/IpaD/MxiC interactionSpa13:MxiAc318-686pRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 Q608RpRA02 spa13 pRA03 mxiAc318-686 Q608RThis studySpa13:MxiAc318-686 I674VpRA02 spa13 pRA03 mxiAc318-686 G608RThis studySpa13:MxiAc318-686 I674VpRA02 spa13 pRA03 mxiAc318-686 I674VThis studySpa13:MxiAc318-686 I674VpRA02 spa13 pRA03 mxiAc318-686 I674VThis studySpa13:MxiAc356-686pRA02 spa13 pRA03 mxiAc356-686 I674VThis studySpa13:MxiAc356-686 N373DpRA02 spa13 pRA03 mxiAc356-686 N373DThis study <tr< td=""><td>IpaD:MxiA_{C318-686 N373D}</td><td>pRA02</td><td>This study</td></tr<>	IpaD:MxiA _{C318-686 N373D}	pRA02	This study		
IpaD:MxiA C318-686 I674VpRA02 ipaD pRA03 mxiA C318-686 I674VThis studyIpaD:MxiA C356-686pRA02 ipaD pRA03 mxiA C356-686This studyMxiA C356-686:IpaDpRA02 mxiA C356-686 pRA03 ipaDThis studySpa13 and MxiA C/IpaD/MxiC interactionPRA02 spa13 pRA03 mxiA C318-686 N373DThis studySpa13:MxiA C318-686 N373DpRA02 spa13 pRA03 mxiA C318-686 N373DThis studySpa13:MxiA C318-686 Q608RpRA02 spa13 pRA03 mxiA C318-686 Q608RThis studySpa13:MxiA C318-686 I674VpRA02 spa13 pRA03 mxiA C318-686 I674VThis studySpa13:MxiA C318-686 N373DpRA02 spa13 pRA03 mxiA C318-686 I674VThis studySpa13:MxiA C318-686 I674VpRA02 spa13 pRA03 mxiA C318-686 I674VThis studySpa13:MxiA C356-686pRA02 spa13 pRA03 mxiA C356-686 N373DThis studySpa13:MxiA C356-686 Q608RpRA02 spa13 pRA03 mxiA C356-686 N373DThis studySpa13:MxiA C356-686 Q608RpRA02 spa13 pRA03 mxiA C356-686 Q608RThis studySpa13:MxiA C356-686 Q608RpRA02 spa13 pRA03 mxiA C356-686 I674VThis studySpa13:MxiA C356-686 Q608RpRA02 spa13 pRA03 mxiA C356-686 I674VThis studySpa13:MxiA C356-686 Q608RpRA02 spa13 pRA03 mxiA C356-686 I674VThis studySpa13:MxiA C356-686 I674VpRA02 spa13 pRA03 mxiA C356-686 I674VThis studySpa13:MxiA C356-686 I674VpRA02 spa13 pRA03 mxiA C356-686 I674VThis studySpa13:MxiA C366-686 I674VpRA02 spa13 pRA03 mxiA C356-686 I674V </td <td>IpaD:MxiA_{C318-686} Q608R</td> <td>pRA02</td> <td>This study</td>	IpaD:MxiA _{C318-686} Q608R	pRA02	This study		
IpaD:MxiAc356-686pRA02 ipaD pRA03 mxiAc356-686This studyMxiAc356-686pRA02 mxiAc356-686 pRA03 ipaDThis studySpa13 and MxiAc/IpaD/MxiC interactionSpa13:MxiAc318-686pRA02 spa13 pRA03 mxiAc318-686This studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 N373DpRA02 spa13 pRA03 mxiAc318-686 N373DThis studySpa13:MxiAc318-686 Q608RpRA02 spa13 pRA03 mxiAc318-686 Q608RThis studySpa13:MxiAc318-686 I674VpRA02 spa13 pRA03 mxiAc318-686 I674VThis studySpa13:MxiAc356-686pRA02 spa13 pRA03 mxiAc356-686 N373DThis studySpa13:MxiAc356-686pRA02 spa13 pRA03 mxiAc356-686 N373DThis studySpa13:MxiAc356-686 Q608RpRA02 spa13 pRA03 mxiAc356-686 N373DThis studySpa13:MxiAc356-686 Q608RpRA02 spa13 pRA03 mxiAc356-686 N373DThis studySpa13:MxiAc356-686 Q608RpRA02 spa13 pRA03 mxiAc356-686 Q608RThis studySpa13:Mxi	IpaD:MxiA _{C318-686 I674V}	pRA02	This study		
MxiA_C356-686IpaDpRA02 mxiA_C356-686 pRA03 ipaDThis studySpa13 and MxiA_C/lpaD/MxiC interactionSpa13:MxiA_C318-686pRA02 spa13 pRA03 mxiA_C318-686This studySpa13:MxiA_C318-686 N373DpRA02 spa13 pRA03 mxiA_C318-686 N373DThis studySpa13:MxiA_C318-686 Q608RpRA02 spa13 pRA03 mxiA_C318-686 Q608RThis studySpa13:MxiA_C318-686 I674VpRA02 spa13 pRA03 mxiA_C318-686 I674VThis studySpa13:MxiA_C318-686 I674VpRA02 spa13 pRA03 mxiA_C318-686 I674VThis studySpa13:MxiA_C356-686pRA02 spa13 pRA03 mxiA_C356-686 N373DThis studySpa13:MxiA_C356-686 Q608RpRA02 spa13 pRA03 mxiA_C356-686 N373DThis studySpa13:MxiA_C356-686 Q608RpRA02 spa13 pRA03 mxiA_C356-686 Q608RThis studySpa13:MxiA_C356-686 Q608RpRA02 spa13 pRA03 mxiA_C356-686 G608RThis studySpa13:MxiA_C356-686 Q608RpRA02 spa13 pRA03 mxiA_C356-686 G608RThis studySpa13:MxiCpRA02 spa13 pRA03 mxiA_C356-686 G608RThis studySpa13:MxiCpRA02 spa13 pRA03 mxiCThis studyAdditional controlsspa13 pRA03 mxiCThis study	IpaD:MxiA _{C356-686}	pRA02	This study		
Spa13 and MxiA _C /lpaD/MxiC interactionSpa13:MxiA _{C318-686} pRA02 spa13 pRA03 mxiA _{C318-686} This studySpa13:MxiA _{C318-686} pRA02 spa13 pRA03 mxiA _{C318-686} N373DThis studySpa13:MxiA _{C318-686} Q608RpRA02 spa13 pRA03 mxiA _{C318-686} Q608RThis studySpa13:MxiA _{C318-686} I674VpRA02 spa13 pRA03 mxiA _{C318-686} G608RThis studySpa13:MxiA _{C318-686} Geo8RpRA02 spa13 pRA03 mxiA _{C318-686} I674VThis studySpa13:MxiA _{C318-686} I674VpRA02 spa13 pRA03 mxiA _{C356-686} This studySpa13:MxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686} N373DThis studySpa13:MxiA _{C356-686} Q608RpRA02 spa13 pRA03 mxiA _{C356-686} Q608RThis studySpa13:MxiA _{C356-686} Geo8RpRA02 spa13 pRA03 mxiA _{C356-686} G608RThis studySpa13:MxiA _{C356-686} I674VpRA02 spa13 pRA03 mxiA _{C356-686} G608RThis studySpa13:MxiA _{C356-686} I674VpRA02 spa13 pRA03 mxiA _{C356-686} I674VThis studySpa13:MxiA _{C356-686} I674VpRA02 spa13 pRA03 mxiA _{C356-686} I674VThis studySpa13:MxiA _{C356-686} I674VpRA02 spa13 pRA03 mxiA _{C356-686} I674VThis studySpa13:IpaDpRA02 spa13 pRA03 mxiA _{C356-686} I674VThis studySpa13:MxiCpRA02 spa13 pRA03 mxiCThis studyAdditional controlsFA02 spa13 pRA03 mxiCThis study	MxiA _{C356-686} :IpaD	pRA02 mxiA _{C356-686} pRA03 ipaD	This study		
Spa13:MxiA _{C318-686} pRA02 spa13 pRA03 mxiA _{C318-686} This studySpa13:MxiA _{C318-686 N373D} pRA02 spa13 pRA03 mxiA _{C318-686 N373D} This studySpa13:MxiA _{C318-686 Q608R} pRA02 spa13 pRA03 mxiA _{C318-686 Q608R} This studySpa13:MxiA _{C318-686 1674V} pRA02 spa13 pRA03 mxiA _{C318-686 1674V} This studySpa13:MxiA _{C318-686 1674V} pRA02 spa13 pRA03 mxiA _{C318-686 1674V} This studySpa13:MxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686} This studySpa13:MxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686} This studySpa13:MxiA _{C356-686 1674V} pRA02 spa13 pRA03 mxiA _{C356-686 Q608R} This studySpa13:MxiA _{C356-686 1674V} pRA02 spa13 pRA03 mxiA _{C356-686 Q608R} This studySpa13:MxiA _{C356-686 1674V} pRA02 spa13 pRA03 mxiA _{C356-686 1674V} This studySpa13:MxiA _{C356-686 1674V} pRA02 spa13 pRA03 mxiA _{C356-686 1674V} This studySpa13:MxiA _{C356-686 1674V} pRA02 spa13 pRA03 mxiA _{C356-686 1674V} This studySpa13:MxiA _{C356-686 1674V} pRA02 spa13 pRA03 mxiA _{C356-686 1674V} This studySpa13:MxiA _{C356-686 1674V} pRA02 spa13 pRA03 mxiA _{C356-686 1674V} This studySpa13:MxiCpRA02 spa13 pRA03 mxiCThis studyAdditional controlsspa13 pRA03 mxiCThis study	Spa13 and MxiA _C /IpaD/Mxi	C interaction			
Spa13:MxiA _{C318-686 N373D} pRA02 spa13 pRA03 mxiA _{C318-686 N373D} This study Spa13:MxiA _{C318-686 Q608R} pRA02 spa13 pRA03 mxiA _{C318-686 Q608R} This study Spa13:MxiA _{C318-686 Q608R} pRA02 spa13 pRA03 mxiA _{C318-686 Q608R} This study Spa13:MxiA _{C318-686 Q608R} pRA02 spa13 pRA03 mxiA _{C318-686 Q608R} This study Spa13:MxiA _{C318-686 Q608R} pRA02 spa13 pRA03 mxiA _{C318-686 Q608R} This study Spa13:MxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686 N373D} This study Spa13:MxiA _{C356-686 Q608R} pRA02 spa13 pRA03 mxiA _{C356-686 Q608R} This study Spa13:MxiA _{C356-686 Q608R} pRA02 spa13 pRA03 mxiA _{C356-686 Q608R} This study Spa13:MxiA _{C356-686 Q608R} pRA02 spa13 pRA03 mxiA _{C356-686 Q608R} This study Spa13:MxiA _{C356-686 Q608R} pRA02 spa13 pRA03 mxiA _{C356-686 Q608R} This study Spa13:MxiA _{C356-686 Q608R} pRA02 spa13 pRA03 mxiA _{C356-686 Q608R} This study Spa13:IpaD pRA02 spa13 pRA03 mxiA _{C356-686 Q608R} This study Spa13:MxiC pRA02 spa13 pRA03 mxiC This study Additional controls study study study <td>Spa13:MxiA_{C318-686}</td> <td>pRA02 <i>spa13</i> pRA03 <i>mxiA</i>_{C318-686}</td> <td>This study</td>	Spa13:MxiA _{C318-686}	pRA02 <i>spa13</i> pRA03 <i>mxiA</i> _{C318-686}	This study		
Spa13:MxiA _{C318-686 Q608R} pRA02 spa13 pRA03 mxiA _{C318-686 Q608R} This studySpa13:MxiA _{C318-686 I674V} pRA02 spa13 pRA03 mxiA _{C318-686 I674V} This studySpa13:MxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686} This studySpa13:MxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686} This studySpa13:MxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686 N373D} This studySpa13:MxiA _{C356-686 Q608R} pRA02 spa13 pRA03 mxiA _{C356-686 Q608R} This studySpa13:MxiA _{C356-686 I674V} pRA02 spa13 pRA03 mxiA _{C356-686 I674V} This studySpa13:IxiA _{C356-686 I674V} pRA02 spa13 pRA03 mxiA _{C356-686 I674V} This studySpa13:IxiCpRA02 spa13 pRA03 mxiCThis studyAdditional controlsstudySpa13 pRA03 mxiCStudy	Spa13:MxiA _{C318-686 N373D}	pRA02 spa13 pRA03 mxiA _{C318-686 N373D}	This study		
Spa13:MxiA _{C318-686} pRA02spa13pRA03mxiA _{C318-686} This studySpa13:MxiA _{C356-686} pRA02spa13pRA03mxiA _{C356-686} This studySpa13:MxiA _{C356-686} pRA02spa13pRA03mxiA _{C356-686} This studySpa13:MxiA _{C356-686} pRA02spa13pRA03mxiA _{C356-686} N373DThis studySpa13:MxiA _{C356-686} Q608RpRA02spa13pRA03mxiA _{C356-686} Q608RThis studySpa13:MxiA _{C356-686} Q608RpRA02spa13pRA03mxiA _{C356-686} G608RThis studySpa13:MxiA _{C356-686} I674VpRA02spa13pRA03mxiA _{C356-686} I674VThis studySpa13:IpaDpRA02spa13pRA03ipaDThis studySpa13:MxiCpRA02spa13pRA03mxiCThis studyAdditional controlsspa13pRA03mxiCThis study	Spa13:MxiA _{C318-686 Q608R}	pRA02 spa13 pRA03 mxiA _{C318-686 Q608B}	This study		
Spa13:MxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686} This studySpa13:MxiA _{C356-686} N373DpRA02 spa13 pRA03 mxiA _{C356-686} This studySpa13:MxiA _{C356-686} N373DpRA02 spa13 pRA03 mxiA _{C356-686} N373DThis studySpa13:MxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686} G608RThis studySpa13:MxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686} This studySpa13:InxiA _{C356-686} pRA02 spa13 pRA03 mxiA _{C356-686} This studySpa13:IpaDpRA02 spa13 pRA03 ipaDThis studySpa13:MxiCpRA02 spa13 pRA03 mxiCThis studyAdditional controlsSpa13 pRA03 mxiCThis study	Spa13:MxiA _{C318-686 1674V}	pRA02 spa13 pRA03 mxiA _{C318-686 I674V}	This study		
Spa13:MxiA _{C356-686 N373D} pRA02 spa13 pRA03 mxiA _{C356-686 N373D} This studySpa13:MxiA _{C356-686 Q608R} pRA02 spa13 pRA03 mxiA _{C356-686 Q608R} This studySpa13:MxiA _{C356-686 I674V} pRA02 spa13 pRA03 mxiA _{C356-686 I674V} This studySpa13:IpaDpRA02 spa13 pRA03 ipaDThis studySpa13:MxiCpRA02 spa13 pRA03 mxiCThis studyAdditional controlsThis study	Spa13:MxiA _{C356-686}	pRA02 spa13 pRA03 mxiA _{C356-686}	This study		
Spa13:MxiA _{C356-686} Q608RpRA02 spa13 pRA03 mxiA _{C356-686} Q608RThis studySpa13:MxiA _{C356-686} I674VpRA02 spa13 pRA03 mxiA _{C356-686} I674VThis studySpa13:IpaDpRA02 spa13 pRA03 ipaDThis studySpa13:MxiCpRA02 spa13 pRA03 mxiCThis studyAdditional controlsThis studyThis study	Spa13:MxiA _{C356-686 N373D}	pRA02 spa13 pRA03 mxiA _{C356-686 N373D}	This study		
Spa13:MxiA _{C356-686} I _{674V} pRA02 spa13 pRA03 mxiA _{C356-686} I _{674V} This studySpa13:lpaDpRA02 spa13 pRA03 ipaDThis studySpa13:MxiCpRA02 spa13 pRA03 mxiCThis studyAdditional controlsThis study	Spa13:MxiA _{C356-686} O608B	pRA02 spa13 pRA03 mxiAc356-686 Q608B	This study		
Spa13:lpaDpRA02 spa13 pRA03 ipaDThis studySpa13:MxiCpRA02 spa13 pRA03 mxiCThis studyAdditional controlsThis study	Spa13:MxiA _{C356-686 1674V}	pRA02 spa13 pRA03 mxiAc356-686 1674V	This study		
Spa13:MxiC pRA02 spa13 pRA03 mxiC This study Additional controls This study	Spa13:lpaD	pRA02 spa13 pRA03 ipaD	This study		
Additional controls	Spa13:MxiC	pRA02 spa13 pRA03 mxiC	This study		
	Additional controls		,		

Table 1.	Shigella flexneri and E.	. coli strains used	in this study.

(Continued)

Strain	Genotype (strain; plasmid)	Reference
-:MxiA _{C318-686}	pRA02 pRA03 mxiA _{C318-686}	This study
-:MxiA _{C318-686 N373D}	pRA02 pRA03 <i>mxiA</i> C318-686 N373D	This study
-:MxiA _{C318-686} Q608R	pRA02 pRA03 <i>mxiA</i> _{C318-686 Q608R}	This study
-:MxiA _{C318-686 I674V}	pRA02 pRA03 <i>mxiA</i> _{C318-686 I674V}	This study
MxiA _{C318-686} :MxiA _{C318-686}	pRA02	This study
MxiA _{C318-686 N373D} : MxiA _{C318-686 N373D}	pRA02	This study
MxiA _{C318-686} Q608R: MxiA _{C318-686} Q608R	pRA02	This study
MxiA _{C318-686} 1674v:MxiA _{C318-} 686 1674v	pRA02	This study
-:MxiA _{C356-686}	pRA02 pRA03 <i>mxiA</i> _{C356-686}	This study
MxiA _{C356-686} :-	pRA02	This study
MxiA _{C356-686} :MxiA _{C356-686}	pRA02	This study
Spa13:-	pRA02 <i>spa13</i> pRA03	This study
lpaD:lpaD	pRA02 <i>ipaD</i> pRA03 <i>ipaD</i>	This study
MxiC:MxiC	pRA02 mxiC pRA03 mxiC	This study

Table 1. (Continued)

doi:10.1371/journal.pone.0155141.t001

previously described [29, 31]: cells were washed further in TCSB containing 150 mM KCl after Tris treatment, then resuspended in TCSB containing 150 mM KCl supplemented with either 0.5% DMSO or valinomycin at concentrations up to 40 μ M at 37°C for 30 min. To test the role of the Δ pH alone, cells were washed twice in 200 mM sodium phosphate buffer, pH 5.85, then resuspended in the same buffer containing potassium benzoate (Sigma) [56] at concentrations up to 40 mM at 37°C for 30 min. Both cells and supernatants were collected and analyzed by immunoblotting using the antibodies indicated in the figures.

Intracellular pH measurement

Shigella WT was transformed with plasmid pYVM007, which encodes a pH-sensitive, ratiometric GFP derivative [49]. The bacteria were cultured overnight in TCSB medium with 100 µg/ml ampicillin, diluted 1:200 into fresh TCSB with 100 µg/ml ampicillin and 0.1 mM IPTG and grown to mid-logarithmic phase. The bacteria were then pelleted and resuspended in 200 mM sodium phosphate buffer with different concentrations of potassium benzoate or valinomycin with 150 mM KCl, and incubated for 30 minutes before measuring the fluorescence emission of pHluorin (520 nm emission) excited at 410 and 470 nm using a POLARstar Omega plate reader spectrophotometer (BMG). A standard curve was established by resuspending bacteria in 200 mM sodium phosphate buffer (pH 5.85, 6.34, 6.89, 7.41 and 7.91) in the presence of 40 mM potassium benzoate, and used to calculate the intracellular pH of the inhibitor-treated samples. Data is presented as Δ pH compared to the external pH of the buffer used.

Change of membrane potential

The change in membrane potential of PMF inhibitor-treated *S. flexneri* was detected using potential sensitive fluorescent dye DiSC3(5) (Sigma) as previously described [31]. Briefly, the overnight WT bacteria were diluted 1:200 in fresh TCSB medium and grown to mid-logarithmic phase. Cells were pelleted, washed and resuspended in 5 mM HEPES buffer, pH 7.7, to an

Table 2. Primer sequences used in this study.

PLOS ONE

Primer	Sequence			
Primers to knock out mxiA and verification of $\Delta mxiA$				
<i>mxiA</i> _KO_kanF	5' -GTGCATACAAGAAAGAGCTTTCTAGATAACAGGAGATAAAAGTGATCCAGTCTTTTGTGTAGGCTGGAGCTGCTTC-3'			
<i>mxiA</i> _KO_kanR	5' -taactaattgaactaaattaatgttactcatatttaaacctcactaaatagtctttaacatatgaatatcctccttag- $3'$			
<i>mxiA</i> _KO_Ver_F	5' -gccagtcatgaggattctgtag-3'			
<i>mxiA</i> _KO_Ver_R	5' - TGGTAATCGCTGAATGGCTG-3'			
Primers for PCR mutagenesis of mxiA				
mxiA_Xbal_RBS_F	AGTCTCTAGAAGATAACAGGAGATAAAAGTGATC			
mxiA_EcoRI_R	AGTCGAATTCTAAATAGTCTTTAATACAT			
Primers to make fusion proteins into pRA02 and pRA03				
lpaD_Nhel_For	5' -GCGCGCTAGCAATGAATATAACAACTCTGACTAATAG-3'			
lpaD_Kpnl_Rev	5' -GCGCGGTACCTCAGAAATGGAGAAAAAGTTTATC-3'			
MxiA _{C318} _Xbal_3G_For	5' -AGTCTCTAGAaggtggaggGGTCGTAGAAAAAGAAAAAG-3'			
MxiA _{C356} _Xbal_3G_For	5' -AGTCTCTAGAaggtggaggTATTAGTTCAGAAACCGTTC-3'			
MxiA_KpnI_Rev	5' -AGTCGGTACCCTAAATAGTCTTTAATACA-3'			
MxiC_Nhel_For	5' -GCGCGCTAGCAGAGCTCATGCTTGATGTTAAAAATACAG-3'			
MxiC_KpnI_Ror	5' -GCGCGGTACCGGATCCTTATCTAGAAAGCTCTTTCTTG-3'			
Spa13_Xbal_3G_For	5' -AGTCTCTAGAaggtggaggGAAACAATTAGATAAGG-3'			
Spa13_Kpnl_Rev	5' -AGTCGGTACCTTATCTAATGCCATACTTC-3'			
Primers for in-fusion cloning				
MxiA_N373D-For	5' -GAAAATAAGATAgATGCAAATG-3'			
MxiA_N373D-Rev	5' -GCATCTATCTTATTTTCGGC-3'			
MxiA_Q608R-For	5' -AGGGATAAGGCgAACCTCTG-3'			
MxiA_Q608R-Rev	5' -GGTTcGCCTTATCCCTTTTC-3'			
MxiA_I674V-For	5' -CGTATGCTGAGgTTGATGAAG-3'			
MxiA_I674V-Rev	5' -CAAcCTCAGCATACGATATAACG-3'			
MxiC_IF_For	5' -TAAGGATCCGGTACCCTAGAG-3'			
MxiC_IF_delC4_Rev	5' -GGTACCGGATCCTTATTTCTTGTATG-3'			
MxiC_IF_delC9_Rev	5' -GGTACCGGATCCTTATGTGACAAG-3'			
MxiC_IF_delC14_Rev	5' -GGTACCGGATCCTTATAGAATATTG-3'			

doi:10.1371/journal.pone.0155141.t002

 OD_{600} of 0.1 supplemented with 0.4 μ M DiSC3(5) dye. Cells were incubated at room temperature for 20 minutes, at which point 100 mM KCl (final concentration) was added. The cells were then treated with potassium benzoate or valinomycin and incubated for an additional 30 minutes. Increase in DiSC3(5) fluorescence due to the disruption of the membrane potential gradient ($\Delta\Psi$) was detected using a POLARstar Omega plate reader spectrophotometer (BMG, excitation 620 nm, emission 670 nm). Data is presented as fold change in fluorescence intensity relative to wild-type bacteria without inhibitor treatment.

Analysis of Ipas secretion and protein expression

The secretion of Ipa proteins after Congo red induction was carried our as previously described [11]. The total level of protein expression was revealed via western blot using monoclonal anti-IpaB H16 [57] and polyclonal anti-IpaH [58], anti-RNAP α subunit (gift from Prof. Akira Ishi-hama, Hosei University, Koganai, Tokyo) and anti- λ cI (gift from Prof. Ann Hochschild, Harvard Medical School, Boston). Goat anti-mouse DyLight 800 (Fisher Scientific) or goat anti-rabbit Alexa 680 (Invitrogen) conjugates were used as secondary antibodies. The membranes were then visualized using an Odyssey infrared imaging system (LI-COR Biosciences).

Bacterial two-hybrid assay

The bacterial 2-hybrid assay used in this work is essentially that developed by Dove and Hochschild [59]. Reporter strain *E.coli* KS1, which carries a chromosomal *lacZ* gene under the control of a *lac* promoter *plac*O_R2-62, can be activated by interactions between a protein fused to λ cI and a protein fused to the RNA polymerase (RNAP) α subunit. To generate the plasmids, genes to-be-fused were PCR amplified using primers listed in <u>Table 2</u>, double digested with *Kpn*I and *Xba*I (for *mxiA* and *spa13*) or *Nhe*I (for *ipaD* and *mxiC*), and then ligated into plasmids pRA02, which encodes RNAP α subunit and pRA03, which encodes λ cI [51], both double digested with *Kpn*I and *Xba*I (producing an overhang compatible with *Nhe*I). For genes with mutations to-be-fused, such as *mxiA*_{C356-686 N373D}, in-fusion cloning (Clontech) was performed using either pRA02 or pRA03 *mxiA*_{C356-686 N373D} as PCR template via primers MxiA_N373D-For and MxiA_N373D-Rev. All primers are listed in <u>Table 2</u> and all constructs were verified by DNA sequencing (Eurofins). *E.coli* KS1 cells were transformed with the combinations of pRA02 and pRA03 derivatives listed in <u>Table 1</u>. An overnight culture was diluted and grown to mid-log phase (A600 0.3~0.5) in LB broth supplemented with IPTG (1 mM) and antibiotics. β -galactosidase activity was assayed as described by Miller [60].

Results

MxiA double mutant displays increased expression of the IpaH family of late effectors

To identify mutation(s) involved in intracellular activation of the Shigella T3SS, we constructed a reporter plasmid where the cefotaxime resistance gene cepH[54] is under the control of the minimal promoter of the late effector gene *ipaH9.8* [17]. The expression of *ipaH9.8* is only turned on upon T3SS activation. Hence, we can select for mutants leading to ipaH9.8 expression via pipaH9.8 cepH-dependent generation of resistance to cefotaxime. We used this plasmid, where *mxiA* followed by transcription terminators was cloned upstream of *pipaH9.8 cepH*, to screen for *mxiA* mutants leading to cefotaxime resistance in a $\Delta mxiA$ background. As MxiA is an essential component of the T3SS CEA, only gain-of-function mxiA mutants can be returned by the screen since those that disrupt function will not answer the selection. Amongst an estimated 5000 transformants, which cover about 20% of potential single mutation of MxiA in our screening, we identified one cefotaxime-resistant transformant, which bears two mutations: N373D and I674V. The need to use a low copy plasmid for complementation and as a reporter limited the transformation and hence screening efficiency, making it impractical to seek to saturate the screen. The mutant showed 2 to 3 fold increased expression of IpaH proteins compared to WT and $\Delta mxiA/mxiA$ (Figure B, panel a in <u>S1 File</u>). To further understand the role of each of these mutations, we constructed $\Delta mxiA/mxiA_{N373D}$ and $\Delta mxiA/mxiA_{I674V}$. For comparison, we also made $\Delta mxiA/MxiA_{I674V}$. $mxiA_{O608R}$ based on a recent publication [31], which identified PcrD_{O626R}, which is homologous to MxiA_{O608R}, as resulting in activation of effector secretion under normally repressive conditions in *Pseudomonas aeruginosa*. The location of the three mutations is shown in Fig 1B and 1C: they are all on the surface of the globular C-terminal domain of the protein. I674 lies quite close to Q608 on the bottom (cytoplasm-facing) part of the inner face while N373 lies in an unstructured loop on the upper (membrane-facing) part of the outer face of the putative nonameric ring.

$MxiA_{1674V}$ behaves similarly to WT but secretes more late effector protein IpaH relative to early effector IpaB

To understand the effect of these MxiA mutations, we carried out functional assays of T3SS activity, including Congo red (CR) induction and overnight leakage. "Induction" describes the

doi:10.1371/journal.pone.0155141.g002

burst of Ipa protein secretion upon host cell sensing [61] or addition of the artificial inducer CR [62]. "Overnight leakage" is a slow, low-level Ipa protein secretion prior to host cell contact whereby around 5% of Ipa proteins are secreted [63]. With respect to CR induction (Fig 2A), $\Delta mxiA/mxiA_{N373D}$, $\Delta mxiA/mxiA_{Q608R}$ and $\Delta mxiA/mxiA_{I674V}$ all behaved like the wild-type and $\Delta mxiA/mxiA$. In contrast, the $\Delta mxiA$ was uninducible by CR due to the lack of a functional T3S apparatus, and $\Delta ipaD$ was insensitive to CR because it lacks a tip complex [5] and is a known constitutive secretor [64]. In comparison to wild-type and complemented strains, all mutants showed similar expression levels of later effectors IpaH relative to the early effector IpaB (Fig 2B and Figure C, panel a in S1 File). No differences were observed between any mutants and the complemented strain for the secretion level of IpaH relative to its expression

nor for the secretion level of IpaB relative to its expression (Figure C, panels b & c in <u>S1 File</u>). However, MxiAI674V secreted more later effectors IpaH relative to the early effector IpaB compared with the complemented strain, although the statistical significance of the difference observed was marginal (Fig_2C). This is similar, if less drastic as might be expected from the subtler nature of the mutations involved, to what was previously reported for $\Delta mxiC$ (Fig_2C; [11]). Taken together, these data suggest that at least amino acid I674 within MxiA is involved in regulating the secretion switch between early and later effectors.

The MxiAl674V mutant and WT respond similarly to PMF inhibitors, but $\Delta mxiC$ and $\Delta ipaD$ respond differently

Evidence has been provided that protein export via flagellar and virulence T3SSs relies partly on the PMF across the bacterial inner membrane as an energy source, which may be utilized by MxiA homologs [29–32, 65, 66]. If the *mxiA* mutants we isolated allow the *Shigella* T3SS to use the PMF more efficiently, then these mutations should render the export process more resistant to the collapse of the PMF. Therefore, we tested the ability of our *mxiA*_{I674V} mutant to modulate the sensitivity of translocator export to the addition of PMF inhibitors, as compared to WT, $\Delta mxiC$ and $\Delta ipaD$.

The PMF consists of two components, an electric potential difference between the periplasmic and cytoplasmic faces of the membrane ($\Delta \Psi$) and a proton concentration difference (ΔpH). CCCP functions as an ionophore to discharge both $\Delta \Psi$ and ΔpH [29], valinomycin shuttles potassium into the cell, thereby balancing the difference in charge and collapsing the $\Delta \Psi$ [29], while benzoic acid is a membrane-permeant weak acid which can enter the cell and collapse the ΔpH of the PMF when added in a low external pH environment [67]. In TCSB medium, IpaB secretion was strongly inhibited by 10 µM CCCP in all strains (Fig 3A and Figure D in S1 File). Potassium benzoate, but not valinomycin/KCl, disrupts the ΔpH in Shigella at external pH 5.85 (Figure F, panels a & b in S1 File), but not at external pH above 7 (not shown) or in TCSB medium due the changing external pH therein (Figure G in <u>S1 File</u>). While 20 mM potassium benzoate dramatically inhibited IpaB secretion in $\Delta i p a D$ and to a lesser extent in $\Delta m x i C$, it had no effect on the secretion of IpaB in WT or mxiA_{I674V} (Fig 3B and Figure E in S1 File). Valinomycin/KCl, but not potassium benzoate, collapses the $\Delta \Psi$ (Figure F, panels c & d in <u>S1 File</u>). While valinomycin/KCl inhibits the secretion of IpaB in both wild-type and mxiA mutants at 20 μ M, $\Delta i p a D$ is totally resistant to valinomycin up to 40 μ M and $\Delta m x i C$ is intermediately-resistant to the effect of this drug (Fig 3C and Figure H in S1 File). Thus, WT and our mxiA mutants use the PMF similarly, and primarily the $\Delta \Psi$, to secrete translocator IpaB. Interestingly, however, lack of either of two regulators, MxiC or IpaD, the homologs of which were recently shown to interact with the MxiA homolog PcrD in Pseudomonas [31], renders IpaB secretion increasingly dependent on the ΔpH , but independent of the $\Delta \Psi$.

The mxiA mutants no longer interact with MxiC

To determine the reason(s) why our MxiA mutants secrete IpaH proteins more efficiently, we set-up two-hybrid assays to test if they interact with their potential partners differently. PcrD, a homologue of MxiA, co-precipitates with Pcr1 [31], which corresponds to C-terminal domain 3 of MxiC. To test the interaction between the C-terminus of MxiA (MxiA_C) and MxiC, MxiA_C was fused to λ cI, and MxiC was fused to RNAP α subunit as described in the Materials and Methods. Interaction-dependent recruitment of RNA polymerase to the promoter leads to the expression of β -galactosidase, of which the activity was monitored. MxiC interacts strongly with MxiA_{C356-686}, but not when it is fused to λ cI and MxiA_C to RNAP α subunit It also does not interact with MxiA_{C318-686} in either fusion configuration (Fig 4A and not shown). The latter

doi:10.1371/journal.pone.0155141.g003

constructs encode the whole cytoplasmic domain, including what is probably an extended linker region linking it to its transmembrane region [36]. Therefore, the linker region may regulate the MxiC-MxiA interaction assessed here. Yet, lack of binding in the presence of a more complete MxiA construct is a negative result and what we remove is a flexible linker, the conformation of which can not be assumed to be native in the two-hybrid fusion protein. However, although all constructs showed similar expression levels of fusion proteins (Fig 4B), RNAP α subunit-MxiC does not interact with λ cI-MxiA_{C356-686} bearing mutations N373D, Q608R or I674V. PcrD_{Q626R} showed reduced interaction with Pcr1 [31]. Thus our data indicate that mutations MxiA_{Q608R} or nearby MxiA_{I674V} lead to a similar defect, and one that is caused also by the more distantly

Fig 4. MxiA mutants no longer interact with MxiC in a bacterial two-hybrid assay. MxiC and its C-terminal deletion derivatives were fused to RNAP α subunit in plasmid pRA02, and MxiA_C and its mutants were fused to λ cl in plasmid pRA03. Interaction between the fusion proteins recruits RNAP to the lacZ reporter construct, and β -galactosidase activity reflects the strength of the interaction (A). "-" indicates the expression of RNAP α subunit or λ cl only, UvrA1-252 interact with Mfd1-219b [51] and was used as a positive control. Production of

the indicated RNAP α subunit and λ cl-fusion proteins was analysed by immunoblotting using antibodies against RNAP α subunit (B) and λ cl (C). Bacterial numbers were normalized by OD₆₀₀ and the data shown here are representative of 2 independent experiments giving similar results.

doi:10.1371/journal.pone.0155141.g004

located mutation MxiA_{N373D}. In parallel, we also sought to map the site of interaction of MxiC on MxiA_C using two-hybrid assays. Consistent with the fact that Pcr1 is homologous the C-terminal quarter of MxiC, although all constructs are expressed (Fig 4B), MxiC with C-terminal deletions of its last four to fourteen amino acids lost the ability to bind MxiA_{C356-686}.

The work of Lee & Rietsch in *Pseudomonas* [31] showed that PscO, the homologue of *Shi-gella* Spa13, and PcrG, the homologue of the N-terminus of IpaD, interact with PcrD, the MxiA homologue. Furthermore, they found that PcrG and Pcr1 interact. The interaction of PcrG & PcrD and PcrG & Pcr1 were shown to be direct, while Minamino et al. showed the FliJ, the Spa13 homolog, binds FlhA, the MxiA homolog directly [32, 37]. Therefore, we further checked for interactions between MxiA_C (both with and without linker region and as RNAP α subunit or λ cI fusions, except in combination with the *spa13* fusion, where only RNAP α subunit-Spa13 and λ cI-MxiA_C could be obtained; Table 1), Spa13, MxiA_C and IpaD. However, no interaction was detected for any of these pairs (data not shown). In this work and previous work, we also tested for IpaD-MxiC interactions in this assay, also without success [23].

Discussion

In this work, we demonstrate that the *Shigella* T3SS inner membrane protein MxiA plays a role in substrate selection. We also show that MxiC and IpaD, two cytoplasmic regulators already shown to play a role in secretion hierarchy control and to negatively regulate the secretion rate, also control the export apparatus' mode of PMF utilization. Finally, we also show that the cytoplasmic region of MxiA interacts directly with MxiC and identify residues important for this interaction in both proteins.

Our *mxiA* mutants stimulate expression and secretion of some proteins of the IpaH late effector family, but not of the translocator IpaB. The $pcrD_{Q626R}$ mutant upregulates expression of the ExoS effector, but its full secretion profile was not shown by Lee & Rietsch [31]. Interestingly, the $pcrG_{\Delta30-40,\Delta60-70}$ and the $pscO_{G78E \text{ or }E88K}$ mutants they characterised have a different phenotype: they affect mainly the secretion rate, not its specificity [31]. Thus, the cytoplasmic complex formed around MxiA/PcrD is a major substrate selection point.

As expected from the genetic screen we used to isolate them, the mutations in MxiA that affect substrate selection are very mild and do not affect the other, essential function(s) of the protein in T3S. Unlike the partial loss-of-function *prcG* and *pscO* mutants described by Lee & Rietsch (2014), our MxiA point mutants also do not affect PMF utilisation by the T3SS. The latter was not tested by these authors but as we made a homologous mutant (MxiA_{O608R}) to the strongest one they found in PcrD, we assume this is also the case in Pseudomonas. Interestingly, however, each of our point mutants leads to complete loss of interaction with MxiC in our 2-hybrid assay but PcrD_{O626R} leads only to a partial loss of interaction with Pcr1 in pulldowns [31]. This suggests other factors can stabilise this interaction in vivo, although we could not detect the ones we expected from the work of Lee & Rietsch (2014) in our 2-hybrid assays. This may be because of slight differences in the assays used or in the cloning of the fusion proteins. More interestingly, this may also be due to differences in how some of these proteins are found at steady state. Indeed, MxiC is equivalent to PopN and Pcr1, and this complex may a have different conformation [20] to that of MxiC [21], whereas IpaD is equivalent to PcrV and PcrG, meaning it may not have its relevant surfaces available for interaction with MxiC. Might such differences influence the fine-tuning of this regulatory cascade in each species?

On the other hand, lack of the MxiC extreme C-terminus which, according to the MxiC crystal structure [21], is unlikely to affect its folding dramatically and which causes loss of MxiA binding in the 2-hybrid assay, is a complete loss-of-function mutant in *Shigella* [23, 68]. While relatively conservative substitutions are likely less disruptive than short deletions, this suggests that the site targeted by the MxiC C-terminus on MxiA is important to formation of this regulatory complex. Although we have insufficient information to dock the MxiA_C and MxiC structures together, the location of our MxiA mutants suggest MxiC may wrap around the MxiA nonamer, from the outside to the inside of the ring.

How our MxiA mutations act to upregulate *ipaH* gene expression is not clear. Our mutants do not demonstrate detectably increased "leakage" (Figure B, panel b in <u>S1 File</u>). Therefore, this slight upregulation is unlikely to be occurring via the previously characterised MxiE transcriptional activator. This protein requires its co-activator, IpgC, the cytoplasmic chaperone of IpaB and IpaC translocators, to have been liberated from these by their secretion to interact with MxiE [<u>58</u>]. Interestingly, a *mxiC* mutant shows a 2-fold decrease in number of T3SSs/cell [<u>11</u>]. This suggests it is required as a positive regulator of T3SS gene expression. In addition, one component of the heterodimeric chaperone complex of the *Chlamydia* MxiC homolog CopN acts as an inhibitor of RNA polymerase by binding to its σ^{66} subunit, when not part of the CopN complex [<u>69</u>, <u>70</u>]. Therefore, a role for the MxiA-MxiC interaction in regulating late effector transcription/translation cannot be excluded. However, that our MxiA mutations do mildly alter substrate selection is supported by the fact that all but one of the mutations isolated by Lee & Rietsch [<u>31</u>] and ourselves localise to MxiA/PcrD domain 4 (<u>Fig 1B and 1C</u>), the main domain involved in substrate selection in their flagellar homolog FlhA [<u>44</u>, <u>45</u>].

In the Pseudomonas vT3SS, both components of the PMF were required to power translocator export [31]. In *Pseudomonas*, a partial defect in PcrG (the homolog of IpaD's N-terminus) was shown to render their secretion of translocators more resistant to dissolution both of the $\Delta \Psi$ and of the ΔpH , suggesting they can use these more efficiently [31]. But, in the Salmonella fT3SS, only the $\Delta \Psi$ is required to support flagellar protein export in wild-type cells [65], as we see here for wild-type Shigella vT3SS and our MxiA mutants also. However, in a Salmonella fT3SS mutant lacking flagellar ATPase complex and carrying a bypass point mutation (P28T) in FlhB -the Spa40 homolog- which enhances protein export, Minamino et al. (2011) observed a dual requirement for $\Delta \Psi$ and the ΔpH [32]. The latter is reminiscent of the requirements we see here for the $\Delta mxiC$ mutant, while the $\Delta ipaD$ mutant, which has the most accelerated secretion rate, requires only the ΔpH . This suggests that the observation made by Minamino et al. also applies to circumstances where the ATPase complex is present and the IMEA is intact and that MxiC and IpaD negatively regulate the rate of protein export by controlling the mode in which MxiA utilizes the PMF. Thus, once again, our data suggest this functional and regulatory pathway is at least partially conserved, and hence of importance, amongst T3SSs. However, how MxiA₁₆₇₄ is altered in substrate secretion selection and how WT, $\Delta mxiC$ and $\Delta ipaD$ use the PMF differently need further investigation.

Supporting Information

S1 File. Supplementary Figures A to H. (PDF)

Acknowledgments

We are grateful to Dr. Isabel Martinez-Argudo (now University of Castilla-La Mancha, Toledo, Spain) for generating the *mxiA* knockout strain, initially for unrelated work, to Prof. Nigel

Savery and Dr. Abigail Smith (Biochemistry, University of Bristol) for providing the materials for the bacterial two-hybrid assay, to Dr. Yusuke V Morimoto (Osaka University, Japan) and the Memorial Sloan Kettering Cancer Center (New York, USA) for providing plasmids to measure intracellular pH, to Dr. Arne Rietsch (Case Western Reserve University, Cleveland, USA) for discussions and to Dr. Dorothea Roehrich (Cellular and Molecular Medicine, University of Bristol) for the diagram used to derive Fig 1A and initially setting up the two hybrid assay system in our laboratory. This work was funded by the UK Medical Research Council (MR_J002097_1 to AJB) and the Wellcome Trust (WT104634AIA to AJB).

Author Contributions

Conceived and designed the experiments: DKS AJB. Performed the experiments: DKS. Analyzed the data: DKS AJB. Contributed reagents/materials/analysis tools: DKS AJB. Wrote the paper: DKS AJB.

References

- Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013; 382(9888):209–22. doi: <u>10.</u> <u>1016/S0140-6736(13)60844-2</u> PMID: <u>23680352</u>.
- Hodgkinson JL, Horsley A, Stabat D, Simon M, Johnson S, da Fonseca PC, et al. Three-dimensional reconstruction of the *Shigella* T3SS transmembrane regions reveals 12-fold symmetry and novel features throughout. Nat Struct Mol Biol. 2009; 16(5):477–85. PMID: <u>19396171</u>. doi: <u>10.1038/nsmb.1599</u>
- Blocker A, Gounon P, Larquet E, Niebuhr K, Cabiaux V, Parsot C, et al. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Biol. 1999; 147(3):683–93. PMID: 10545510.
- Cordes FS, Komoriya K, Larquet E, Yang S, Egelman EH, Blocker A, et al. Helical structure of the needle of the type III secretion system of Shigella flexneri. J Biol Chem. 2003; 278(19):17103–7. PMID: 12571230.
- Veenendaal AK, Hodgkinson JL, Schwarzer L, Stabat D, Zenk SF, Blocker AJ. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol. 2007; 63 (6):1719–30. Epub 2007/03/21. MMI5620 [pii] doi: <u>10.1111/j.1365-2958.2007.05620.x</u> PMID: 17367391.
- Cheung M, Shen DK, Makino F, Kato T, Roehrich AD, Martinez-Argudo I, et al. Three-dimensional electron microscopy reconstruction and cysteine-mediated crosslinking provide a model of the type III secretion system needle tip complex. Mol Microbiol. 2015; 95(1):31–50. doi: <u>10.1111/mmi.12843</u> PMID: <u>25353930</u>.
- Roehrich AD, Martinez-Argudo I, Johnson S, Blocker AJ, Veenendaal AK. The extreme C terminus of Shigella flexneri IpaB is required for regulation of type III secretion, needle tip composition, and binding. Infect Immun. 2010; 78(4):1682–91. Epub 2010/01/21. doi: <u>10.1128/IAI.00645-09</u> PMID: <u>20086081</u>; PubMed Central PMCID: PMC2849396.
- Shen DK, Saurya S, Wagner C, Nishioka H, Blocker AJ. Domains of the Shigella flexneri type III secretion system IpaB protein involved in secretion regulation. Infect Immun. 2010; 78(12):4999–5010. Epub 2010/10/13. doi: <u>10.1128/IAI.00470-10</u> PMID: <u>20937761</u>; PubMed Central PMCID: PMC2981331.
- Brutinel ED, Yahr TL. Control of gene expression by type III secretory activity. Curr Opin Microbiol. 2008; 11(2):128–33. Epub 2008/04/09. S1369-5274(08)00021-0]] doi: <u>10.1016/j.mib.2008.02.010</u> PMID: <u>18396449</u>; PubMed Central PMCID: PMC2387186.
- Wei HL, Collmer A. Multiple lessons from the multiple functions of a regulator of type III secretion system assembly in the plant pathogen Pseudomonas syringae. Mol Microbiol. 2012; 85(2):195–200. doi: 10.1111/j.1365-2958.2012.08119.x PMID: 22646515.
- Martinez-Argudo I, Blocker AJ. The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol Microbiol. 2010; 78(6):1365–78. Epub 2010/12/15. doi: <u>10.1111/j.</u> <u>1365-2958.2010.07413.x</u> PMID: <u>21143311</u>; PubMed Central PMCID: PMC3020320.
- Lee PC, Stopford CM, Svenson AG, Rietsch A. Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol Microbiol. 2010; 75(4):924–41. doi: <u>10.1111/j.</u> <u>1365-2958.2009.07027.x</u> PMID: <u>20487288</u>; PubMed Central PMCID: PMC3124366.

- Roehrich AD, Guillossou E, Blocker AJ, Martinez-Argudo I. Shigella IpaD has a dual role: signal transduction from the type III secretion system needle tip and intracellular secretion regulation. Mol Microbiol. 2013; 87(3):690–706. Epub 2013/01/12. doi: 10.1111/mmi.12124 PMID: 23305090.
- Kenjale R, Wilson J, Zenk SF, Saurya S, Picking WL, Picking WD, et al. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem. 2005; 280 (52):42929–37. PMID: 16227202.
- Cherradi Y, Schiavolin L, Moussa S, Meghraoui A, Meksem A, Biskri L, et al. Interplay between predicted inner-rod and gatekeeper in controlling substrate specificity of the type III secretion system. Mol Microbiol. 2013; 87(6):1183–99. doi: <u>10.1111/mmi.12158</u> PMID: <u>23336839</u>.
- Botteaux A, Sory MP, Biskri L, Parsot C, Allaoui A. MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol. 2009; 71(2):449–60. Epub 2008/11/20. MMI6537 [pii] doi: 10.1111/j.1365-2958.2008.06537.x PMID: 19017268.
- Bongrand C, Sansonetti PJ, Parsot C. Characterization of the promoter, MxiE box and 5' UTR of genes controlled by the activity of the type III secretion apparatus in Shigella flexneri. PLoS One. 2012; 7(3): e32862. doi: 10.1371/journal.pone.0032862 PMID: 22427898; PubMed Central PMCID: PMC3299695.
- Parsot C. Shigella type III secretion effectors: how, where, when, for what purposes? Curr Opin Microbiol. 2009; 12(1):110–6. PMID: <u>19157960</u>. doi: <u>10.1016/j.mib.2008.12.002</u>
- Pallen MJ, Beatson SA, Bailey CM. Bioinformatics analysis of the locus for enterocyte effacement provides novel insights into type-III secretion. BMC Microbiol. 2005; 5:9. PMID: <u>15757514</u>.
- Schubot FD, Jackson MW, Penrose KJ, Cherry S, Tropea JE, Plano GV, et al. Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J Mol Biol. 2005; 346(4):1147–61. PMID: <u>15701523</u>.
- Deane JE, Roversi P, King C, Johnson S, Lea SM. Structures of the Shigella flexneri type 3 secretion system protein MxiC reveal conformational variability amongst homologues. J Mol Biol. 2008; 377 (4):985–92. PMID: <u>18304577</u>. doi: <u>10.1016/j.jmb.2008.01.072</u>
- Silva-Herzog E, Joseph SS, Avery AK, Coba JA, Wolf K, Fields KA, et al. Scc1 (CP0432) and Scc4 (CP0033) function as a type III secretion chaperone for CopN of Chlamydia pneumoniae. J Bacteriol. 2011; 193(14):3490–6. doi: <u>10.1128/JB.00203-11</u> PMID: <u>21571996</u>; PubMed Central PMCID: PMC3133303.
- 23. Roehrich AD. Regulation of type III secretion hierarchy in Shigella flexneri. PhD thesis. 2013.
- Wang D, Roe AJ, McAteer S, Shipston MJ, Gally DL. Hierarchal type III secretion of translocators and effectors from *Escherichia coli* O157:H7 requires the carboxy terminus of SepL that binds to Tir. Mol Microbiol. 2008; 69(6):1499–512. PMID: <u>18673458</u>. doi: <u>10.1111/j.1365-2958.2008.06377.x</u>
- Ferracci F, Schubot FD, Waugh DS, Plano GV. Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol Microbiol. 2005; 57(4):970–87. PMID: 16091038.
- Yu XJ, McGourty K, Liu M, Unsworth KE, Holden DW. pH sensing by intracellular Salmonella induces effector translocation. Science. 2010; 328(5981):1040–3. Epub 2010/04/17. doi: <u>10.1126/science.</u> <u>1189000</u> PMID: 20395475.
- Minamino T. Protein export through the bacterial flagellar type III export pathway. Biochim Biophys Acta. 2014; 1843(8):1642–8. doi: <u>10.1016/j.bbamcr.2013.09.005</u> PMID: <u>24064315</u>.
- Minamino T, Imada K, Namba K. Mechanisms of type III protein export for bacterial flagellar assembly. Mol Biosyst. 2008; 4(11):1105–15. Epub 2008/10/22. doi: <u>10.1039/b808065h</u> PMID: <u>18931786</u>.
- Paul K, Erhardt M, Hirano T, Blair DF, Hughes KT. Energy source of flagellar type III secretion. Nature. 2008; 451(7177):489–92. Epub 2008/01/25. doi: <u>10.1038/nature06497</u> PMID: <u>18216859</u>.
- Wilharm G, Lehmann V, Krauss K, Lehnert B, Richter S, Ruckdeschel K, et al. Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect Immun. 2004; 72(7):4004–9. PMID: <u>15213145</u>.
- Lee PC, Zmina SE, Stopford CM, Toska J, Rietsch A. Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG. Proc Natl Acad Sci U S A. 2014; 111(19):E2027–36. doi: 10.1073/pnas.1402658111 PMID: 24778208; PubMed Central PMCID: PMC4024851.
- Minamino T, Morimoto YV, Hara N, Namba K. An energy transduction mechanism used in bacterial flagellar type III protein export. Nat Commun. 2011; 2:475. Epub 2011/09/22. doi: <u>10.1038/ncomms1488</u> PMID: <u>21934659</u>; PubMed Central PMCID: PMC3195256.
- Bai F, Morimoto YV, Yoshimura SD, Hara N, Kami-Ike N, Namba K, et al. Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus. Scientific reports. 2014; 4:6528. doi: <u>10.</u> 1038/srep06528 PMID: 25284201; PubMed Central PMCID: PMC4185386.
- 34. Minamino T, Morimoto YV, Kinoshita M, Aldridge PD, Namba K. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis.

Scientific reports. 2014; 4:7579. doi: <u>10.1038/srep07579</u> PMID: <u>25531309</u>; PubMed Central PMCID: PMC4273619.

- Minamino T, Shimada M, Okabe M, Saijo-Hamano Y, Imada K, Kihara M, et al. Role of the C-terminal cytoplasmic domain of FlhA in bacterial flagellar type III protein export. J Bacteriol. 2010; 192(7):1929– 36. Epub 2010/02/02. doi: <u>10.1128/JB.01328-09</u> PMID: <u>20118266</u>; PubMed Central PMCID: PMC2838044.
- Abrusci P, Vergara-Irigaray M, Johnson S, Beeby MD, Hendrixson DR, Roversi P, et al. Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol. 2013; 20 (1):99–104. Epub 2012/12/12. doi: <u>10.1038/nsmb.2452</u> PMID: <u>23222644</u>; PubMed Central PMCID: PMC3537844.
- Ibuki T, Uchida Y, Hironaka Y, Namba K, Imada K, Minamino T. Interaction between FliJ and FlhA, components of the bacterial flagellar type III export apparatus. J Bacteriol. 2013; 195(3):466–73. Epub 2012/11/20. doi: 10.1128/JB.01711-12 PMID: 23161028; PubMed Central PMCID: PMC3554004.
- Ibuki T, Imada K, Minamino T, Kato T, Miyata T, Namba K. Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases. Nat Struct Mol Biol. 2011; 18(3):277–82. Epub 2011/02/01. doi: <u>10.1038/nsmb.1977</u> PMID: <u>21278755</u>.
- Shen DK, Moriya N, Martinez-Argudo I, Blocker AJ. Needle length control and the secretion substrate specificity switch are only loosely coupled in the type III secretion apparatus of Shigella. Microbiology. 2012; 158(Pt 7):1884–96. doi: <u>10.1099/mic.0.059618-0</u> PMID: <u>22575894</u>; PubMed Central PMCID: PMC3542141.
- 40. Bange G, Kummerer N, Engel C, Bozkurt G, Wild K, Sinning I. FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system. Proc Natl Acad Sci U S A. 2010; 107(25):11295–300. Epub 2010/06/11. doi: <u>10.1073/pnas.1001383107</u> PMID: <u>20534509</u>; PubMed Central PMCID: PMC2895114.
- Li Y, Li L, Huang L, Francis MS, Hu Y, Chen S. Yersinia Ysc-Yop type III secretion feedback inhibition is relieved through YscV-dependent recognition and secretion of LcrQ. Mol Microbiol. 2014; 91(3):494– 507. doi: 10.1111/mmi.12474 PMID: 24344819.
- Kubori T, Galan JE. Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells. J Bacteriol. 2002; 184(17):4699–708. PMID: <u>12169593</u>.
- Lara-Tejero M, Kato J, Wagner S, Liu X, Galan JE. A sorting platform determines the order of protein secretion in bacterial type III systems. Science. 2011; 331(6021):1188–91. Epub 2011/02/05. doi: <u>10.</u> <u>1126/science.1201476</u> PMID: <u>21292939</u>.
- 44. Hirano T, Mizuno S, Aizawa S, Hughes KT. Mutations in flk, flgG, flhA, and flhE that affect the flagellar type III secretion specificity switch in Salmonella enterica. J Bacteriol. 2009; 191(12):3938–49. doi: <u>10.1128/JB.01811-08</u> PMID: <u>19376867</u>; PubMed Central PMCID: PMC2698386.
- Minamino T, Kinoshita M, Hara N, Takeuchi S, Hida A, Koya S, et al. Interaction of a bacterial flagellar chaperone FlgN with FlhA is required for efficient export of its cognate substrates. Molecular Microbiology. 2012; 83(4):775–88. Epub 2012/01/12. doi: <u>10.1111/j.1365-2958.2011.07964.x</u> PMID: <u>22233518</u>.
- 46. Archuleta TL, Spiller BW. A Gatekeeper Chaperone Complex Directs Translocator Secretion during Type Three Secretion. PLoS Pathog. 2014; 10(11):e1004498. doi: <u>10.1371/journal.ppat.1004498</u> PMID: 25375170; PubMed Central PMCID: PMC4222845.
- Meitert T, Pencu E, Ciudin L, Tonciu M, Mihai I, Nicolescu S. Correlation between Congo red binding as virulence marker in Shigella species and Sereny test. Roum Arch Microbiol Immunol. 1991; 50(1):45– 52. Epub 1991/01/01. PMID: <u>1802051</u>.
- Sansonetti PJ, Kopecko DJ, Formal SB. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun. 1982; 35(3):852–60. PMID: <u>6279518</u>.
- Morimoto YV, Kojima S, Namba K, Minamino T. M153R mutation in a pH-sensitive green fluorescent protein stabilizes its fusion proteins. PLoS ONE. 2011; 6(5):e19598. Epub 2011/05/12. doi: <u>10.1371/</u> journal.pone.0019598 PMID: <u>21559297</u>; PubMed Central PMCID: PMC3086926.
- Menard R, Sansonetti PJ, Parsot C. Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol. 1993; 175(18):5899–906. PMID: 8376337.
- Manelyte L, Guy CP, Smith RM, Dillingham MS, McGlynn P, Savery NJ. The unstructured C-terminal extension of UvrD interacts with UvrB, but is dispensable for nucleotide excision repair. DNA Repair (Amst). 2009; 8(11):1300–10. doi: <u>10.1016/j.dnarep.2009.08.005</u> PMID: <u>19762288</u>; PubMed Central PMCID: PMC2997466.
- Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000; 97(12):6640–5. PMID: <u>10829079</u>.

- Wang RF, Kushner SR. Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene. 1991; 100:195–9. Epub 1991/04/01. PMID: <u>2055470</u>.
- Avison MB, Niumsup P, Walsh TR, Bennett PM. Aeromonas hydrophila AmpH and CepH beta-lactamases: derepressed expression in mutants of Escherichia coli lacking creB. J Antimicrob Chemother. 2000; 46(5):695–702. PMID: <u>11062187</u>.
- Farinha MA, Kropinski AM. Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol. 1990; 172(6):3496–9. PMID: <u>2111810</u>; PubMed Central PMCID: PMCPMC209165.
- Minamino T, Imae Y, Oosawa F, Kobayashi Y, Oosawa K. Effect of intracellular pH on rotational speed of bacterial flagellar motors. J Bacteriol. 2003; 185(4):1190–4. PMID: <u>12562788</u>; PubMed Central PMCID: PMCPMC142873.
- Barzu S, Nato F, Rouyre S, Mazie JC, Sansonetti P, Phalipon A. Characterization of B-cell epitopes on IpaB, an invasion-associated antigen of Shigella flexneri: identification of an immunodominant domain recognized during natural infection. Infect Immun. 1993; 61(9):3825–31. PMID: <u>7689541</u>.
- Mavris M, Page AL, Tournebize R, Demers B, Sansonetti P, Parsot C. Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus. Mol Microbiol. 2002; 43(6):1543–53. PMID: 11971264.
- Dove SL, Joung JK, Hochschild A. Activation of prokaryotic transcription through arbitrary protein-protein contacts. Nature. 1997; 386(6625):627–30. doi: 10.1038/386627a0 PMID: 9121589.
- Miller JF. Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. 1972.
- Menard R, Sansonetti P, Parsot C. The secretion of the Shigella flexneri lpa invasins is activated by epithelial cells and controlled by IpaB and IpaD. Embo J. 1994; 13(22):5293–302. PMID: 7957095.
- Mounier J, Bahrani FK, Sansonetti PJ. Secretion of Shigella flexneri Ipa invasins on contact with epithelial cells and subsequent entry of the bacterium into cells are growth stage dependent. Infect Immun. 1997; 65(2):774–82. PMID: <u>9009341</u>.
- Magdalena J, Hachani A, Chamekh M, Jouihri N, Gounon P, Blocker A, et al. Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J Bacteriol. 2002; 184(13):3433–41. PMID: <u>12057936</u>.
- Parsot C, Menard R, Gounon P, Sansonetti PJ. Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol Microbiol. 1995; 16(2):291–300. PMID: <u>7565091</u>.
- 65. Minamino T, Namba K. Distinct roles of the Flil ATPase and proton motive force in bacterial flagellar protein export. Nature. 2008; 451(7177):485–8. Epub 2008/01/25. doi: <u>10.1038/nature06449</u> PMID: <u>18216858</u>.
- Erhardt M, Mertens ME, Fabiani FD, Hughes KT. ATPase-independent type-III protein secretion in Salmonella enterica. PLoS Genet. 2014; 10(11):e1004800. doi: <u>10.1371/journal.pgen.1004800</u> PMID: 25393010; PubMed Central PMCID: PMCPMC4230889.
- 67. Kihara M, Macnab RM. Cytoplasmic pH mediates pH taxis and weak-acid repellent taxis of bacteria. J Bacteriol. 1981; 145(3):1209–21. PMID: 7009572; PubMed Central PMCID: PMCPMC217121.
- Roehrich AD, Bordignon E, Shen D-K, Mode S, Ronessen MC, Martinez-Argudo I, et al. Genetic and biophysical analysis of MxiC reveals steps in hierarchical type III secretion regulation. In preparation.
- Hanson BR, Slepenkin A, Peterson EM, Tan M. Chlamydia trachomatis Type III Secretion Proteins Regulate Transcription. J Bacteriol. 2015; 197(20):3238–44. doi: <u>10.1128/JB.00379-15</u> PMID: 26216849; PubMed Central PMCID: PMCPMC4573728.
- Shen L, Macnaughtan MA, Frohlich KM, Cong Y, Goodwin OY, Chou CW, et al. Multipart Chaperone-Effector Recognition in the Type III Secretion System of Chlamydia trachomatis. J Biol Chem. 2015; 290(47):28141–55. doi: <u>10.1074/jbc.M115.670232</u> PMID: <u>26438824</u>; PubMed Central PMCID: PMCPMC4653673.