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Abstract

prediction model immediately.

by 4.54% over existing methods.

Background: Recently, drug repositioning has received considerable attention for its advantage to pharmaceutical
industries in drug development. Artificial intelligence techniques have greatly enhanced drug reproduction by dis-
covering therapeutic drug profiles, side effects, and new target proteins. However, as the number of drugs increases,
their targets and enormous interactions produce imbalanced data that might not be preferable as an input to a

Methods: This paper proposes a novel scheme for predicting drug-target interactions (DTls) based on drug chemical
structures and protein sequences. The drug Morgan fingerprint, drug constitutional descriptors, protein amino acid
composition, and protein dipeptide composition were employed to extract the drugs and protein’s characteristics.
Then, the proposed approach for extracting negative samples using a support vector machine one-class classifier was
developed to tackle the imbalanced data problem feature sets from the drug—target dataset. Negative and positive
samplings were constructed and fed into different prediction algorithms to identify DTls. A 10-fold CV validation test
procedure was applied to assess the predictability of the proposed method, in addition to the study of the effective-
ness of the chemical and physical features in the evaluation and discovery of the drug-target interactions.

Results: Our experimental model outperformed existing techniques concerning the curve for receiver operating
characteristic (AUC), accuracy, precision, recall F-score, mean square error, and MCC. The results obtained by the Ada-
Boost classifier enhanced prediction accuracy by 2.74%, precision by 1.98%, AUC by 1.14%, F-score by 3.53%, and MCC

Keywords: Drug-target interaction, Data balancing, Support vector machine, Machine learning

Introduction

Predicting DTIs for prospective drugs plays an essential
role in drug discovery. It helps in understanding biologi-
cal operations and reduces the costs of drug discovery
[1, 2]. However, there are many challenges in predicting
DTIs. For example, many positive and negative effects
of drugs are hard to detect and explain. In the last few
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years, there have been significant efforts to overcome
these challenges and predict DTIs. In addition, because
the Human Genome Project has been completed and
molecular medicine is being continuously developed,
more unknown DTIs have been discovered. However, the
number of analytically validated drug—target interactions
is still very small, prompting research scientists to devise
novel computational approaches to overcome these chal-
lenges for potential DTI prediction [3].

An enormous amount of DTI data is produced after
the development of high-performing computational
technologies. Several popular databases, such as KEGG
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[4], DrugBank [5], ChREMBL [6], STITCH [7], and TTD
[8], that have been created to store confirmed data and
to provide relevant recovery information are useful for
setting up efficient computational methods for the opti-
mal prediction of DTIs.

Typical DTI computational schemes can be portioned
into three categories: ligand-based, simulation dock-
ing, and chemogenomic schemes. First, ligand-based
schemes utilize target protein similarity to predict
interactions between a drug’s chemical structures and
protein sequences [9].

Second, docking-based schemes use dynamic imita-
tions of a target protein to discover novel, unknown
interactions. Such schemes are a prospective tech-
nology that enforces the 3D structure of proteins to
address the prediction stage [10].

Chemogenomic schemes establish a prediction model
depending on graph theory [11, 12], network methods
[13, 14], and techniques based on machine learning [15,
16]. Among the chemogenomic approaches, machine-
learning approaches are regarded as the most dependable
for predictive outcomes. Machine-learning approaches
can be categorized into features or similarity method.

Similarity techniques have been developed to calcu-
late the similarity among drug compounds and target
proteins [17, 18]. Similarity-based techniques contain
matrix factorization [13], kernel-based approaches, and
graph-based approaches [11].

Feature methods represent target—drug pairs with a
vector with a carrier of prescriptions. Different prop-
erties of target—drug pairs have been coded as related
features. In feature techniques, the DTIs are predicted
by detecting the most distinct features. Hence, the
inputs to these techniques are different vectors result-
ing from a combination of the properties of drugs and
targets. These vectors have been computed by specify-
ing a coding characteristic or bioinformatics software
package that can perforce calculate its chemical and
biological characteristics. Because these vectors usually
have many dimensions, some methods use dimension-
ality reduction approaches to decrease the number of
features, thus improving the performance model and
prediction efficiency.

In drug—target interaction prediction, many types of
features were used for both drugs and targets, such as
in [19], where the authors used drug feature vectors of
constitutional, topological, and geometrical descrip-
tors. The protein features used are amino acid, pseudo
amino acid, and composition, transition, and distribu-
tion (CTD) descriptors. In addition, [20] used Morgan
molecular fingerprints for the drug feature vector, and
the protein feature was 20 amino acids. There are many
medical libraries used to find these features, such as the
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RDKit library [21], RCPI library [22], and PyBioMed
library [23].

Several ML techniques such as XGBoost [24], deep
learning [16], support vector machine (SVM) [25], and
nearest neighbor are used for discovering possible DTI
features more effectively.

We are developing a framework for DTI prediction that
uses the most popular drug-molecular fingerprinting,
Morgan fingerprints [26], also known as ECFP4 extended
conduction fingerprints. Morgan fingerprints have been
generated as binary. Morgan fingerprints are often used
in the predictive modeling of bioactivity to allow mean-
ingful chemical diffusion to be decoded into the chemical
space.

The secondary characteristic of drugs is its consti-
tutional descriptors, which are the easiest molecular
descriptors that can be calculated from the molecular
structure. Constitutional recipes include all those rep-
resenting a molecular structure, which regards only the
chemical structure and does not encode information
regarding topology and general geometry.

We apply the most common property for proteins,
which consists of long chains of a-amino (alpha-amino)
acids [27]. The AAC knows the number of amino acids
of each type normalized with the overall number of
residues.

The secondary feature of proteins is the dipeptide com-
position [28, 29], which is useful over simple AAC, which
provides a composition of a pair of residues present in
the peptide. Dipeptide composition constitutes a better
feature than AAC as it encases the information of both
amino acid fraction and the local sort of amino acids.

In this paper, we presented a DTI prediction model
dependent on the drug chemical structures and protein
sequencing of trait extraction using a medical library. We
developed an approach to predict negative samples using
an SVM one-class classifier to overcome the imbalance
problem between negative and positive samplings and
then built four feature sets from the negative and positive
sampling drug—target datasets. Finally, these feature sets
were imputed into the prediction algorithm to determine
the DTL.

The major contributions in this paper could be summa-
rized as follows:

i. An approach for predicting negative samples using
an SVM one-class classifier for handling imbalance
problems between negative and positive samplings
that had not been effectively addressed in existing
approaches was developed.

ii. Four feature sets from the four types of drug—tar-
get features and the negative and positive samples
were constructed. Then, these feature sets were
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applied to various types of machine-learning algo-
rithms to predict DTIs.

iii. The proposed approach was compared to existing
models, indicating the superiority of the proposed
model by achieving the best performance scores
across the DrugBank dataset. The results of the
proposed model outperformed recent research in
the field of DTIL. The proposed model obtained an
average accuracy 2.74% higher than that of recent
studies and AUC, F-score, and MCC of 1.14, 3.53,
and 4.54%, respectively.

iv. Propose the feature analysis using feature impor-
tance and data set balancing.

This paper is structured as follows. In Section 2, exist-
ing related methods of DTIs are presented. Our proposed
framework, together with a detailed description of the
used techniques and datasets, is presented in Section 3.
In Section 4, the results and discussion are provided. The
feature analysis, data balancing and comparison with the
latest methods: are presented in Section 5,6. Finally, the
conclusion is described in Section 7.

Related work

In recent years, several approaches using machine-learn-
ing algorithms have been elaborated for DTI prediction
initiatives. In general, first, a library was used to extract
the drug and target features from the input data. Then,
positive and negative samples were identified and then
inputted into prediction methods. Finally, the model was
evaluated using evaluation matrices.

Table 1 shows that DTI-SNFRA [30] works in two
phases: first, it uses an SNN, followed by a search space-
partitioning group, and then, it calculates the degree of
fuzzy-raw approximation and selects the appropriate
degree threshold for excitation samples’ undercounting
from all possible drug—target interaction pairs obtained
in the first stage. In [31] and [16] the deep learning struc-
tures models discovered local survival patterns the target
successfully enriches protein advantages of the raw pro-
tein sequence, leading to greater predictive results than
related approaches. In [32], the authors presented a multi
kernel-based learner along with decreased features and
extracted prediction scores to indicate the results, while
The authors in [33] developed a FastUS algorithm was
used to overcome the class imbalance constraint. The
authors in [20] presented a method for DTI prediction
using LOOP and Matrix (PSSM). In particular, LOOP is
used for extracting feature vectors from PSSM. By con-
trast, the authors in [34] used the features tested with the
(E-state) fingerprints of the drug smiles and (APAAC) of
the protein sequences. In [35], the authors developed a
new heterogeneous multi molecule information network
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created by a combination of n-known connections
between proteins and drugs.

Materials and methods

Proposed model overview

The schematic diagram of the presented framework
method is shown in Fig. 1. Initially, the drug structures
(SMILE format) and protein sequences (FASTA format)
were aggregated from DrugBank databases using access
identifiers. Various feature extraction techniques were
applied to drug and protein sequences to generate dif-
ferent features. Features using a single row SVM and
known interaction to predict negative samples. Ulti-
mately, the framework was trained using prediction algo-
rithms to classify the four feature sets and evaluate these
algorithms.

Feature extraction

The drug input was represented as a Simplified Molecu-
lar Input Line Entry System, which described the struc-
ture of chemical species using short ASCII strings. Drug
SMILE, which included full chemical structure informa-
tion, was aggregated from the DrugBank databases by its
specific drug ID.

This article used the PyBioMed Software Toolkit [23],
which is a responsive feature-rich python application for
manipulating chemical structures in different file for-
mats, permitting them to be analyzed, converted, and
stored. PyBioMed [23] can produce 18 kinds of molecu-
lar fingerprints.

In this study, the first drug feature was Morgan fin-
gerprints because it enhances the efficiency of research
and analysis of drugs. For representing drug properties,
the SMILE format was transformed to Morgan, where
the molecular fingerprint pattern was a digital sequence
of 1024 digits. The 1024-dimensional feature vector was
derived from each pharmacological chemical structure.

The second drug features were constitutional descrip-
tors, which are the simplest and most used descriptors
that reflect the chemical structure of a compound with-
out information regarding its molecular geometry or
atom connection. The 30-dimensional feature vector was
obtained from the chemical composition of a compound.

For the proteins, features that were extracted from
the protein sequences from the FASTA format were
collated from the DrugBank database using the PyBi-
oMed Software Toolkit [23] to derive the target features
from the protein sequences. These features incorporate
amino acid composition (AAC) and dipeptide compo-
sition (DC). AAC involves 20 elements, each of which
is one of the 20 amino acids in the protein sequence.
Dipeptide composition (DC) considers the fraction
of every two AAC residues in the protein sequence.
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Fig. 1 The proposed framework model: A) is the overall prediction framework, 1) is the feature extraction and preprocessing stage for the DTl
dataset, 2) is the prediction of negative samples stage, and 3) is the application of the prediction algorithms stage

The DP captures protein sequence order information
in pairs, which is the main feature. DP provides 400
features.

Negative sample prediction

In the dataset section, the number of unknown inter-
actions was 58,629,134. Then, we constructed the
unknown interaction feature set. This is a major problem
in storing and processing, so we tried to present a new
proposal schema in these interactions to overcome data
balancing.

One-class SVM is an unsupervised algorithm for
learning the decision function of novel discovery: pre-
dicting new data as identical or distinct to the training
package. The one-class SVM algorithm is constructed
by assessing a probability distribution function that
determines the distance of most data on hyperplane. A
decision rule separates these observations by the most
significant potential margin [36]. The computational
complexity of the learning phase is intense because
one-class SVM training involves a quadruple program-
ming problem. Once the decision function is defined, it
can predict the stratified mark of new test data.

Figure 2 provides the procedure used to predict the
negative samples using a one-class SVM classifier.

We developed an approach for predicting negative
samples using a one-class SVM classifier. This algo-
rithm works too.

1. Determine all unknown interactions

58,629,134 interactions).

2. Use the one-class support vector machine-learning
algorithm for classifying the positive samples into a
hyperplane, which is executed on 10-fold cross-val-
idation. The empirical feature set is split into train-
ing and testing feature datasets. In addition, it uses to
predict the signed distance for unknown interaction
from the positive hyperplane.

3. Apply the previous step in the four feature sets to
forecast the signed distances, which are the distances
of all samples to the separating hyperplane learned by
the model.

4. Take the participants in these feature sets to build
predicted negative samples equal to 32,802. Then, we
sort these samples to get the less signed distance for
predicted negative samples.

(equal to
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Output: Decision function of one-class SVM

Process:

3. For fold k; in the 10 folds:

= Predict the test data .

4. End For loop

Where

distance to origin in the feature space?

32802.

Input: Positive samples and unknown samples

1. Select the one-class SVM as kernel = “rbf,” gamma = “scale,” and nu = 0.01

2. Divide the data into 10 folds cross-validation:

= rain the remaining data (k — 1) folds as training data.

5. Using the function for calculating the decision function of the unknown samples

m

) =) muxks =9 = p

i=1

kCx; —%) is the kernel function, x is outlier, *: is the data point in hyperplane, and # is the

6. Apply previous step in the four-feature sets to forecast the signed distances

7. Take participants in these feature set to build predicted negative samples, which equal

8. less signed distance from the predicted negative samples equal 20000 interaction.

Fig. 2 The pseudocode to predict negative samples using a one-class SVM classifier

Finally, we constructed the feature sets from the table
using the positive and negative interactions (39,866 interac-
tions). The pseudocode for this algorithm is shown in Fig. 2.

Prediction approaches

Our previous work [15] demonstrated that the ensemble
learning-based algorithms for DTI predictions are most
accurate for predicting drug—target interactions. These
ensemble-learning algorithms were employed in this
paper and were compared with other machine-learning
algorithms.

Five different prediction algorithms were used: RF,
AdaBoost, XGBoost, Light Boost, and SVM. Drug—target
feature sets were roughly separated into ten subgroups
by a 10-fold CV validation test. One of the ten groups
was selected as a test group, the remaining nine were
considered a training group, and this operation (cross-
validation) was repeated 10 times. After calculating the
average of the 10 verification results, the results were cre-
ated from the drug—target datasets using deferent types
of prediction algorithms.

a) Support vector machine (SVM)

SVM is an honorable machine-learning method that
can be used for concurrent prediction and regression
problems. The prediction is performed by identify-
ing the plane that characterizes the most for each cat-
egory of data. In this method, SVM parameters are
{reg_p=1.0, kn ="rbf; gama ="scale’}.

The parameters are as follows:

+ reg_p: It is the regularization parameter.

o kn: It specifies the kernel type to be used in the
algorithm. The default value is “RBF”

+ gama: It is the kernel factor

b) Random Forest (RF)

RF is an ensemble-learning technique for prediction.
RF works well for a wide scale of data elements from
a single decision tree. In addition, a precision RF algo-
rithm can be maintained even with a large percent-
age of data missing. The parameters of this technique
are {max feature=0.3, min samples split=16, num of
estimators =115}.
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The parameters are as follows:

+ max feature is the max number of random most
fore features considers splitting a node.

« min samples split is the minimum number of leaves
required to split an internal node.

+ num of estimators are several trees that the algorithm
builds before taking the maximum voting or taking the
averages of predictions.

a) AdaBoost

Adaptive Boosting is the weights redistributed to
each condition, with the highest weights assigned to
incorrectly ranked cases. Adaptive Boosting is a good
ensemble technique widely used for concurrent predic-
tion and regression problems. The parameters used in
this method are {splitter =‘best; max depth=6, min
samples split=2, algorithm="“SAMME, number of
estimators =90}.

The parameters are as follows:

+ min samples split is the minimum number of leaves
required to split an internal node.

+ num of estimators are several trees that the algorithm
builds before taking the maximum voting or taking the
averages of predictions.

Algorithm: use the SAMME discrete boosting algorithm.
Splitter: strategy used to choose the split at each node.
Max depth: the max depth of the tree.

b) XGBoost

XGBoost optimizes the ensemble model depending
on gradient tree boosting, which is widely used in pre-
diction tasks. The parameters used in this method were
{max_depth equal to 5, learning_rate equal to 0.2612,
n_estimators equal to int (75.5942), reg_alpha equal to
0.9925, thread equal to —1, objective equal to ‘binary:
logistic’}.

iii) Light Boost

Light Boost is a fast, high-performance unitary tech-
nique that uses distribution technique like the deci-
sion tree algorithm. The parameters used in this method
were learning rate=[0.001, 0.01, 0.1, 0.2, 0.3], momen-
tum number=[0.0, 0.2, 0.4, 0.6, 0.8, 0.9], optimizer
method =SGD, objective =binary, and boosting = gradi-
ent boosting.
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Evaluation parameters
The different measures used for drug—target interaction
prediction for evaluating and comparing different tech-
niques are [15] as follows:

TP + TN

Accuracy = )

(TP + TN + FP + FN)

- TP

Precision = ———,

(TP + FP)

TP
Recall = ———,
(TP + FN)

2 % (Recall x Precision)

F1 Score =

(Recall + Precision)

TP % TN — FP x EN
cC = 5
V(TP + EN) * (IN + EP) % (IP + FP) » (IN + EN)

where TP is true positive, TN is true negative, FP is
false positive, and FN is false negative.

The area under the curve:

The receiver operating characteristic (ROC) curve dis-
plays the performance of the forecaster with different
threshold values.

Mean squared error (MSE)
MSE calculates the average of the squares of the errors.

n

MSE = %Z (Yi — ffi)z.

i=1

Results and discussion

In this section, we underline the effective results of
our DTI prediction model that implements the four
feature sets. Each technique is applied in python
language by sci-kit-learn, ensemble package, Kares
library, TensorFlow library, and XGBoost package
(version 3.8). The algorithms were sped up using Win-
dows 10 with a 3.10 GHz Intel core i9 processor and
64.0 GB RAM.

Dataset

The empirical drugs and targeted datasets were aggre-
gated from the DrugBank [5] database. The DrugBank
database includes SMILE chemical structures and
FASTA sequences with certified, experiential, nutra-
ceutical, biotech, and withdrawn version (Group) drug
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Table 2 DrugBank dataset statistics

Drug Protein Positive interaction

11150 5260 19866

Table 3 Four feature sets of the drug-target interaction

Feature set Drug feature Protein feature Number
of
features

Feature set [1]  Morgan fingerprint ~ Amino acid 1044

composition

Feature set [2] Morgan fingerprint  Dipeptide composition 1424

Feature set [3] constitution Amino acid 50

composition

Feature set [4] constitution Dipeptide composition 430

All feature set  Morgan fingerprint ~ Amino acid 1474
+ constitution composition
+ Dipeptide
composition

and protein packages. Our study’s approved version
of drugs, targets, and interactions of experimental
datasets is on the recent release of DrugBank Online
(version 5.1.8, released 2021-01-03). Our datasets
consist of 11,150 drugs and 5260 protein targets with
58,649,000 potential interactions, with just 19,866
interactions noted as positive interactions as shown in
Table 2. Thus, the number of positive interactions is
much lower than that of the potentially negative inter-
actions. The number of unknown interactions is equal
to 58,629,134, causing an imbalance in the datasets.
For this reason, we presented a method for predict-
ing the negative samples to dominate the imbalance
between positive and negative interactive datasets.
The DrugBank dataset statistics are presented in the
DrugBank database.

We applied these datasets to feature generation pro-
cesses and extracted the features. These features com-
bined the four feature sets of the interaction between the
drug and protein. The different combinations of these
feature sets are shown in Table 3.

Now, we have five feature sets with a different number
of features.

The results for negative sample prediction

SVM one-class learning requires the selection of the
kernel and the stable coefficient to define the boundary.
An RBF kernel is usually chosen even though there is no
exact formula or algorithm for determining the band-
width factor. The second important parameter in SVM
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one-class learning is a nu parameter, known as the one-
order SVM margin, which corresponds to the possibility
of finding a new, but regular, observable out-of-bounds
nu that is equal to 0.01.

First, in the one-class SVM, training with positive
samples to construct the hyperplane in all positive sam-
ples (positive hyperplane) occurs. Then, using the deci-
sion function in this method, determine the distances
between the unknown interactions and the positive
hyperplane. Next, apply this function in four feature
sets. Second, determine the highest negative value of the
distances, which indicates the highest outliers from the
positive hyperplane. The evaluation results are shown in
Table 4.

Table 4 Evaluation results of negative sample prediction using
one-class SVM

Method Precision Recall F-score Accuracy

One-class SYM 1 0.989 0.995 0.989

Table 5 Evaluation results of feature sets of the drug-target
interaction using machine and ensemble algorithms according
to precision, recall, F-score, and accuracy

Feature set Prediction Precision Recall F-score Accuracy
algorithms

Feature set [1] SVM 0.995 0.995 0.995 0.996
RF 0.9996 09996 0999  0.9997
AB 0.9998 0.9998 0.9998 0.9999
XG 0.9994 09995 09995 0.9996
Light 0.9997 0.9997 09997 0.9998

Feature set[2] SVM 0.9992 0.9992 09992 0.9991
RF 0.9996 09996 0999  0.9996
AB 0.9998 0.9998 0.9998 0.9998
XG 0.9995 09995 09995 0.9996
Light 0.9996 09996 0.9996 0.9997

Feature set [3] SVM 0.992 0.992 0.992 0.992
RF 0.9993 0.9993 0.9993 0.9992
AB 0.9993 0.9993 0.9993 0.999
XG 0.999 0.999 0999  0.9988
Light 0.9989 0.9989 0.9989 0.9987

Feature set[4] SVM 0.951 0.948 0.948 0.942
RF 0.999 0999 0999  0.9989
AB 0.9992 0.9992 0.9992 0.9989
XG 0.999 0999 0999 09987
Light 0.9988 09988 0.9988 0.998

All Feature set  SYM 0.993 0.993 0993  0.9%
RF 0.9992 09992 09992 0.9993
AB 0.9993 0.9993 0.9993 0.9993
XG 0.998 0998 0998  0.998
Light 0.9991 09991  0.9991  0.999
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The prediction algorithm results

The results in Table 5 record the accuracy, mean square
error, MCC, and F-score obtained by different tech-
niques. Using feature set [1], the highest accuracy score
value of 0.9999 is achieved by AdaBoost ensemble learn-
ing, and Light Boost obtained the second best value of
0.9998.

For feature set [2], the highest precision score value,
best recall value, highest F-score value, and highest accu-
racy score value of 0.9998 were achieved by AdaBoost
ensemble learning and Random Forest. Light Boost
obtained the second highest value of 0.9996.

For feature set [3], the best precision score value, best
recall value, best F-score value, and highest accuracy
score value of 0.9993 were obtained by AdaBoost ensem-
ble learning and Random Forest. XGBoost obtained the
second highest value of 0.999.

For feature set [4], the best precision score value, best
recall value, best F-score value, and highest accuracy
score value of 0.999 were obtained by AdaBoost ensem-
ble learning and Random Forest. SVM obtained the worst
value for prediction.

For all feature sets, the best precision score value, best
recall value, best F-score value, and highest accuracy
score value of 0.9993 are obtained by AdaBoost ensem-
ble learning and Random Forest, and SVM obtained the
worst value for prediction.

From the previous results, it was found that feature sets
1 and 2 gave better results than the others because they
contained a representation of drugs using Morgan’s fin-
gerprint. This gives support that Morgan’s fingerprint is
a better representation of drugs than the other features
used. When all features were used, we found a decrease
in the results, which means that some features do not
give a good description of drugs and proteins. In drug
features found constitutional descriptors achieve the
worst results in DTIs prediction.

The results are in Table 6. record area under the
curve (AUC), mean square error, and MCC achieved
by different techniques. Using feature set [1], the high-
est AUC value of 0.9998 was obtained by AdaBoost
ensemble learning, and Light Boost obtained the sec-
ond best value of 0.9997. The best MCC value of 0.9996
was obtained by AdaBoost and Light Boost ensemble
learning.

For feature set [2], the best AUC value and best MCC
value of 0.9998 and 0.9997, respectively, were obtained by
AdaBoost ensemble learning. Random Forest and Light
Boost obtained the second highest value of 0.9996.

For feature set [3], the best AUC value and best MCC
of 0.9993 and 0.9986, respectively, were obtained by
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Table 6 Record area under the curve (AUC), mean square error,
and MCC are achieved by different techniques

Feature set Prediction  AUC Mean square error MCC
algorithms

Feature set [1]  SVM 0.9954  0.0047 0.99
RF 0.9996  0.00038 0.9993
AB 0.9998 0.00023 0.9996
XG 0.9995  0.0005 0.9991
Light 0.9997  0.0003 0.9996

Featureset[2]  SVM 0.981 0.0008 0.998
RF 0.9996  0.00035 0.9993
AB 0.9998 0.00015 0.9997
XG 0.9995  0.0004 0.9994
Light 0.9996  0.0004 0.9991

Feature set [3] SVM 0976 0.0082 0.984
RF 0.9993 0.0007 0.9986
AB 0.9993 0.0007 0.9986
XG 0.999 0.0009 0.9982
Light 0.9989  0.001 0.9979

Feature set[4] SVM 0.949 0.051 0.8997
RF 0.999 0.0009 0.998
AB 0.9992 0.0008 0.998
XG 0.999 0.0009 0.998
Light 0.9988  0.001 0.997

All feature sets ~ SVM 0.993 0.007 0.986
RF 0.9992  0.0008 0.999
AB 0.9993 0.00067 0.999
XG 0.998 0.0018 0.996
Light 0.9991  0.00085 0.998

AdaBoost ensemble learning and Random Forest.
XGBoost obtained the second highest value of 0.999.

For feature set [4], the best AUC value and best MCC
value of 0.999 and 0.998, respectively, were obtained
by AdaBoost ensemble learning, Random Forest, and
XGBoost. AdaBoost ensemble learning also obtained the
least mean square error for prediction.

For the all feature set, the best AUC value and best
MCC value of 0.9993 and 0.999, respectively, were
obtained by AdaBoost ensemble learning. In addition,
AdaBoost ensemble learning provided the least mean
square error for prediction.

The AUC is computed depending on every model’s
AUC curve for describing the quality of work, which
offers the most accurate visual explanation for predict-
ing DTIs.

Figure 3 shows the ROC curve and value of AUC
for the learning techniques. Using feature set (1), the
best AUC value of 0.9998 was obtained by AdaBoost
ensemble learning. For feature set (2), the best AUC
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Fig. 3 The results for the ROC curve and the value of AUC for the learning techniques show that the AdaBoost method predicts the max score in

value and best MCC value of 0.9998 were obtained by
AdaBoost ensemble learning. Figure 4 shows the ROC
curve and value of AUC for the learning techniques.
For feature set (3), the best AUC value of 0.9993 was
obtained by AdaBoost ensemble learning and Random
Forest. For feature set (4), the best AUC value of 0.999
was obtained by AdaBoost ensemble learning. Fig-
ure 5 shows the results of the ROC curve and the value
of the AUC for the learning techniques. The AdaBoost
method predicted the max score in the AUC = 0.9993
for all feature sets

The best results were obtained with the classifier
because one of the defects of the classifier is that it
is sensitive to outlier samples. This indicates that
a very large proportion of the outlier samples had
been removed to give the best using our methods in

predicting negative samples using a one-class SVM
classifier.

Feature analysis

Feature importance

In the study, we applied machine learning to discover the
important features from different types of features that
are used. The genetic algorithm [37] and XGBoost are the
methods chosen because they obtain the highest perfor-
mance compared to other methods.

Figure 6 shows the number of correctly classified samples
in different learning techniques. Using Random Forest, the
best number of correctly classified samples is obtained by
the genetic method in feature set [2] and feature set [3]. For
AdaBoost, the best number of correctly classified samples
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Fig. 4 The results of the ROC curve and the AUC value for the AdaBoost and Random Forest learning methods, which predicted the max AUC as

ROC Curve Analysis for featureset3
10 -y
0.9 L
93 os o
& 07 el
06 - 2"
>0
=05 a2
2 ===
o 03 /,z auc_light=0.
> e —_— =0.
2 02 - auc_xg=0.999
at o — auc_svm=0.976
wl ¥ auc_ab=0.9993
0'0 0'1 0'2 0'3 0'4 0'5 0I6 0'7 0‘8 0'9 1‘0
Flase Positive Rate
0.9993 for feature set [3]. In feature set [4], the AdaBoost method predicted the max score in the AUC=0.9992




El-Behery et al. Journal of Biological Engineering (2022) 16:21

Page 11 of 14

ROC Curve Analysis for allfeatureset

10 A

0.9 A
0.5
0.7
0.6
0.5 A
04 A
0.3 1
0.2 1
0.1 1
0.0 1

True Positive Rate

auc_rf=0.9992
auc_light=0.9991
auc_xg=0.998
auc_svm=0.993
auc_ab=0.9993

AUC =0.9993 for all feature sets

00 01 02 03 04

Flase Positive Rate
Fig. 5 The results of the ROC curve and the value of the AUC for the learning techniques. The AdaBoost method predicted the max score in the

o5 06 07 08 09 10

is obtained by XGBoost ensemble learning in feature set
[1], feature set [3], and all feature set.

Undersampling and oversampling methods

In our study, we applied under sampling and oversam-
pling methods for comparison with the proposed model
that used the random under sampling technique for
under sampling methods [38] and the SMOTE technique
for the oversampling method [38].

Our approach exceeded all other under sampling and
oversampling methods because we relied on predictions
of negative samples by assessing a probability distribu-
tion function in one-class SVM.

Figure 7 shows that our approach exceeded the best
performance in different learning techniques. Using Ran-
dom Forest and AdaBoost, in feature set [3]. Finally, we
calculated the bias of the roads, and the average value
was 0.249.

Comparison with the latest methods
Our framework was compared with four methods [30-33],
and the results are shown in Fig. 8. Our approach outper-
formed all others by achieving the highest performance
across the DrugBank, especially in feature set [2]. As shown
in Fig. 8, our framework (highest average accuracy =0.9997)
has a 2.74% higher average accuracy than the model in [32],
10.98% higher average precision than the model in [31], and
1.14, 3.53, and 4.54% higher average in AUC, F-score, and
MCC, respectively, than the model in [32].

Our model obtained the best results [31, 32] because we
operated a one-class SVM to determine the negative and
positive samples, which gave better results than using the

clustering algorithm in [32]. In addition, we used it at the
prediction stage, and we have proven in previous research
that ensemble learning obtained the best performance.

Conclusion

Our study presented a new computational frame-
work for predicting DTIs using the DrugBank dataset.
There are two critical challenges in this field: 1) the
vast amount of drug and target interactions that create
a wide area of research and 2) the imbalanced dataset
for DTIs because there are very few DTIs that have been
detected so far. For this reason, the size of the negative
samples is considerably larger than that of the positive
sample. The contributions of this paper are the determi-
nation of negative samples for effective prediction and
the study of the effectiveness of chemical and physical
features in the evaluation and discovery of the drug—
target interactions.

We have discovered that the process of predicting neg-
ative samples using one-class SVM may be the best in
selecting negative samples found in all samples that have
not yet been detected. In addition, we have discovered
that features, such as Morgan fingerprint and dipeptide
composition, in feature set 2 are the best in a charac-
terization process. The performance of the presented
method in the prediction stage is largely accurate in DTI
prediction, especially when comparing various predic-
tions. The presented method showed strength and stabil-
ity in DTT prediction.

We have faced the problem of time and processing
power while detecting drug—target interactions. We have
overcome the lack of processing power using a computer
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