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1227, Switzerland.

Citation details: Gobeill,J., Gaudinat,A., Pasche,E., et al. Deep question answering for factoid questions dealing with

protein functions. Database (2015) Vol. 2015: article ID bav081; doi:10.1093/database/bav081

Received 16 November 2014; Revised 6 July 2015; Accepted 8 August 2015

Abstract

Biomedical professionals have access to a huge amount of literature, but when they use

a search engine, they often have to deal with too many documents to efficiently find the

appropriate information in a reasonable time. In this perspective, question-answering

(QA) engines are designed to display answers, which were automatically extracted from

the retrieved documents. Standard QA engines in literature process a user question,

then retrieve relevant documents and finally extract some possible answers out of these

documents using various named-entity recognition processes. In our study, we try to

answer complex genomics questions, which can be adequately answered only using

Gene Ontology (GO) concepts. Such complex answers cannot be found using state-

of-the-art dictionary- and redundancy-based QA engines. We compare the effectiveness

of two dictionary-based classifiers for extracting correct GO answers from a large set of

100 retrieved abstracts per question. In the same way, we also investigate the power of

GOCat, a GO supervised classifier. GOCat exploits the GOA database to propose GO

concepts that were annotated by curators for similar abstracts. This approach is called

deep QA, as it adds an original classification step, and exploits curated biological data to

infer answers, which are not explicitly mentioned in the retrieved documents. We show

that for complex answers such as protein functional descriptions, the redundancy phe-

nomenon has a limited effect. Similarly usual dictionary-based approaches are relatively

ineffective. In contrast, we demonstrate how existing curated data, beyond information

extraction, can be exploited by a supervised classifier, such as GOCat, to massively

improve both the quantity and the quality of the answers with a þ100% improvement for

both recall and precision.
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Introduction

Biomedical professionals have access to a growing amount

of literature. But when they have a precise question, they

often have to deal with too many documents to efficiently

find the appropriate answers in a reasonable time. Indeed,

80% of the abstracts read by Medical Literature Analysis

and Retrieval System Online (MEDLINE) users appear

on the first result page, which only contains the 20 most

recent citations, while 50% of the searches return >20

results (1). To face this literature overload, the need for

automatic assistance has been largely pointed out, and

computational tools that retrieve and extract factual

information are providing powerful new instruments for

managing search results and staying on top of the torrent

of publications (2). In particular, ontology-based search

engines in MEDLINE have begun to introduce semantics

in search results. These systems still display documents but

users visualize sets of citations according to concepts which

are extracted from their abstracts. GoPubMed (3) and

EBIMed (4) are popular examples of such ontology-based

search engines. Beyond this, question-answering (QA) sys-

tems are argued to be the next generation of semantic

search engines (5). Figure 1 illustrates how QA has been a

field of interest for several years in the biomedical litera-

ture. QA search engines do not display documents but

directly concepts which were extracted from the results,

and these concepts are supposed to answer the user’s ques-

tion formulated in natural language. Engine for question-

Answering in Genomics Litterature (EAGLi) (6), our lo-

cally developed system, is an example of such QA search

engines. Thus, both ontology-based and QA search engines

include the crucial task of efficiently extracting answers

from the result set, i.e. a set of documents. This task is

sometimes called distant reading or macro-reading, in con-

trast with micro-reading—or classification, or categoriza-

tion, or indexing—which is a traditional Natural Language

Processing task that aims at extracting concepts from a sin-

gle document (7). This article focuses on macro-reading of

MEDLINE abstracts, or how to extract complex genomics

concepts from a set of retrieved abstracts in the framework

of a QA search engine.

Several experiments have been reported to find the best

way to extract ontology terms out of a single MEDLINE

abstract. In particular (8), compared the performances of

six classification systems for reproducing the manual

Medical Subject Headings (MeSH) annotation of a

MEDLINE abstract. The evaluated systems included two

dictionary-based classifiers (sometimes also called the-

saurus-based or morphosyntactic systems). These classi-

fiers aim at finding ontology terms literally in the text, by

alignment of words or strings, ignoring the contextual

knowledge in the abstract. The Trieschnigg et al.’s (8)

study also included a supervised classifier, which aims

at exploiting a knowledge base that contains already anno-

tated abstracts and inferring the annotation thanks to ma-

chine learning. These supervised approach thus are able to

propose answers that are inferred from the knowledge base

and that are not explicitly mentioned in the text. The au-

thors concluded that, for MeSH concepts, the supervised

approach outperformed the dictionary-based ones. The

past BioCreative evaluation campaigns also designed tasks

of Gene Ontology (GO) concepts assignment, a controlled

vocabulary for the characterization of proteins functions

(9). In the 2005 edition, the dictionary-based approaches

clearly outperformed the supervised ones but the lack of

sufficient training data was pointed out (10). Interestingly,

8 years later, the 2013 edition of the campaign proposed to

revisit GO assignment tasks with different outcomes: this

time, supervised systems that exploit curated data outper-

formed dictionary-based approaches (11). Yet, the macro-

reading task we are interested in this article can be seen as

fundamentally different, as it looks for the best way to

extract and combine ontology terms from a set of

MEDLINE abstracts.

QA systems are commonly defined according to the

types of answers they are likely to output. The main output

Figure 1. Evolution of the number of documents dealing with ‘QA’ in MEDLINE, compared with ‘Big Data’.

Page 2 of 9 Database, Vol. 2015, Article ID bav081

twenty 
more than 
twenty 
; 
,
; 
 &ndash; 
 &ndash; 
paper 
,
,
,
eight 
paper 


types include factoid, list or definitional answers (5). For

these different outputs, specific metrics have been devel-

oped, e.g. Top Precision for factoid answers or passage-

based metrics for answers containing a full sentence (12).

Several methods and combination of methods have been

proposed to perform those tasks. It has then been shown

that factoid QA—which commonly includes list QA—can

be performed by exploiting the redundancy phenomenon

(6). Such redundancy-based systems capitalize on the avail-

ability of the following resources: question understanding

(13), large corpora (14) and last but not least termino-

logical resources (5). In this article, we introduce a new

type of factoid QA, deep QA, which aims at providing

answers which cannot be found in any corpora. Indeed,

such answers are well-defined concepts (e.g. protein func-

tions), which can be comprehensively listed in a vocabu-

lary, however such concepts are usually not found

explicitly in documents; therefore, standard QA systems

are not able to output these answers. We propose to coin a

new name for those factoid—yet more complex—QA

tasks: deep QA. Beyond marketing efforts, which do not

always attempt to clearly define their foundational ideas

(15), we propose the following definition: Deep QA is the

ability of a QA engine to propose answers found in no cor-

pus. Deep QA is needed to answer questions such as ‘What

molecular functions are associated with protein X ?’. Such

questions are simple regarding their structure, they are ba-

sically ‘What’ questions but traditional factoid QA sys-

tems, which are based on redundancy and dictionaries,

cannot find the relevant answers. Figure 2 illustrates this

difference between standard QA, for which explicit an-

swers are found in retrieved documents, and deep QA, for

which implicit answers are found in the output of a super-

vised classifier applied a posteriori on these retrieved

documents.

Objectives and study design

The issue addressed in this article is the extraction of GO

answers from MEDLINE abstracts, in the framework of a

QA system that exploit retrieved documents to output

answers. As in Trieschnigg et al. (8) work, we first evaluate

and compare a dictionary-based and a supervised

classifiers for the task of assigning GO concepts to one

MEDLINE abstract, and this is what we call micro-

reading. Then, we evaluate and compare these classifiers

for the task of assigning GO concepts to a set of 100

MEDLINE abstracts, in a QA workflow, and this is

macro-reading. This two-step design is crucial as we aim at

comparing the performances of the classifiers when scaling

up from one citation to a set of citations. The supervised

macro-reading with GOCat is what we precisely propose

to call deep QA, as it adds a step in the QA workflow. For

the macro-reading evaluation, we have derived from pub-

licly available biological databases two benchmarks of 50

questions related to proteomics and biochemistry, and we

used our local QA engine EAGLi. The classifiers were

applied to 100 abstracts retrieved by PubMed for each

question, and the most frequent GO concepts assigned

with the hundred abstracts were proposed as answers.

Thus, we compare dictionary-based and supervised GO

classifiers for a micro and a macro-reading task in

MEDLINE. In particular, we pay attention to the role

played by the redundancy of information in MEDLINE.

Exploiting redundancy in large collections for QA pur-

poses was studied among others by Lin (13), or Banko and

Brill (14) in the proceedings of a the Text REtrieval

Conferences (TREC) QA Track that used the Web as a re-

source for extracting answers. For Brill, the greater is the

answer redundancy in the source, the less important are

the performances of the advanced natural language pro-

cessing components of the system (such as our GO classi-

fiers that extract answers). Such components then can be

seen as interchangeable black boxes. This is the idea of

allowing the data, instead of the methods, do most of the

work, or the idea that data is all that matters. This idea is

challenged by our study.

To compare our two local classifiers to a well-known

reference, we also evaluated a second dictionary-based GO

classifier for answer extraction, which is the GoPubMed

classifier. Thus, three classifiers were used as ‘black boxes’

of our QA system to extract GO answers from sets of 100

retrieved abstracts. Finally, we also evaluated a vectorial

search engine in MEDLINE, instead of PubMed, as ‘black

box’ of our QA system for retrieving abstracts.

It is important to consider our work in the light of the

intrinsic complexity of the gene function curation task.

Indeed, when designing the corpus of the BioCreative IV

GO task, (15) observed an inter-annotator agreement

(IAA) of 9.3% (strict) for evidence sentence selection and

an IAA of 47% (strict) for GO term selection.

Material and Methods

The three GO classifiers

In this study, we evaluate three GO classifiers: two

dictionary-based systems and a supervised one. The first

dictionary-based classifier was ‘EAGL’: it is described

comprehensively in (16). Basically, the EAGL classifier

relies on two components. The first one acts like a vector-

space search engine: it indexes all GO terms and synonyms

as if they were documents, then it treats the input text

to find the most similar GO terms. This component is
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expected to provide high recall. The second component is

based on a lazy pattern matching component and it aims at

boosting GO terms that were recognized in the input text.

EAGL showed very competitive results when it was

compared to other state-of-the-art dictionary-based clas-

sifiers, as during the official BioCreative I evaluation.

More recently, it also showed very competitive results in

the Trieschnigg et al.’s (8) work when compared to

MetaMap. In our experiments, we thus assume that EAGL

is a state-of-the-art dictionary-based classifier.

The second dictionary-based classifier, tested in our

experiments, is the tool embedded in GoPubMed (17).

GoPubMed is an ontology-based search engine on top of

MEDLINE: it retrieves abstracts according to the user’s

query, and then it extracts MeSH and GO concepts from

the result set. The GOPubMed classifier is not scientifically

described, but the tool is supposed to work with ‘local

sequence alignment of words of the abstract and the words

of GO terms’ (18). In this study, we clearly consider the

GoPubMed classifier as a ‘black box interchangeable’ with

EAGL. For this study, we directly asked the GoPubMed’s

administrators to provide us with the GoPubMed terms

extracted in sets of abstracts, and we were charged 600

euros for the processing of approximately 8000 abstracts.

The supervised classifier is GOCat (19), a locally

developed classifier which is based on the k-nearest

neighbours algorithm (20). GOCat assigns to an unseen

abstract the GO terms that are the most prevalent among

the k most similar abstracts contained in a knowledge

base. The knowledge base was designed from the GOA

database, which contained 85 000 manually curated ab-

stracts when it was accessed (1 August 2012) on (21).

These abstracts were indexed with Terrier, a standard

Information Retrieval engine (22), and for each input

text, the k¼ 100 most lexically similar abstracts in GOA

were retrieved to infer the GO terms. The underlying idea

is that curated abstracts contained in GOA that share the

highest lexical similarity with the input text are likely to

share the annotated GO concepts. GOCat is a standalone

application, which is used by several anonymous users

and some well-known molecular biology databases such

as COMBREX (23).

The QA platform

For the macro-reading task, we used EAGLi, our locally

developed QA system (24). This system aims at providing

concepts that answer a user’s question formulated in

Figure 2. Deep QA. In standard QA, answers are extracted from some retrieved documents. In Deep QA, curated data are exploited to build a

supervised classification model, which is then used to generate answers.
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natural language. EAGLi is composed of three independent

components that are illustrated in Figure 3. First, given the

user’s question, a question categorizer identifies the target

set (i.e. the candidate set of possible answers) and the

reformulated query which will be used by the Information

Retrieval component. The target set is a subset of concepts

belonging to a controlled vocabulary, which are likely to

be answers to the user’s question. For instance, for the

question ‘what molecular functions are affected by

Aminophenols ?’, the question categorizer identifies the

molecular_function axis of the GO as the target set. It

means that ultimately, EAGLi will propose these and only

these GO terms as answers. In our study, the target set is

only of two types: (i) the molecular function axis of the

GO for one of the benchmark of questions and (ii) the

cellular component axis of the GO for the other bench-

mark. The question categorizer also outputs the reformu-

lated query needed to retrieve the relevant documents. The

reformulation is needed because non-informative words

need to be discarded before querying PubMed. Thus, in the

previous example, the query to PubMed only contained

‘Aminophenols’. The question categorizer was the default

EAGLi component and remained unchanged during all

the study. Then, given the reformulated query, the

Information Retrieval component retrieves a set of relevant

citations in MEDLINE. Here, we tested two search

engines: first PubMed (Boolean search ordered by reverse-

time) and second a vector-space (or vectorial) search

engine. This vectorial search engine aims at retrieving

abstracts sorted by relevance, and it was obtained by

indexing a local version of MEDLINE with Terrier (22).

We used Okapi BM25 as weighting scheme, which is a

competitive baseline (25). In these experiments, queries

were limited to the preferred name of the protein/chemical

contained in the benchmarks. Finally, given the set of rele-

vant citations and the target, the answer extraction compo-

nent extracts GO terms found in the first 100 retrieved

abstracts, then it computes a score for each GO term and

finally outputs a list of GO candidate answers ranked by

confidence scores. To assign the scores, EAGLi simply

counts the number of citations containing the candidate

answer. The system’s ranking principle is purely statistical:

the concepts that are the most assigned to the relevant

documents are the best answers.

Experiments

Our micro-reading task consisted in assigning GO terms

to a MEDLINE abstract. For evaluation purposes, we

designed a so-called GOA benchmark of 1000 MEDLINE

abstracts sampled from the curated section of the GOA

database, and our two local GO classifiers were evaluated

on their ability to extract the GO terms that were manually

associated with these abstracts in the curated subset of

GOA.

Our macro-reading task consisted in assigning GO

terms to a set of 100 MEDLINE abstracts. For this pur-

pose, we used EAGLi, our locally developed QA system.

The three GO classifiers and the two search engines were

successively embedded in the system, as illustrated in

Figure 3, to perform an extrinsic evaluation. Thus, we

designed two benchmarks of 50 questions by exploiting

two biological databases: the comparative toxicogenomics

database (CTD), which contains more than 2800 chem-

icals annotated with GO terms, and is available at (26) and

the UniProt database, which contains millions of proteins

Figure 3. Overall workflow of the EAGLi platform. The input is a question formulated in natural language, the output is a set of candidate answers

extracted from a set of retrieved MEDLINE abstracts.

Database, Vol. 2015, Article ID bav081 Page 5 of 9

``
''
1.
;
2.
s
``
''
,
; 
one hundred
,
; 
one hundred
in order 
fifty
,
; 


often annotated with GO terms, and is available at (27).

We randomly selected 50 entries from CTD, and linked the

given chemical compounds with their annotated molecular

functions, for question such as ‘what molecular functions

are affected by Aminophenols ?’. These 50 questions and

the expected answers are the CTD benchmark. We also

randomly selected 50 entries from Uniprot, and linked the

given proteins with their annotated cellular components,

for questions such as ‘what cellular component is the loca-

tion of ARVCF?’. These 50 questions and the expected

answers are the Uniprot benchmark. The list of questions

and the benchmarks used in the experiments are available

in the supplementary data. The 100 questions were then

submitted to EAGLi. Thus, the macro-reading evaluation

was based on the classifier’s ability to extract GO terms

from a set of abstracts and then propose the correct

answers contained in the reference databases. Obviously,

for all evaluated tasks, the classified PMIDs were discarded

from the GOCat’s knowledge base.

For the micro-reading benchmark, the gold standard

contained on average 2.8 annotated GO terms per abstract.

For the macro-reading task, the number of possible answers

contained in the gold standard was different depending on

the benchmark. For the CTD benchmark, there was on

average 30 relevant GO terms per question; i.e. on average

30 correct answers were expected for each question. For the

UniProt benchmark, it was on average 1.3. To compute the

results, we selected metrics which are designed for evaluat-

ing ranked results and which are used in routine during the

TREC campaigns (28). The Top Precision (P0) is the inter-

polated precision at recall 0, i.e. the best precision observed

at all ranks. For the QA benchmarks, we also computed

Recall which is the ratio of all the possible correct answers

that are returned by the QA engine. P0 tends to favour the

quality of the first proposed answers. Recall tends to favour

the coverage of the whole answers list. For a proteomic

question that has on average 1.3 answers, we assume that

the user is ready to consider the top-5 answers, thus we

evaluate the Recall at Rank 5. For a chemical question that

has on average 30 answers, we assume that the user is ready

to see 100 answers, thus we evaluate the Recall at Rank

100. For all tasks, we considered only strict correspondence

between the expected GO terms (i.e. gold file) and the eval-

uated answers: the systems had to output the exact GO

identifiers, and no hierarchic or semantic similarities were

tolerated in the evaluation (29).

The list of questions and the benchmarks used in the

experiments are available in the supplementary data.

Results and Discussion

Micro-reading task

Table 1 presents the results obtained by our two GO

classifiers (the dictionary-based categorizer EAGL and the

supervised one GOCat) for the micro-reading task, i.e.

the extraction of GO categories out of one single abstract.

The GOA benchmark contained 1000 MEDLINE cit-

ations, manually curated in GOA. The supervised ap-

proach outperformed the dictionary-based one: þ109%

for P0, þ117% for Recall at Rank 5. This result is not a

surprise. We previously showed (19) that, thanks to the

growing amount of curated data, the performances of

GOCat have steadily improved across past years, while

Table 1. Performances for different combinations of Information Retrieval (IR) component/GO classifier for the micro-reading

then the macro-reading tasks, in terms of Top Precision P0 and Recall at rank r

Task Benchmark IR component GO classifier P0 R at rank r

Micro-reading GOA benchmark N/A EAGL 0.23 0.17

GOCat 0.48* (þ109%) 0.37* (þ117%)

Macro-reading CTD benchmark PubMed EAGL 0.34 0.15

GOCat 0.69* (þ103%) 0.33* (þ120%)

GoPubMed 0.39 0.16

Vectorial EAGL 0.33 0.14

GOCat 0.66* (þ100%) 0.33* (þ135%)

UniProt benchmark PubMed EAGL 0.33 0.45

GOCat 0.58* (þ76%) 0.73* (þ62%)

GoPubMed 0.22 0.21

Vectorial EAGL 0.34 0.49

GOCat 0.58* (þ70%) 0.75* (þ53%)

For Recall at rank r, according to the average number of expected good answers for each benchmark, r was 5 for the GOA and the UniProt benchmarks

(respectively 2.8 and 1.3 expected good answers) and 100 for the CTD benchmark (30 expected good answers). For the GOCat classifier results, improvements of

performances (þ x%) are given compared with the EAGL classifier. Statistically significant improvements (P < 0.05) are marked up in the table with an ‘*’.
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performances of EAGL is rather constant, although a mas-

sive effort was put into adding synonyms in GO.

Macro-reading task

Table 1 also presents the results obtained for the macro-

reading task: extracting GO answers from a large set of 100

retrieved abstracts in the QA engine. Two components of the

QA engine are studied: the answer extraction component and

the Information Retrieval component. For the answer extrac-

tion component, we evaluated three GO classifiers: EAGL

and GoPubMed which are dictionary-based classifiers, and

the supervised one GOCat. For the Information Retrieval

component, we evaluated two search engines: PubMed

(Boolean search ordered by reverse-time) and our vectorial

search (i.e. ordered by relevance) engine in MEDLINE.

For both benchmarks, when we focus on the results

obtained with PubMed, we observe that the answers

obtained with the supervised classifier (deep QA) outper-

formed the dictionary-based ones. When comparing the dic-

tionary-based classifiers, we observe that GoPubMed

performed better than EAGL on the CTD benchmark, while

EAGL performed better than GoPubMed on the UniProt

benchmark. Altogether, none of these two systems reached

satisfactory results. Indeed, none of them is able to approach

the performances of GOCat. From an information retrieval

point of view, this result is highly significant. Indeed, several

experiments using machine learning to improve information

retrieval were disappointing or at least inconclusive con-

sidering effectiveness (30) and efficiency (31).

Here, the only disadvantage of GOCat is that it can

only learn to detect GO terms that have already been anno-

tated in GOA. In (19), we decomposed the GOCat per-

formances in terms of the frequency of the GO terms. It

appeared that, in GOA, the 4762 GO categories that had

more than 10 assignments in GOA represented 78% of the

annotations, and that most of the power of GOCat came

from these terms. A minimum of 10 instances per class is

often considered as a minimal number of instances to train

a classifier in similar experiments (20). When applied to

QA, we assume that these frequently annotated GO terms

are likely to be the concepts that are useful for curators.

Interestingly, the differences between the supervised

classifier GOCat and the dictionary-based classifier EAGL

are linearly consistent when we scale up from the micro-

reading to the macro-reading task. For micro-reading

(extracting GO terms from one abstract) GOCat has a

P0 of 0.48 versus 0.23 for EAGL (þ109%). For macro-

reading (extracting GO terms from 100 retrieved

abstracts), the P0 of the QA engine is 0.69 with GOCat

versus 0.34 for EAGL in the CTD benchmark (þ103%)

and 0.58 versus 0.33 for the Uniprot benchmark (þ76%).

Role of the search engine

Focusing on the impact of the search engine, no significant

difference is observed when using PubMed or the vectorial

search engine. It suggests that the choice of the search

engine has no impact on the QA performances. As argued

by Lin (13), when data redundancy is sufficient, the selec-

tion and parametrization of the search engine as little

impact on QA. The ability to detect the answer, which

relies on syntactic and semantic analysis becomes far more

important that the search effectiveness. More precisely, the

targeted answer type and the availability of large termino-

logical descriptors to cover the answering space seems to

play a more crucial role that the search engine and its abil-

ity to index virtually any large document collection.

Beyond terminologies, curation is another form of a priori

knowledge which can be exploited for answering complex

questions with QA engines, as in deep QA.

Examples

Finally, Tables 2 and 3 present examples of the QA sys-

tem’s output with questions from both benchmarks: ‘what

cellular component is the location of ARVCF?’ and ‘what

molecular functions are affected by Nitriles ?’. In these

representative examples, we can observe that the QA

Table 2. Output of the QA engine with different classifiers

used for answer extraction

Answer

extractor

# Answers proposed by the QA engine Correctness

and GO level

GoPubMed 1 GO:0005694 chromosome

2 GO:0005737 cytoplasm X (3)

3 GO:0016020 membrane

4 GO:0005912 adherens junction

5 GO:0005886 plasma membrane X (2)

EAGL 1 GO:0005912 adherens junction

2 GO:0005915 zonula adherens

3 GO:0005923 tight junction

4 GO:0005886 plasma membrane X (2)

5 GO:0005694 chromosome

GOCat 1 GO:0005634 nucleus X (5)

2 GO:0005737 cytoplasm X (3)

3 GO:0005886 plasma membrane X (2)

4 GO:0005911 cell–cell junction

5 GO: 0005913 cell–cell adherens

junction

The question submitted was ‘what cellular component is the location of

ARVCF?’, with PubMed used as IR component. The table shows the top five

most confident answers proposed by the QA engine, and if these GO terms

are present in the ARVCF record in UniProtKB. The GO level is the maximum

number of nodes in the GO graph between the correct term and the root.

There were three associated GO terms in the gold file, all three were returned

by the QA system with GOCat.
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engine proposes more correct answers with GOCat, and

that these correct answers are more specific GO terms:

it means that they are deeper in the ontology. If both

dictionary-based classifiers are able to recognize ‘catalytic

activity’ (Level 2) in the retrieved abstracts, this answer is

quite general. In contrast, GOCat proposes ‘protein homo-

dimerization activity’ (Level 4) or ‘protein serine/threonine

kinase activity’ (Level 6): it is hard to consider that any

dictionary-based system could literally recognize such

terms in any set of scientific articles.

Conclusion

Our QA engine with supervised macro-reading in

MEDLINE achieved a top-precision ranging from 0.58 to

0.69 to answer functional proteomics questions, and

Recall values up to 0.75 at R5 for questions that expected

an average of 1.3 correct answers. This performance

should allow biologists and biocurators to save time when

accessing the literature. Finally, the debate between

redundancy-based and ontology-driven approaches applied

to QA is renewed with the emerging of a new type of QA.

This new and more complex QA is unlikely to be solved

using traditional QA architectures based solely on redun-

dancy and syntactic–semantic resources. As exemplified

with the assignment of GO functional descriptors, we

argue that deep QA is more likely to support data curation

in life sciences than traditional search and QA systems,

which do not exploit curated databases. With the availabil-

ity of a growing corpus of curated data from various types,

e.g. literature (23), patents (32) and Electronic Health

Records (33), deep QA is likely to advance decision-

support in a wide range of life and health sciences applica-

tions. The complete pipeline for deep Question-Answering

described in this article is available at http://eagl.unige.ch/

DeepQA4PA/.

Table 3. Output of the QA engine with different classifiers used for answer extraction

Answer extractor # Answers proposed by the QA engine Correctness and GO level

GoPubMed 1 GO:0005488 binding X (1)

2 GO:0004707 MAP kinase activity

3 GO:0004871 signal transducer activity X (2)

4 GO:0003824 catalytic activity X (1)

5 GO:0031993 light transducer activity

6 GO:0060089 molecular transducer activity X (1)

7 GO:0047322 [hydroxymethylglutaryl-CoA reductase (NADPH)] kinase activity

8 GO:0050405 [acetyl-CoA carboxylase] kinase activity

9 GO:0033736 L-lysine 6-oxidase activity

10 GO:0005138 interleukin-6 receptor binding

EAGL 1 GO:0005128 erythropoietin receptor binding

2 GO:0018822 nitrile hydratase activity

3 GO:0003824 catalytic activity X (1)

4 GO:0004601 peroxidase activity X (2)

5 GO:0004096 catalase activity

6 GO:0052716 hydroquinone:oxygen oxidoreductase activity

7 GO:0000257 nitrilase activity

8 GO:0033968 glutaryl-7-aminocephalosporanic-acid acylase activity

9 GO:0004806 triglyceride lipase activity

10 GO:0005344 oxygen transporter activity

GOCat 1 GO:0005515 protein binding X (2)

2 GO:0042803 protein homodimerization activity X (4)

3 GO:0008270 zinc ion binding

4 GO:0000287 magnesium ion binding

5 GO:0003677 DNA binding X (4)

6 GO:0003700 sequence-specific DNA binding transcription factor activity X (2)

7 GO:0030170 pyridoxal phosphate binding X (3)

8 GO:0008144 drug binding X (2)

9 GO:0020037 heme binding X (4)

10 GO:0004674 protein serine/threonine kinase activity X (6)

The question submitted was ‘What molecular functions are affected by Nitriles?’, with PubMed used as IR component. The table shows the top 10 most

confident answers proposed by the QA engine, and if these GO terms are present in the Nitriles record in the CTD database. The GO level is the maximum num-

ber of nodes in the GO graph between the correct term and the root. There were 182 possible GO terms for this question.
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Supplementary Data

Supplementary data are available at Database Online.
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