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ABSTRACT
Objective: Insulin resistance (IR) plays an important role in the development of many diseases, such as
diabetes mellitus. Therefore, the aim of the present study was to evaluate the effects of the extracts
from fruits native to Brazil on metabolic parameters and hepatic oxidative markers in an animal model
of insulin resistance induced by dexamethasone (DEX).
Methods:Wistar rats received water or extracts of Eugenia uniflora or Psidium cattleianum, once a day
for 21 days. For the last 5 days, the rats received an intraperitoneal injection of saline or DEX.
Results: DEX caused a reduction in body weight gain and relative pancreatic weight, as well as glucose
intolerance, and an increase in serum glucose and triacylglycerol levels. The extracts were found to
prevent hyperglycemia and hypertriglyceridemia. DEX caused an increase in the levels of
thiobarbituric acid-reactive substances and reactive oxygen species production in the liver of rats,
and both extracts prevented these changes. In addition, hepatic glutathione peroxidase activity
was reduced by DEX. However, total thiol content and activities of catalase, superoxide dismutase,
and delta-aminolevulinate dehydratase were not altered in any of the tested groups.
Conclusion: Fruit extracts of E. uniflora and P. cattleianum exhibited considerable antihyperglycemic,
antidyslipidemic, and antioxidant effects, and may be useful in the therapeutic management of
alterations due to IR.
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1. Introduction

Insulin resistance (IR) is a reduction of the responses of insulin
target cells and tissues to a physiological concentration of this
hormone, and is characterized by insulin insensitivity or
alterations of cellular and tissue response, including those of
muscle, adipose, and liver tissue [1]. IR is widely associated
with abdominal obesity, type 2 diabetes (T2D), and metabolic
syndrome (MetS). Additionally, it can be a risk factor for the
development of dyslipidemia, cardiovascular diseases, and
steatosis [2,3].

Some authors have suggested that IR contributes to
increased oxidative stress, probably due to an alteration of
mitochondrial function, and this increase may also further
aggravate IR [4,5]. It is well known that the oxidative stress
caused by an imbalance in redox state, owing to either exces-
sive production of reactive species or disturbance of the anti-
oxidant system, can lead to the damage of cell membranes
and other functional components such as proteins, lipids,
and DNA. In aerobic metabolism, reactive oxygen species
(ROS) and reactive nitrogen species (RNS) are produced. To
limit oxidative damage, the body produces antioxidant
enzymes such as superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx). Additionally, sub-
stances acquired through diet, such as flavonoids, vitamins,
and minerals, form an important defense barrier [6,7].

Eugenia uniflora (popularly known as pitanga) and Psidium
cattleianum (popularly known as araçá) are fruits native to
Brazil and belong to the Myrtaceae family. These genera
have been studied for their potential health benefits, such
as antioxidant, anti-inflammatory, diuretic, and hypoglycemic
properties. Some authors relate these effects to the secondary
metabolites present in both species, mainly phenolic com-
pounds [7–9].

To the best of our knowledge, there are very few studies on
E. uniflora and P. cattleianum fruits. Therefore, the aim of this
study was to evaluate the effects of these native fruit extracts
on metabolic parameters and hepatic oxidative stress markers
in an animal model of IR induced by dexamethasone (DEX).

2. Materials and methods

2.1. Preparation of fruit extracts

E. uniflora and P. cattleianum fruits were harvested from an
orchard belonging to Embrapa Clima Temperado (Brazilian
Agricultural Research Corporation) Pelotas/RS, Brazil (31°
40′47"S and 52°26′24"W). After picking, the fruits were
immediately frozen at −20°C and protected from light. The
extracts were prepared according to the method described
by Bordignon et al. [10] with minor modifications. Briefly,
unprocessed frozen fruits were sonicated for 30 minutes at
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25°C in 90 ml 70:30 v/v ethanol–water (pH 1.0). The crude
extracts were filtered; the ethanol was removed under
reduced pressure and then lyophilized. These procedures
were performed in triplicate and sheltered from light.

2.2. Phytochemical characterization

2.2.1. Total phenolic, flavonoid, and anthocyanin
content
The total phenolic content was determined according to the
method described by Singleton et al. [11] with minor modifi-
cations and expressed as milligrams of gallic acid per 1 g of
dried extract. The total flavonoid content was determined
according to the method described by Miliauskas et al. [12].
Data were presented as expressed as milligrams of rutin per
1 g of dried extract. Anthocyanins were quantified by the
pH differential method [13] and expressed as milligrams of
cyanidin-3-glucoside (C3G) per 1 g of dried extract. All data
are presented as mean ± SD values and analyses were per-
formed in triplicate.

2.3. Animals and drug treatments

Forty-eight adult male Wistar rats were obtained from the
Central Animal House of the Universidade Federal de
Pelotas (UFPel), Pelotas, Rio Grande do Sul, Brazil, where
they were kept under appropriate conditions (e.g. controlled
temperature of 22 ± 1°C, on a 12-hour light/dark cycle), and
received commercial standard chow and water ad libitum.
All animal procedures used were approved by UFPel’s Ethics
Committee on Animal Experimentation (protocol no. CEEA
5747/2015).

The rats were divided into six experimental groups (n = 8 in
each group): I (control/vehicle), II (control/E. uniflora), III
(control/P. cattleianum), IV (DEX/vehicle), V (DEX/E. uniflora),
and VI (DEX/P. cattleianum). Groups I and IV received distilled
water; Groups II and V received 200 mg/kg/day E. uniflora
extract; and Groups III and VI received 200 mg/kg/day P. cattle-
ianum. The distilled water and extracts were administered
orally once daily for 21 days. For the last 5 days, Groups IV,
V, and VI received DEX injection (1 mg/kg), intraperitoneally
(i.p.). The doses of fruit extracts and DEX were chosen accord-
ing to Oliveira et al. [14] and Rafacho et al. [15], respectively.

2.4. Body weight gain

Changes in the rats’ body weight were measured throughout
the experimental period. The weight of each rat was recorded
on day 0 and at weekly intervals throughout the course of the
study.

2.5. Sample collection and biochemical assay

At the end of the 21-day experimental period, all rats were
killed. Blood was collected and centrifuged at 800g for 15
minutes and the resulting serum was frozen in liquid nitrogen
and stored at −80°C for further biochemical analysis. The liver
was dissected and stored for further determination of oxi-
dative stress parameters. The pancreas was dissected and
weighed.

2.5.1. Glucose tolerance test
The glucose tolerance test was performed on day 21. The rats
received 50% glucose solution (2 mg/g b.w. i.p.); 0, 30, 60, and
120 minutes after injection, blood from the tail was collected
via a small tail puncture and the glucose levels were measured
using a glucometer (AccuChek® Active, Roche Diagnostics,
Indianapolis, IA, U.S.A.).

2.5.2. Biochemical parameters
Measurements of serum glucose, total cholesterol, and triacyl-
glycerol level, as well as aspartate aminotransferase (AST) and
alanine aminotransferase (ALT) activity, were performed using
the commercially available diagnostic kits supplied by
Labtest® (Labtest, MG, Brazil).

2.6. Oxidative stress parameters

2.6.1. Reactive oxygen species (ROS)
ROS formation was determined according to the method
employed by Ali et al. [16], with some modifications. In this
assay, the oxidation of dichlorodihydrofluorescein diacetate
(DCFH-DA) to fluorescent dichlorofluorescein (DCF) was
measured for the detection of intracellular ROS. ROS levels
are expressed as µmol DCF/mg protein.

2.6.2. Thiobarbituric acid-reactive substances (TBARS)
For the determination of lipid peroxidation, TBARS levels were
measured according to the method described by Ohkawa
et al. [17] and reported as nmol TBARS/mg protein.

2.6.3. Total thiol content assay
This assay was performed as described by Aksenov and Mar-
kesbery [18]. The method is based on the reduction of DTNB
by thiols, which, in turn, become oxidized (disulfide), generat-
ing a yellow derivative (TNB) the absorption of which is
measured spectrophotometrically at 412 nm. Results are
reported as nmol TNB/mg of protein.

2.6.4. Superoxide dismutase (SOD) activity
SOD activity was measured by the method described by Misra
and Fridovich [19] and the specific activity is reported as units/
mg protein.

2.6.5. Catalase (CAT) activity
CAT activity was assayed according to the method described
by Aebi [20] based on the decomposition of H2O2 monitored
at 240 nm at ambient temperature. The specific activity is
reported as units/mg protein.

2.6.6. Glutathione peroxidase (GPx) activity
GPx activity was measured using a commercial kit (RANSEL®;
Randox Lab, Antrim, Northern Ireland). The specific activity
is reported as units/mg protein.

2.6.7. Aminolevulinic acid dehydratase (ALA-D) activity
ALA-D activity was assayed according to the method of Sassa
[21] by measuring the rate of porphobilinogen (PBG) for-
mation and data are expressed as nmol PBG/h/mg protein.

2.6.8. Protein determination
Protein was determined by the method of Lowry et al. [22]
using bovine serum albumin as standard.
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2.7. Statistical analysis

Statistical analysis was performed using the software Graph-
Pad Prism 5.0 (GraphPad Software, San Diego, CA, U.S.A.).
Glucose tolerance was analyzed by repeated-measures
ANOVA and Bonferroni’s post hoc test. Parametric variables
were tested by one-way ANOVA and Bonferroni post hoc
test, with P < 0.05 considered to represent a significant differ-
ence in the analysis.

3. Results

The total phytochemical determination of E. uniflora and
P. cattleianum extracts is summarized in Table 1.

As shown in Figure 1, DEX impaired glucose tolerance
(P < 0.01) and treatment with E. uniflora and P. cattleianum
extracts were found to prevent this change.

The metabolic parameters were measured after treatment
with the extracts. Table 2 shows that there was a reduction of
weight gain [F(5,39) = 12.84, P < 0.001], as well as relative
pancreatic weight in the DEX/vehicle group [F(5,26) = 11.80,
P < 0.001]. However, the extracts did not prevent these altera-
tions. With respect to serum biochemical parameters, the DEX
group showed an increase in glucose [F(5,36) = 10.08, P < 0.001]
and triacylglycerol level [F(5,19) = 104.7, P < 0.001] compared
with the control group; treatment with E. uniflora and P. cattle-
ianum prevented these changes. No difference was observed
in total cholesterol level [F(5,38) = 1.59, P > 0.05] and AST [F(5,27)
= 1.48, P > 0.05], and ALT activities [F(5,38) = 1.58, P > 0.05].

The oxidative stress parameters evaluated in the liver of
rats treated with E. uniflora and P. cattleianum are shown in
Figure 2. The TBARS values [F(5,19) = 10.02, P < 0.001] and
ROS production [F(5,23) = 26.78, P < 0.001] were enhanced by
DEX administration and treatment with E. uniflora and P. cattle-
ianum extracts prevented these effects. GPx activity was
reduced in the DEX group compared with control values
[F(5,18) = 9.78, P < 0.001]. However, sulfhydryl (SH) content
[F(5,19) = 2.51, P > 0.05] and the enzymatic activities of SOD
[F(5,18) = 0.81, P > 0.05] and CAT [F(5,18) = 2.27, P > 0.05] were

not significantly different in any group. Furthermore, ALA-D
activity was altered neither by fruit extracts, nor by DEX treat-
ment [F(5,18) = 1.51, P > 0.05] (Figure 3).

4. Discussion

Health benefits of dietary flavonoids, including the manage-
ment of MetS, obesity, and diabetes mellitus, are widely
known [23]. In our study, we demonstrated that E. uniflora
and P. cattleianum contain potentially important phenolic
compounds, mainly anthocyanins. The total phenolic and fla-
vonoid contents of small fruits, such as blackberries, blueber-
ries, and strawberries, are 100–820 and 14–290 mg/100 g,
respectively [24]. These compounds may have various antidia-
betic effects such as modification of glucagon-like peptide-1
(GLP-1), alteration of peroxisome proliferator-activated recep-
tor (PPAR) activities, protection against glucolipotoxicity, and
modification of endogenous antioxidants [25]. Khoo and col-
laborators [26] demonstrated that an extract of Canarium
odontophyllum, a fruit rich in anthocyanins, inhibited oxidative
stress, further inhibited binding of low-density lipoprotein to
endothelial cells, and showed protective effect against lipid
peroxidation.

In addition, anthocyanins have been reported to enhance
the endogenous antioxidant defense system [25]. The purified
anthocyanin C3G increased glutathione (i.e. antioxidant) syn-
thesis in the liver of diabetic db/db mice through upregula-
tion of glutamate–cysteine ligase catalytic subunit
expression and enhanced serum levels of SOD and CAT
after injections of pelargonidin (i.e. anthocyanidin) in strepto-
zotocin-induced diabetic rats [27,28]. Another study demon-
strated that C3G reduced cell death in pancreatic β-cells
induced by oxidative stress, acting as a protective factor
against diabetes [29]. Schumacher et al. [7] demonstrated
that E. uniflora aqueous extract reduced the incidence of
T2D, inflammatory cell infiltration, and oxidative stress, as
well as increased hepatic glutathione levels and serum
insulin, in non-obese diabetic mice. These results may be
associated with phenolic compounds (gallic acid, rutin, and
ellagic acid) identified using chromatographic analyses of
the extract used.

The consumption of fatty food and a sedentary lifestyle, as
well as the use of glucocorticoids (including DEX), have been
associated with IR. Glucocorticoids are widely used in the
treatment of allergies, asthma, and rheumatoid arthritis,
among other pathologies, and their chronic use is associated
with various negative effects in the metabolism of carbo-
hydrates, causing IR, glucose intolerance, T2D, and dyslipide-
mia [15,30].

In this study, we evaluated the effects of two extracts from
fruits of the Myrtaceae family on metabolic and oxidative
stress parameters in an animal model of IR induced by DEX.
This experimental model is considered suitable for the inves-
tigation of drugs influencing the mechanisms involved in the
pathogenesis of T2D and MetS. The relation between DEX and
IR can be explained by an increase in gene expression, mainly
of FKBP5, which decreases glucose uptake [31]. In addition,
Dionísio et al. [32] showed that DEX decreases IRS-1, AKT
levels, and GLUT-4 translocation to the membrane. Another
possible explanation for this relationship is based on
reduction in β-cell mass pancreatic in rats [33] and in
humans [34], which may be a cofactor for the development
of T2D, directly related to the insulin secretion. This decrease

Table 1. Phytochemical characterization of E. uniflora and P. cattleianum fruit
extracts.

Total phenolic Flavonoid Anthocyanin

E. uniflora 7.92 ± 0.23 5.50 ± 0.68 1.72 ± 0.05
P. cattleianum 16.72 ± 0.26 15.24 ± 2.09 2.48 ± 0.09

Data are expressed as mean ± S.D. Total phenolic content is reported as mg of
gallic acid/g of dried extract. Flavonoid content is reported as mg of rutin/g of
dried extract. Anthocyanins are expressed as mg of cyanidin-3-glucoside/g of
dried extract.

Figure 1. Glucose tolerance test performed at baseline (0) and at 30, 60, and 120
minutes after glucose injection (2 mg/g body weight). Data are expressed as
mean ± SEM. Repeated-measures ANOVA followed by Bonferroni post hoc
test; *P < 0.05 and ***P < 0.001 vs. control/vehicle. DEX: dexamethasone.
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may occur due to the continuous apoptosis caused by several
factors, including excessive production of ROS, resulting in
loss of β-cells and decreased function of these cells [35,36].
Similarly, in our study, we verified a reduction of relative pan-
creatic weight in rats that received DEX.

It is well known that IR can induce dyslipidemia; triacylgly-
cerol (TAG), total cholesterol (TC), and high-density lipopro-
tein (HDL) can, therefore, be used as markers of IR.
Nevertheless, hypertriglyceridemia is the most common
feature of dyslipidemia in cases of IR and T2D. In our study,
we demonstrated that serum levels of TAG increased in
animals treated with DEX and both the extracts prevented
this increase. In this context, several studies have reported a
correlation between this lipid and IR based on the compensa-
tory hyperinsulinemia caused by IR, which induces the flow of

free fatty acid to the liver and adipose tissue, providing a sub-
strate for TAG production [37,38]. This could also be attribu-
table to the ability of DEX to increase gluconeogenesis,
downregulate GLUT2 expression on the cell membrane, and
increase TAG and VLDL through activation of the expression
of several genes encoding enzymes in TAG synthesis; this
causes lipid redistribution along with lipolysis in adipocytes
as well as TAG accumulation in the liver [39].

Mitochondrion plays a crucial role in DEX-induced oxi-
dative stress. DEX may lead to an increase in ROS production
that directly causes mitochondrial dysfunction, reduces cellu-
lar energy yield, promotes the release of cytochrome C,
decreases mitochondrial permeability, and leads to oxidative
stress and apoptosis [40]. In our study, administration of DEX
did not alter SH content, nor did it affect the activity of CAT,

Table 2. Effect of E. uniflora and P. cattleianum fruit extract treatment on metabolic parameters of control and dexamethasone-treated rats.

Control/
vehicle

Control/
E. uniflora

Control/
P. cattleianum DEX/Vehicle DEX/ E. uniflora DEX/P. cattleianum

Weight gain (g) 103.7 ± 9.6 103.0 ± 3.9 88.0 ± 5.5 50.2 ± 4.7*** 59.5 ± 10.3** 50.4 ± 5.45***
Relative pancreatic weight (g/100 g
b.w.)

0.75 ± 0.05 0.64 ± 0.04 0.61 ± 0.02 0.50 ± 0.03*** 0.46 ± 0.02*** 0.49 ± 0.03***

Glucose (mg/dL) 102.27 ± 8.93 96.30 ± 4.53 107.79 ± 2.74 156.55 ± 8.20*** 102.36 ± 6.05### 104.23 ± 7.64###

Total cholesterol (mg/dL) 155.42 ± 7.18 152.0 ± 8.57 157.11 ± 4.76 142.57 ± 1.61 141.2 ± 3.04 145.38 ± 2.20
Triacylglycerol (mg/dL) 63.19 ± 2.88 68.83 ± 3.49 74.07 ± 2.67 177.40 ± 3.57*** 91.67 ± 4.81***,### 93.98 ± 2.84***,###

AST (U/L) 138.5 ± 3.5 166.4 ± 11.4 148.4 ± 14.6 127.6 ± 20.5 105.8 ± 6.16 160.0 ± 27.6
ALT (U/L) 36.2 ± 2.6 38.4 ± 3.9 42.0 ± 3.2 31.7 ± 4.2 26.7 ± 4.5 33.5 ± 4.1

Data are expressed as mean ± S.E.M. (n = 4–8). ***P < 0.001 as compared to the control/vehicle. **P < 0.01 as compared to control/vehicle. ###P < 0.001 as compared
to DEX/vehicle. One-way ANOVA followed by Bonferroni post hoc test. DEX: dexamethasone. AST: aspartate aminotransferase; ALT: alanine aminotransferase.

Figure 2. Effect of E. uniflora and P. cattleianum fruit extract treatment on oxidative stress parameters in the liver of control and dexamethasone-treated rats. Data are
expressed as mean ± SEM (n = 4–5). One-way ANOVA followed by Bonferroni post hoc test; ***P < 0.001 and *P < 0.05 vs. control/vehicle; ###P < 0.001 and #P < 0.05
vs. DEX/vehicle. TBARS: thiobarbituric acid-reactive substances; ROS: reactive oxygen species; CAT: catalase; SOD: superoxide dismutase; GPx: glutathione peroxidase;
DEX: dexamethasone.
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SOD, or ALA-D. However, it reduced GPx activity, caused lipid
peroxidation, and increased production of ROS, indicating a
dysregulation of redox homeostasis in the liver of these rats.
These findings are important since the oxidative damage
plays a critical role in the pathogenesis of obesity, athero-
sclerosis, T2D, and IR. The major end-product of lipid peroxi-
dation 4-hydroxynonenal may induce the IR by inactivating
critical components of the insulin signaling pathway [41].
Additionally, we demonstrated that E. uniflora and P. cattleia-
num fruit extracts prevented lipid peroxidation and ROS for-
mation in the liver, suggesting an important antioxidant
action of these extracts in the experimental model of IR.

In conclusion, our results suggest that E. uniflora and P. cat-
tleianum extracts prevent the hyperglycemia and hypertrigly-
ceridemia caused by DEX-induced IR and exert an antioxidant
action by preventing the formation of ROS and TBARS in the
liver.
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