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Introduction: Focal segmental glomerulosclerosis (FSGS), the most common primary glomerular disease

leading to end-stage kidney disease (ESKD), is characterized by podocyte injury and depletion, whereas

minimal change disease (MCD) has better outcomes despite podocyte injury. Identifying mechanisms

capable of preventing podocytopenia during injury could transform FSGS to an "MCD-like" state. Pre-

clinical data have reported conversion of an MCD-like injury to one with podocytopenia and FSGS by

inhibition of AMP-kinase (AMPK) in podocytes. Conversely, in FSGS, AMPK-activation using metformin

(MF) mitigated podocytopenia and azotemia. Observational studies also support beneficial effects of MF

on proteinuria and chronic kidney disease (CKD) outcomes in diabetes. A randomized controlled trial (RCT)

to test MF in podocyte injury with FSGS has not yet been conducted.

Methods: We report the rationale and design of phase 2, double-blind, placebo-controlled RCT evaluating

the efficacy and safety of MF as adjunctive therapy in FSGS. By randomizing 30 patients with biopsy-

confirmed FSGS to MF or placebo (along with standard immunosuppression), we will study mecha-

nistic biomarkers that correlate with podocyte injury or depletion and evaluate outcomes after 6 months.

We specifically integrate novel urine, blood, and tissue markers as surrogates for FSGS progression along

with unbiased profiling strategies.

Results and Conclusion: Our phase 2 trial will provide insight into the potential efficacy and safety of MF as

adjunctive therapy in FSGS—a crucial step to developing a larger phase 3 study. The mechanistic assays

here will guide the design of other FSGS trials and contribute to understanding AMPK activation as a

potential therapeutic target in FSGS. By repurposing an inexpensive agent, our results will have impli-

cations for FSGS treatment in resource-poor settings.
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SGS is characterized ultrastructurally by podocyte
foot process effacement (FPE) and podocytopenia.1

FSGS causes proteinuria and nephrotic syndrome, and
when accompanied by podocytopenia exceeding a
critical threshold (w40% per glomerulus), is sufficient
to cause progressive CKD.2 Overall, 40% to 50% of
patients with FSGS will progress to ESKD, representing
the most common primary glomerular disease associ-
ated with ESKD in the US.3 In contrast to FSGS, MCD
exhibits FPE and nephrotic syndrome but is associated
with less podocytopenia, a treatment-responsive
course, and lower ESKD progression to ESKD. Current
treatments for FSGS involve immune modulation or
hemodynamic interventions.4 Identifying and
addressing the mechanisms of podocyte preservation
during injury (exemplified by MCD-like injury) could
lead to a transformation of FSGS into an "MCD-like"
state, mitigating podocytopenia and progressive CKD.
To our knowledge, no current therapeutic specifically
targets signaling mechanisms preserving podocytes,
highlighting a gap in the field.

We previously reported that in young mice,
knockdown of Shroom35 in podocytes, induced diffuse
podocyte FPE and albuminuria.6-8 Surprisingly, podo-
cyte FPE was not associated with podocytopenia or
FSGS in these animals—suggesting an “MCD-like” pa-
thology. These MCD-like glomeruli had lower glomer-
ular volumes (Vglom)7,8 and showed inactivation of
Fyn in podocytes.6 Fyn is a nonreceptor tyrosine kinase
known to phosphorylate tyrosine residues on nephrin
and regulate the podocyte cytoskeleton.9 Interestingly,
Fyn inactivation has also been identified in human
MCD.10 Indeed, larger glomeruli are associated with
FSGS;7 and in the NEPTUNE cohort, MCD biopsies had
reduced Vgloms11 versus FSGS. Given these similarities
between human MCD and our MCD-like model, we
investigated collateral pathways in Fyn-inactivated
podocytes, and identified increased activation of
AMPK via translocation of LKB1.7 As further corrob-
oration, genes related to the Fyn-LKB1-Ampk axis were
significantly enriched in human MCD versus FSGS
glomeruli in a cohort within NEPTUNE.7

AMPK is a serine-threonine kinase activated during
cellular stress that suppresses anabolism, promotes
autophagy, while supporting cell survival. Mice with
diffuse FPE and an MCD-like pathology related to Fyn-
inactivation “switched” to podocyte loss, glomer-
ulomegaly, and FSGS when AMPK was inhibited7

pharmacologically or by ageing.7 Conversely, in mu-
rine FSGS models, we observed significantly mitigated
glomerulomegaly, podocytopenia, azotemia, and FSGS
using AMPK activators including MF.7,8,12 Renal pro-
tection with MF has also been observed in numerous
experimental models ranging from diabetic-associated
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or obesity-associated kidney disease (w300 indexed
citations), other proteinuric kidney diseases (lupus
nephritis,13,14 Alport’s syndrome,15 and subtotal ne-
phrectomy16,17), as well as nonproteinuric kidney dis-
eases.18-23 Therefore, extensive preclinical data
demonstrate the benefit of MF in renal disease, and our
work supports a specific role for AMPK in podocyte
survival after injury.

In clinic, MF is among the most widely prescribed
drugs with known pharmacokinetics and established
safety. Specific evaluation in mild-to-moderate CKD
(estimated glomerular filtration rate [eGFR] >30 ml/
min) has demonstrated no significant increases in lactic
acidosis with MF.12,24-27 Importantly, in numerous
observational data and post hoc analyses in dia-
betes,24,25,28 MF use is repeatedly associated with
reduced proteinuria, improved renal survival, and
overall patient survival.

Taken together, extensive preclinical and clinical
data point to AMPK-activation by MF in glomerular
podocytes as an intervention in need of testing in an
RCT in the context of podocyte injury and FPE. This
may reveal a therapeutically exploitable strategy to
promote podocyte survival, limit glomerulomegaly and
mitigate FSGS, shift toward an MCD-like pathology,
and direct the development of MCD-like pathology
(Figure 1). Here, we report our rationale and study
design for the AMP-FSGS trial—a pilot, placebo-
controlled RCT to test the utility of MF in biopsy-
confirmed FSGS.
TRIAL DESIGN

Objectives

The AMP-FSGS trial will investigate whether and how
MF therapy will improve biopsy-confirmed FSGS using
integrated mechanistic and clinical data.

Objective 1

Here, we will test the hypothesis that MF, with
standard-of-care therapy mitigates podocyte loss by
inducing AMPK activation and promoting an “MCD-
like” pathology. We will examine multiparametric
mechanistic correlates of improved outcomes using
serial urine, blood, and biopsies by applying conven-
tional and novel approaches, including biomarkers,
automated morphometry, podocyte numbers, in situ
proteomics, and single-cell transcriptomics.

Objective 2

Clinical efficacy and safety outcomes of 6-month MF
therapy will be evaluated. MF-related adverse events
(AEs) will be monitored (below) and coincidental
anthropometric and metabolic benefits will be
captured.
1355



Figure 1. Outlines the mechanistic hypothesis underlying the AMP-FSGS trial. Inhibited AMPK-signaling in the context of FPE promotes glo-
merulomegaly, podocytopenia, and FSGS, whereas activation of the AMPK signaling pathway by metformin in injured podocytes mitigates
podocytopenia and restricts glomerulomegaly promoting an “MCD-like” pathology with better outcomes. Increased AMPK activation enhances
prosurvival pathways, including autophagy and improves mitochondrial homeostasis. Therefore, the trial hypothesizes that metformin will
activate AMPK, which may serve as a "switch" in injured podocytes, regulating cell survival, and mitigating podocytopenia and FSGS.
AMPK, AMP kinase; MCD, minimal change disease; FPE, foot process effacement; FSGS, focal segmental glomerulosclerosis.
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Preenrollment Screening

Patients at both sites, Yale University School of Medi-
cine and Icahn School of Medicine at Mount Sinai, are
screened during diagnostic kidney biopsies (details of
screening, enrollment, are in Supplementary Methods).
There is a standard workflow that includes the iden-
tification of all patients referred for biopsy via elec-
tronic health record reports. At the time of biopsy, all
adult patients at both sites are approached for consent
in kidney biobanks. To optimize the enrollment pro-
cess for AMP-FSGS, patients showing specific risk
factors for FSGS such as nephrotic syndrome or a urine
protein-to-creatinine ratio >1.5 g/g and without a
diagnosis of diabetes will be flagged for potential
enrollment in the AMP-FSGS trial pending biopsy di-
agnoses. The enrollment workflow is depicted in
Figure 2.

Enrollment and Randomization

Adults without contraindications to MF with biopsy-
confirmed FSGS will be approached for AMP-FSGS
enrollment.

Inclusion/Exclusion Criteria and Informed Consent. Given
that our goal is to identify patients with “primary”
FSGS, we focus on candidates selected for corticosteroid
therapy with diffuse FPE on biopsy (inclusion/exclusion
criteria in Table 1). Informed consent is obtained during
the first postbiopsy clinic visit. The optional repeat bi-
opsy at 6 months will also be discussed.

Randomization. The study will employ a double-
blinded design, where both the research team and
treating physicians will be blinded to study limb. A
permuted block randomization scheme is implemented
1356
via REDCap, and randomization is stratified based on
the study site. Our first subject has been enrolled and
randomized. In Figure 3, we depict the trial schedule,
planned visits, and procedures for enrollees.

Interventions

The Investigational Drug Pharmacy will assign partic-
ipants to therapy (prednisone and MF) or control
(prednisone and placebo) and will remain unblinded.

MF Dosing in AMP-FSGS

MF, a US Food and Drug Administration-approved oral
antihyperglycemic agent, has well-documented phar-
macokinetics and safety data.28-30 An identical placebo
formulation is generated by the Investigational Drug
Pharmacy at both sites.

Determinants of initial MF Dosage. MF, is primarily
excreted unchanged by the kidneys and is minimally
protein-bound, relying on eGFR to establish plasma
levels.29 With an eGFR >30 ml/min, studies have not
shown an elevated risk of lactic acidosiswithMF.24-26MF
dosing will be based on eGFR at enrollment as follows: (i)
if eGFR is between 32 and 45ml/min,MFwill be initiated
at 500mg once a day and (ii) if eGFR>45ml/min,MFwill
be initiated at 1000 mg once a day (equivalent to 2 tab-
lets). These dosages align with previous studies.31,32

Dose Modifications and discontinuation of study drug. If
eGFR falls to #45 ml/min during the study, the MF/
placebo dose will be reduced to 500mg/day.MF/placebo
will be discontinued (i.e., guidance for discontinuation
of study drug) in cases of the following: (i) eGFR
decreasing <32 ml/min in 2 successive readings, (ii)
plasma lactate >5 mmol/l in 2 tests or persistently >2.5
Kidney International Reports (2024) 9, 1354–1368



Figure 2. Enrollment workflow. Schematic describes the enrollment workflow plan from the identification of patients after referral for kidney
biopsy by the research team, the approach and consent for biobank enrollment, and sample collection (visit 0). Biobank consent includes
optional extra research core for transcriptome evaluation. Once biopsy diagnosis of FSGS (with diffuse FPE) is confirmed and both the treating
nephrologist and patient decide on steroid therapy for FSGS (other glomerular diseases are excluded), the research team will approach the
patient during clinic visit for enrollment in AMP-FSGS (after evaluating inclusion and exclusion criteria). After AMP-FSGS informed consent is
obtained, unique identity generation and randomization will be followed by visit-1 sample collection. FPE, foot process effacement; FSGS, focal
segmental glomerulosclerosis.
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mmol/l, (iii) elevated liver function tests without other
etiology (e.g., >2 times upper limit of normal liver en-
zymes, hyperbilirubinemia, or coagulopathy), (iv) hy-
poglycemic episodes, or (v) gastrointestinal symptom
scores indicating intolerance toMF.MF extended-release
formulation will be used to minimize gastrointestinal
intolerance.
Study Visits

A total of 10 visits are planned for each participant.
The visits (Table 2) are designed to optimally capture
data points and biosamples to detect early responses to
intervention and ensure patient safety while mini-
mizing patient burden.

Repeat Biopsy (Paired-Biopsy Cohort)

Prior to enrollment in AMP-FSGS, all patients will have
undergone a clinically indicated baseline biopsy.
Around 1 of 3 of enrollees will be reconsented for a
follow-up biopsy at 6 months, designated as “paired
biopsy cohort”. This cohort will use kidney tissue to
test the hypothesis that MF treatment activates cellular
AMPK-signaling and improves podocyte survival,
glomerular morphometry, and histologic parameters
when compared to placebo. Three key assays
(described below) will be performed in the paired bi-
opsy cohort: single-nuclear sequencing of biopsy core,
Kidney International Reports (2024) 9, 1354–1368
in situ proteomics including podocyte counts, and
automated glomerular morphometry.

STUDY OVERSIGHT

Trial Oversight

The AMP-FSGS trial oversight has been approved by a
single institutional review board and by IRBs at both
participating centers (Yale University School of Medi-
cine and Icahn School of Medicine at Mount Sinai). A
single institutional review board will oversee study
protocol amendments and interim study site moni-
toring, including working with the data and safety
monitoring board for AEs reporting. The trial is
registered at ct.gov (NCT06090227).

Monitoring and AE Reporting

Active monitoring through electronic health record
and monthly questionnaires will capture AEs, whether
related or unrelated to the study. Electronic health
record and data tools will track AEs, ensuring study-
related AEs are captured and investigators will assess
causality or consider alternative causes using clinical
judgment. Specific adverse effect profiles related to MF,
especially gastrointestinal intolerance, hypoglycemia,
liver function, vitamin B12, and lactic acidosis, will be
specifically monitored. A data and safety monitoring
board has been constituted and includes an
1357
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Table 1. Study inclusion and exclusion criteria
Inclusion criteria Exclusion criteria

-Liver disease

Participant must be 18 years of age or older, but <80 years age at the time of
signing the informed consent.

-eGFR <32 ml/min

- Diabetes mellitus diagnosis at the time of biopsy or need for oral
hypoglycemic agents/insulin with a HbA1c level >6.5%

AND -Kidney biopsy with non-FSGS glomerulonephritis, or secondary FSGS.

-Dementia

Biopsy-confirmed FSGS as defined by expert renal pathology at either
institutions. For homogeneity of diagnoses, demonstrable segmental or
global sclerosis lesions (>1 glomerulus) with diffuse podocyte foot process
effacement by electron microscopy (>50% of examined glomerular tufts)

-Allergy or sensitivity to metformin

-Platelet count <100,000/ml; INR >1.5; bleeding diathesis or blood thinner
use contraindicating biopsy.

Therapeutic plan by treating physician for immunomodulatory treatment using
Glucocorticoids.

-Current pregnancy or desire to become pregnant during the study period

-Under hospice care

-Incarceration

-History of alcohol abuse

-Homelessness

-Inability to consent

-eGFR (calculated using the CKD-Epi equation) of $32 ml/min/m2 -Life expectancy of less than 6 months as determined by the clinical judgement
of the patient’s physician

- Participants may or may not be receiving an ACE-inhibitor, angiotensin-
receptor blocker, or renin inhibitor or SGLT2 inhibitors or other BP
medications.

-Simultaneous use of carbonic anhydrase inhibitor agents

-Incident FSGS cases or cases identified upon rebiopsy will be included as long
as immunosuppressive therapy is planned.

- Currently enrolled in (or completed within the past 30 days) a study of an
investigational drug or device.

ACE, angiotensin-converting enzyme; BP, blood pressure; eGFR, estimated glomerular filtration rate; FSGS, focal segmental glomerulosclerosis; SGLT2, sodium-glucose transport
protein 2.
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endocrinologist, pharmacist, and nephrologists with
clinical trial experience. The data and safety moni-
toring board will meet semiannually for trial oversight
and serious AEs during the study will be promptly
reported.

Oversight Over Study Drug

MF is a US Food and Drug Administration-approved
oral agent for glycemic control and is the fourth most
prescribed drug globally. Studies have shown MF’s
efficacy in other indications.3,33,34 The AMP-FSGS trial
obtained an investigational new drug exemption
(PIND: 168933) from the US Food and Drug Adminis-
tration. Following data analysis in year 4, a new
investigational new drug application may be supported
based on results.

STUDY OUTCOMES

Clinical EfficacyandSafetyOutcomesof 6-Month

MF Therapy

In our preliminary murine data, AMPK-activation (by
MF or other agents) improved podocyte survival,
ameliorated glomerulomegaly, improved azotemia and
reduced proteinuria. In epidemiologic data, the use of
MF was associated with improved clinical outcomes,
namely eGFR, proteinuria, need for renal replacement
therapy, and overall survival. Previous FSGS trials1,35
1358
have used proteinuria changes as primary outcomes
and measured eGFR decline or ESKD. Although our
phase 2 trial is not primarily designed to detect dif-
ferences in these major clinical events, we will evaluate
eGFR and proteinuria outcomes as exploratory markers
of efficacy and evaluate safety of MF therapy in FSGS.

Efficacy Outcomes

The efficacy outcomes include the following:

(i) Proteinuria (random urine protein-to-creatinine
ratios) at all 10 study visits will be compared us-
ing mixed-effects modeling to evaluate the slope of
change in proteinuria over time (continuous
outcome). Twenty-four-hour protein estimations
will be obtained at 3-months and 6-months.

(ii) Difference in the slope of eGFR over 6 months in
each patient, and within study limb, will be
compared. Outcomes (i) and (ii) will provide
generalizable endpoints for other studies.36,37

(iii) Exploratory analyses will examine additional
immunosuppressive requirement, complete remis-
sion (CR) (proteinuria <0.5 g/day), partial remis-
sion (PR) (>50% reduction in proteinuria from
prerandomization) and CR þ PR (at study end, and
in time-to-event analyses).

(iv) Exploration of potential benefits of MF combina-
tion with steroid therapy: anthropometric
Kidney International Reports (2024) 9, 1354–1368



Figure 3. Study plan overview. Study design, samples planned, and assays to be performed at prespecified time points are summarized. The
study will include 10-visits and will be terminated at 6 months where a repeat research biopsy will be performed in subjects who consent. This
“paired-biopsy” cohort will be the subset where IMC, digital morphometry and single nuclear RNA-sequencing will be performed. IMC, imaging
mass cytometry.
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measurements (height, weight, waist-to-hip ratio)
will be obtained at 0, 3, and 6 months to monitor
steroid-related metabolic adverse effects, which we
expect will be reduced when MF is combined with
steroid therapy (as was described).38 The benefit
may likely extend to diabetes risk, and hyperlip-
idemia in the MF limb (hemoglobin A1C and lipids
will be monitored every 3 months).

Safety Outcomes

The safety outcomes include the following:

(i) Routine laboratory markers (comprehensive meta-
bolic panel and complete blood count) will be ob-
tained monthly.

(ii) Plasma lactic acid will be obtained at every visit
and serum vitamin B12 levels will be obtained 3-
monthly.

(iii) Change in quality of life over time, including fa-
tigue, thirst, day/night reversal, and (as kidney
disease becomes more severe) itching, nausea, and
anorexia will be monitored. At baseline and at each
visit, we will use modified Kidney Disease Quality
of Life survey instrument to test quality of life
with MF treatment (modified to include potential
MF-related symptoms).
Kidney International Reports (2024) 9, 1354–1368
(iv) Clinical safety outcomes will include diarrhea,
clinical hypoglycemia events, lactic acidosis (lead-
ing to MF stoppage or study discontinuation), in-
fections, hospitalizations, and any study deaths.

Mechanistic Assays and Outcomes

Our phase 2 study is mainly focused on mechanistic
data and assays (below) which will be correlated with
patient-level, and study limb-level outcomes.

Urine Cell Pellet mRNA Trajectories

Primary FSGS is considered a podocytopathy resulting
in podocyte FPE, podocyte depletion, and progressive
CKD.2,39-41 Podocyte-specific mRNA quantified in the
urine have correlated with podocyte depletion in
FSGS.39,42-45 Increased urine Nphs2:creatinine, that is,
“podocinuria,” correlated with active disease, and was
lower during remission.39 Correlations between podo-
cinuria and proteinuria were altered in treatment-
responsive (MCD-like) disease versus progressive, un-
responsive FSGS. Prognostic value was also seen with
urine Nphs1:Nphs2 ratio,46 urine Aqp2 and Tgfb1
levels.47 These noninvasive and repeatable assays have
never been tested in an interventional trial before.
Here, we will use urinary podocyte mRNA excretion
1359



Table 2. Study schedule of activities

Schedule of activities

Enrollment Month 1 Month 2--5 Final visit

Baseline visit 1 Wk 1--visit 2 Wk2--visit 3 Wk3--visit 4 Wk4--visit 5 Mo 2--visit 6 Mo 3--visit 7 Mo 4--visit 8 Mo 5--visit 9 Mo 6--visit 10

Procedures

Informed consent X X (Follow up Bx

Chart Review and documentation

Physical examination X X

Concomitant medication review X X X X X X X

Medical history X

Study-specific assessments

Anthropometry measures X X X

Adverse Effects/QOL
questionnaires

X X X X X X X

Study Drug

Dispensing of 30-day study drugs. X X X X X X

Laboratory tests

Routine blood test for
standard-of-care

BMP X X X X X X X

CBC X X X X X X X

Routine urine studies

Urine protein-to-creatinine ratio X X X X X X X X X X

24-hour urine studies X X X

Safety laboratory tests
related to the study

Liver function tests X X X X

Plasma lactate levels X X X X X X X

Lipid panel X X X

Hemoglobin A1C X X X

Vitamin B12 X X X

Research Studies

Plasma or biomarkers X X X X

Buffy coat/ PBMC X X X X

Urine for biomarkers X X X X X X X X X X

Urine pellet mRNA** X X X X X X X X X X

Research biopsy X

QOL, quality of life, BMP, basic metabolic panel; CBC, complete blood count; PBMC, peripheral blood mononuclear cells; mRN, messenger RNA.
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trajectories in MF versus control patients to represent
potential prognostic signals.

The details of urine pellet RNA isolation have been
reported (Drs Wiggins, Naik – consultants39) and are
described in Supplementary Methods. Briefly,
morning-collected urine samples (w200 ml) will be
centrifuged and the pellet cryostored (Supplementary
Figure S1). A simultaneous w10 ml aliquot will be
sent to the clinical laboratory for urinalysis and
protein-to-creatinine ratio. Pellets will be batched for
RNA extraction, reverse transcription, and quantitative
polymerase chain reaction.

Assay Development. Based on previous observational
studies, we will evaluate the following mRNA values in
each urine sample: NPHS2, NPHS1, AQP2, TGFB1,
18SRNA, & UPK1A (where each mRNA is expressed as
copy numbers/ml urine/mg creatinine). Using a pilot
study of 10 pooled control samples (from healthy vol-
unteers) and 30 unselected patients presenting for
kidney biopsies (Figure 4, Supplementary Figure S2,
Supplementary Table S1, and Supplementary
1360
Methods), we established 2 novel multiplex assays in
our laboratory to detect and quantify urine mRNA.
This minimizes RNA requirement and plate-to-plate
variation allowing simultaneous testing of 3-genes in
each assay. In our assay, mRNA markers tended to be
increased in biopsied patient’s versus healthy controls,
although only NPHS2-mRNA was significantly
different (Figure 3a). Interestingly, UPK1A represent-
ing urothelial cell fraction of urine cell pellet was
similar in cases and controls. Copy numbers obtained
by singleplex and multiplex panel were highly corre-
lated (log-NPHS2 shown in Figure 3b). We also
confirmed that podocinuria (log-NPHS2 mRNA copies/
ml or log-copies/mg creatinine47) significantly corre-
lated with simultaneous proteinuria (protein-to-creati-
nine ratio; Figure 3c and d). Log-NPHS1 mRNA
showed weaker correlation with proteinuria in our
pilot, and none of the mRNA evaluated correlated with
eGFR (not shown).

Analyses. Using this assay in each patient, urine-
mRNA values from 10 serial collections (baseline,
Kidney International Reports (2024) 9, 1354–1368



Figure 4. Urine pellet mRNA estimation for podocyte markers. (a) Dot plots show urine cell pellet mRNA of NPHS2, NPHS1, TGFb1, AQP2,
18SRNA, UPK1A (per 5 ng cDNA) quantified in controls (n ¼ 10 pooled samples; solid black dots) versus 30 unselected patients needing kidney
biopsy (solid blue dots). UPK1A levels notably were similar between the 2 groups (Whiskers/bar ¼ mean�SEM). (b) A correlation line is plotted
between Log NPHS2 copy numbers/5ng cDNA obtained by singleplex and these same data obtained by a novel multiplex panel (Spearman R ¼
0.86; P < 0.0001). (c) Correlation lines of Log NPHS2 copies/ml urine sample versus log protein-to-creatinine ratio (mg/mg) (Spearman R ¼ 0.66;
P < 0.0001], and (d) Log NPHS2 copies/mg creatinine is plotted against log protein-to-creatinine ratio (Spearman R ¼ 0.39; P < 0.01).

GC Barsotti et al.: Rationale and Design for FSGS-MF as AMPK Activator CLINICAL RESEARCH
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Figure 5. Representative IMC of a nonsclerotic glomerulus from FSGS. (a) Individual channels for Nestin, SMA, CD31/ERG, LC3b, P-Tyrosine, and
Merge (P62, DNA intercalator, Vimentin, other markers are not shown). (b) Heatmap identifies cell-type clusters and cell numbers based on
colocalized intensities (per pixel) of canonical markers. Cluster 4 cells express lower levels of canonical podocyte markers with reduced
autophagy, and likely represent injured podocytes. Thus, intensities of markers-of-interest (LC3b, P62, P-Tyr) can be quantified within single
cells. FSGS, focal segmental glomerulosclerosis; IMC, imaging mass cytometry; P-tyr, phosphorylated-tyrosine residues.

CLINICAL RESEARCH GC Barsotti et al.: Rationale and Design for FSGS-MF as AMPK Activator
study visits, and study completion) will be plotted
against log protein-to-creatinine ratios obtained simul-
taneously to obtain trajectories. (i) As reported,39 the
correlation lines of log protein-to-log podocin
(normalized to creatinine at 1,3, and 6 months) will be
evaluated to distinguish treatment-responsive cases
from progressive FSGS within each limb. (ii) Urine
mRNA trajectories aggregated by study limb will be
compared (a) against each other, (b) against clinical
outcomes (CR, PR, CRþPR) and, (c) in paired biopsies
against histo-morphometric outcomes such as change in
podocyte counts and/or Vglom, interstitial fibrosis and
1362
tubular atrophy (interstitial fibrosis and tubular atro-
phy percentage in biopsies, or using digital
morphometry – quantitative interstitial area score and
composite damage scores).7 (iv) In exploratory analyses,
we will evaluate urine mRNA trajectories with single
cell transcriptomic signatures of AMPK activation, and
proteomic signatures (see below).

Single-Nuclear Sequencing of Biopsy Cores

We will compare podocyte AMPK activation in the MF-
therapy limb with prerandomization FSGS biopsies
using single nuclear transcriptome profiles. Briefly,
Kidney International Reports (2024) 9, 1354–1368
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both at baseline biopsy (as part of the nephrology
biobank in both institutions) and upon follow-up
6-month research biopsy (in consenting enrollees
w30%), we save a portion of the obtained biopsy core
in RNAlater. Subsequently, single nuclear preparation
and sequencing will be performed on this “paired-bi-
opsy cohort” (see Supplementary Methods). We will
utilize established KPMP protocols developed by the
University of Michigan (see Supplementary Data), to
ensure comparability of generated data.

Analyses. We will analyze kidney SnRNAseq data
using Seurat,48-50 focusing on glomerular cell types
(Supplementary Figure S3). In podocytes, we will
identify significantly differentially expressed genes
within paired biopsies in each individual, and between
treatment groups. Our goal with single nuclear tran-
scriptome analyses is 2-fold as follows: (i) to confirm
activation of AMPK signaling in podocytes of patients
treated with MF versus placebo. To accomplish this, we
will compare podocyte transcriptomes with a novel
podocyte-specific AMPK activation mouse model
(g1D316A-transgenic with overactive AMPK g-sub-
unit),51 using cross-species analyses.52,53 (ii) Our second
goal is to evaluate if AMPK activation by MF promotes
a gene expression profile in glomerular cells and within
podocytes that has significant overlap with human
MCD glomerular transcriptome, by utilizing MCD
versus FSGS comparisons in microdissected glomerular
RNAseq data from NEPTUNE cohort. In each case,
significantly differentially expressed genes will be
further analyzed for enriched pathways and functional
terms. Covariates such as sex, age, and patient status
will be considered.

In Situ Proteomics of Biopsy Cores and Podocyte

Counts

Imaging mass cytometry (Collaborator Dr Cantley)54

will be used to analyze paired biopsies (see
Supplementary Methods).54,55 The following compari-
sons will be made by imaging mass cytometry: (i) final
biopsies between MF versus placebo groups, (ii) the
initial versus final biopsies within-patient in the MF
group, and (iii) in treatment-responsive cases versus
others. We aim to identify optimal cell-specific prote-
omic markers that associate with podocinuria or prog-
nosis and confirm podocyte AMPK activation with MF.
In pilot imaging mass cytometry data generated on a
nonsclerotic glomerulus in an FSGS biopsy (Figure 5), a
focused glomerular pipeline using existing validated
antibodies clearly identified normal glomerular cells
and cells potentially representing injured podocytes
with reduced canonical podocyte markers and lower
LC3b, demonstrating quantification of proteins at the
single cell level.
Kidney International Reports (2024) 9, 1354–1368
Automated Glomerular Morphometry

Our overarching goal with pathologic studies in paired
biopsies is to evaluate if MF restricts glomerulomegaly
in FSGS and promotes quantitative morphometric fea-
tures associated with improved outcomes. In addition
to conventional histopathology with standard-of-care
reporting by renal pathologists at both study centers,
we will use our deep-learning model based on U-Net
and mask R-CNN digital pathology algorithms which
quantify normal tissue compartments in PAS-stained
whole-slide biopsy images. In previous work,56 we
showed high correlations of digital and conventional
pathology, and superior associations of artificial intel-
ligence (AI)-derived continuous variables with clinical
outcomes. A modification of this algorithm measures
glomerular tuft area and distinguishes sclerotic or
nonsclerotic glomeruli. “AI-Vglom” will then be
calculated based on the mean AI-area using the Weibel-
Gomez equation.7 Mean Vglom will be compared be-
tween (i) individuals on serial biopsies by study group,
(ii) between final study groups, and (iii) using initial
biopsies to correlate with clinical outcomes, agnostic of
study groups (N ¼ 30). Additional glomerular param-
eters such as area density, as well as nonglomerular
parameters, (% of image area with interstitial fibrosis or
interstitial infiltrates) are evaluated concurrently by
our AI algorithm56 reported previously as composite
scores (interstitial area score and composite damage
score). We anticipate that AI-Vglom will be lower after
MF and that nonglomerular parameters will have in-
dependent associations with outcomes.

Urine and Serum Biomarkers

Classical illustrative studies using patients with
recurrent FSGS after transplantation identified a role
for 1 or more circulating protein factors in primary
FSGS.1,57-59 The Olink platform multiplexes 384 in-
flammatory protein assays and critically includes pre-
viously reported candidate plasma markers. This could
provide relatively unbiased information regarding
FSGS outcomes. In addition, several groups including
ours have evaluated and identified the role of plasma
markers60,61 and urine markers62-64 of CKD progres-
sion.65-67 Evaluation of these known urine and plasma
markers of tubular injury, CKD progression, as well as
a relatively unbiased interrogation of inflammatory
signals, to develop prognostic markers in the setting of
an FSGS clinical trial has not been performed before.
Plasma and urine proteomics will be obtained at
baseline, at 3 months and at 6 months. Among patients
showing improved clinical outcomes (e.g., CR/PR), we
will identify proteins whose Olink levels normalize
between month-0 and month-3 and/or month-6. These
will serve as biomarkers indicating treatment
1363
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responsiveness.61,62,64,68 Biomarkers identified at
baseline can enrich participation, help risk stratifica-
tion, whereas those that associate with treatment
responsiveness can reduce duration or costs in subse-
quent FSGS trials.64,69,70

Statistical Analyses

Details of the statistical analyses are described in the
Supplementary Methods. Data are entered into a
HIPAA-safe REDCap platform created for AMP-FSGS
(Yale Redcap).

Baseline Data

Summary statistics will be used to describe partici-
pants. Analyses will follow the intention-to-treat
principle, grouping participants regardless of adher-
ence to the treatment regimen. Per-protocol analyses
will also be performed to include all participants who
demonstrate $75% adherence to study drug (as
assessed via pill counts at study visits) and complete
the final study visit.

Genetic FSGS and Sensitivity Analyses

We anticipate genetic testing to be uniformly done in
AMP-FSGS enrollees as is usual clinical practice at both
study sites. In sensitivity analyses, we will evaluate
outcomes after excluding individuals with a confirmed
genetic etiology of FSGS and where immunosuppres-
sants were stopped by treating physicians. The study
drug will be continued until completion, with the pa-
tient’s consent. Heterogeneity of treatment effect, as
determined by genetic cause of FSGS, will be evaluated
by examining the interaction between genetic FSGS
and MF on the outcomes of interest.

Outcomes. (a) Categorical clinical outcomes: Fisher
exact test or chi-square test (based on data sparsity)
will be used for CR, PR, and similar outcomes; Wil-
coxon rank-sum test for continuous outcomes. (b)
Within-individual change outcomes: mixed-effects
models with time-interaction terms will be used to
assess slope outcomes (e.g., proteinuria, eGFR,
biomarker levels) across groups. Various covariance
structures will be explored based on model fit. (c)
Mechanistic outcomes: broad biomarker characteriza-
tion will be using hypothesis-driven (Mesoscale) and
less biased (O-Link) approaches. Dimensionality
reduction techniques, including principal component
analysis, consensus-based clustering, and PHATE
analysis, will be employed. (d) Safety outcomes: mea-
sures of association will be calculated for treatment and
safety events. Data will be presented in aggregate to the
data and safety monitoring board, recognizing the
importance of safety concerns beyond statistical sig-
nificance. The modified Kidney Disease Quality of Life
survey responses will be scored based on established
1364
criteria, assessing physical function, mental function,
kidney disease burden, symptoms, and impact on daily
life. Mixed-effects models with a treatment interaction
term will analyze treatment impact on adverse effect
parts.

Sample Size/Power Analyses. Enrolling 30 individuals
(15 per group) will provide 80% power to detect a 1.1
SD difference in continuous outcomes. Our preliminary
murine data using AMPK-activation strategies
including MF (details in Section 7.8 of Supplementary
Methods) suggested that differences in levels of BUN,
creatinine, albuminuria, Vglom, and podocyte counts,
in multiple FSGS models exceeded this threshold with
AMPK-activation. Anticipating a 20% loss-to-follow-
up rate, the trial can still detect 1.2 SDs in contin-
uous outcomes. Additional recruitment avenues and
collaborations with other medical centers are available
if needed.

Statistical Software. Data analyses will be conducted
using GraphPad prism (Version 10, La Jolla, California),
R (https://www.R-project.org/), Python, Stata (Stata-
Corp LLC, Texas), and SAS.

DISCUSSION

Here, we describe our rationale and design of a phase 2
placebo controlled, double bind, RCT to test MF (in
addition to standard-of-care) for FSGS requiring
immunosuppressive therapy. If successful, we believe
several implications will emerge from the results of our
trial. First, any utility of MF in FSGS will suggest an
important role for AMPK activation in the survival of
injured podocytes. This proof-of-concept step will then
provide a foundation for advancing to a larger phase 3
trial aimed at testing the efficacy of MF (or other
AMPK-activators) in primary FSGS. The insights
gained here are also likely to extend beyond primary
FSGS, potentially to secondary FSGS, a more widely
prevalent problem with limited therapeutics. It is
crucial to emphasize that MF is an affordable, widely
manufactured, and safe drug in widespread use. Any
utility shown by MF in our study could benefit not
only the US population but also have a significant
public health impact in resource-poor settings
worldwide.

Regardless of the specific outcomes observed with
MF in our trial, our study has broader implications for
the field. For example, the development of the urine
pellet mRNA trajectory as a noninvasive marker of
progression of kidney disease represents an advance
with implications for trials across other glomerular
diseases. The potential utilization and refinement of
integrated mechanistic end points embedded in our
trial could also serve as surrogates in future clinical
Kidney International Reports (2024) 9, 1354–1368
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trials of glomerular disease. The innovative and unbi-
ased translational tools proposed here pave the way for
identifying novel therapeutic targets and prognostic
clusters. These tools promise to leverage dynamic
multidimensional data encompassing morphometric,
transcriptomic, and proteomic information in patients
with FSGS while on standard therapy.

Our study also has some limitations. Our sample size
could limit inferences on categorical outcomes related to
MF, butwe anticipate power to support inferences based
on continuous outcomes. Variability in urine mRNA
within and between patients could pose a challenge.
However, our preliminary assay development data
including controls and patients with glomerular or
nonglomerular pathology, collected in a “real-time”
clinic scenario, and the subsequent troubleshooting
steps we have undertaken, provide reassurance of
reproducibility in trial patients. As a precaution, mul-
tiple baseline sampleswill be collected for each patient to
better provide a podocinuria profile for each patient at
baseline. Finally, thoughwe aim to restrict enrollment to
those who are judged by treating clinicians to have
primary FSGS needing immunomodulatory therapy,
these patients may also include patients with genetic
FSGS, and MF therapy will be evaluated in sensitivity
analyses excluding these patients.

Conclusion

This phase 2 trial will provide important insights into
the potential efficacy and safety of MF as an adjunctive
therapy for FSGS. The findings will inform the design
of larger trials and contribute to the understanding of
AMPK activation as a potential therapeutic target in
FSGS. The results may have implications for the treat-
ment of FSGS and may benefit patient populations
beyond the study cohort.
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Figure S1. Urine processing and pellet quantitative

polymerase chain reaction. Step 1: Flowchart showing

harmonized urine processing steps starting with urine

collection in a sterile, sealed container, followed by

centrifugation for cell pellet and storage in RLT-buffer.

Step-2: At a later date, total urine pellet RNA is extracted

using the RNeasy Mini Kit, and reverse transcription is

performed. Initial detection and quantification of urinary

mRNA was established using SYBR-green reagents and

in-house primers. Absolute standard curves were

generated using expression plasmids for each gene.

Urinary mRNA detection/ quantification assays were

finalized using customized TaqMan assays (Suppl

methods). The standard curve shown in step 2 represents

R2¼0.998 and efficiency of 100.24% to detect NPHS2

copies. Red dots shows standards while blue/green dots

represent test samples run in this plate.

Figure S2. Quality control metrics of Urine pellet mRNA. (A)

Line diagrams show the mean/standard error of NPHS2-

(green dots with error bars) and NPHS1- (blue dots with

error bars) shows copies/5ng cDNA of 10 pooled control

urine samples to provide an estimate of variability of these

urine mRNAs. Individual samples obtained at different

times from 7 healthy controls were variably pooled to

generate w500 ml urine/pooled sample. Pooled samples

were utilized to obtain larger cell pellets in each control to

allow multiple runs of the same sample across plates. (B

and C) Correlation plot of Urine NPHS2 with (B) RNA

concentration (range 3–160 ng/mcl) and (C) with 260/280

ratio (range 1.38–2.27) by nanodrop (N ¼ 40), showing

absence of significant correlations. Similar evaluation of

NPHS1, UPK1A, TGFB1, AQP2 & 18SRNA showed no

significant correlations of copy numbers with these quality

metrics (not shown).

Figure S3. Transcriptome analyses pipeline for biopsy

single nuclear RNAseq. Schematic describes

transcriptome analysis pipeline of single nuclear

transcriptomes from subset of patients with paired

kidney biopsies. Our goals are to evaluate (a) AMPK
1365
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activation in podocytes with MF treatment using a

podocyte-specific AMPK-activation mouse model (b)

evaluate significantly differentially expressed genes

between known MCD vs FSGS comparisons from the

NEPTUNE cohort with MF- vs placebo treatment (c)

identify consistently dysregulated genes (>2 fold) that

could be tested at the protein level in biopsies (d) identify

putative ligand-receptor interactions using our generated

proteomic data.

Table S1. Demographics of Cases and Biopsy Controls.
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