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Experimental superposition of orders of quantum
gates
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Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions

of different states. However, it has recently been appreciated that quantum mechanics also

allows one to ‘superimpose different operations’. Furthermore, it has been shown that using a

qubit to coherently control the gate order allows one to accomplish a task—determining if

two gates commute or anti-commute—with fewer gate uses than any known quantum

algorithm. Here we experimentally demonstrate this advantage, in a photonic context, using a

second qubit to control the order in which two gates are applied to a first qubit. We create the

required superposition of gate orders by using additional degrees of freedom of the photons

encoding our qubits. The new resource we exploit can be interpreted as a superposition of

causal orders, and could allow quantum algorithms to be implemented with an efficiency

unlikely to be achieved on a fixed-gate-order quantum computer.
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Q
uantum mechanics has long been recognized as a
counter-intuitive theory, with ideas such as wave-particle
duality, quantum superposition and entanglement

defying our natural way of thinking. In recent years, these sorts
of uniquely quantum properties are being exploited to develop
revolutionary technologies, such as quantum cryptography,
quantum metrology and perhaps the most well-known example,
quantum computation. In the field of quantum computation,
the circuit model was used to show that universal quantum
computation is possible1, and the circuit model has since
been an incredibly successful tool, leading to important
quantum algorithms which greatly outperform their classical
counterparts2. The circuit model takes advantage of the fact that
quantum mechanics allows for the superposition and interference
of quantum bits (qubits) in different states to achieve a
computational speed-up. However, in addition to the super-
positions of states, quantum mechanics also allows for the
superposition of quantum circuits3,4—a feature which is not used
in the standard quantum circuit model. Nevertheless, such
superpositions of quantum circuits are rapidly becoming central
to several foundational research programs studying the role of
time and causality in quantum theory5–9. These superpositions
of quantum circuits (sometimes called a ‘superposition of causal
orders’) give rise to new counter-intuitive quantum predictions,
and it has recently been predicted that they could provide
quantum computers with even further computational
advantages8,10. In particular, superimposing quantum circuits,
each with a different gate ordering, can allow one to accomplish a
specific computational task with fewer quantum gate uses than a
quantum computer which has a fixed-gate order10.

One of the most useful methods for quantifying the
performance of a quantum algorithm is its query complexity.
Loosely speaking, this is the number of times that a quantum gate
is used (or queried). The use of the query complexity is motivated
by the assumption that applying a gate is a cost that we wish to
minimize. In an optical quantum computer this cost would be
either another physical copy of the gate (say a different set of
waveplates, or interferometer), or a repeated usage of the same
gate at a later time. In an ion-trap11 or super-conducting12

quantum computer the cost would be the application of another
pulse sequence to the qubits. Given that one of the main
difficulties in creating a scalable quantum computer is the
implementation of multiple gates13,14, techniques to reduce the
query complexity are essential for practical quantum computing.

Just as in a classical electronic circuit, in a fixed-order quantum
circuit one connects a series of logic gates by wires (see Fig. 1a or
Fig. 1b). This is an intuitive and extremely powerful method
for designing quantum algorithms, but there are advantages to
other models. One example is measurement-based quantum
computing15,16, a different paradigm than the circuit model
which paved the way for many experimental implementations of
quantum algorithms17,18. Unlike other models of computation,
what is considered here is a strict extension of the quantum circuit
model, which therefore allows for additional computational power.
The particular extension we study in our experiment is to allow for
superpositions of different quantum circuits; that is, to coherently
control which quantum circuit is applied on an input state
(see Fig. 1c). In this case, the order of quantum gates acting on a
set of qubits could be controlled by the state of another set of
qubits—this is not allowed in the standard-quantum circuit model,
wherein the gate order is independent of the state of the qubits4.

Coherently controlling the order of quantum gates conditioned
on the state of a set of qubits is a new type of operation. A
proposal for one such operation is the ‘N-SWITCH’, which takes
N different gates and applies them in a given superposition of
different permutations19. Using this operation, a quantum

algorithm has recently been proposed to solve a specific
problem with a query complexity of O(N), while a fixed-order
circuit is likely to require O(N2) queries to solve the same
problem9,10. In other words, the N-SWITCH reduces the query
complexity by a factor N. Since it has been shown that the
N-SWITCH can be simulated by N2 fixed-order gates10, a factor
of N is the maximum advantage that can be achieved with this
operation. It is an open question whether there exist other
resources without fixed-gate order that would allow further
advantages.

In this paper, we report on our experimental demonstration of
a 2-SWITCH operation, which we implement by taking
advantage of additional degrees of freedom of the physical
system which encodes our qubits. Our technique makes it
possible to apply two quantum gates in a superposition of both
possible orders, and it enables us to determine if the gates
commute or anti-commute with only a single use (or query) of
each gate. On the other hand, determining if two gates commute
or anti-commute using a quantum circuit with a fixed-gate order
would require at least two uses of one of the gates8,20. Moreover,
when this problem is scaled to N gates, creating a superposition of
quantum circuits is likely to provide an exponential advantage
over classical algorithms, and a linear advantage over quantum
algorithms with fixed-gate order10. The techniques that we
demonstrate here could allow some quantum algorithms to be
implemented with an efficiency that is unlikely to be achieved on
a quantum computer with a fixed-gate order.

Results
Theoretical objective. In our task, one is presented with two
unitary gates, U1 and U2, and the guarantee that U1 and U2 either
commute or anti-commute (but U1 and U2 are otherwise
unknown and arbitrary). The goal is to determine which state-
ment is true. This is the first step towards demonstrating the
quantum algorithm proposed in ref. 10, and, in the case with
N¼ 2 causal orders, it corresponds to the information processing
task introduced in ref. 8. In the standard-circuit model this task
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Figure 1 | Theoretical Concept. (a) Given two unitary gates, U1 and U2, the

circuit model allows us to wire them in one of two possible ways: either U1

before U2, or (b) U2 before U1. (c) Quantum mechanics allows us to

coherently control both options, such that the qubit sees both U1 before U2,

and U2 before U1. (d) The 2-SWITCH operation applies U1 and U2 to qubit 2

in both orders, as shown in panel c, dependent on the state of qubit 1.

Unless at least one of U1 and U2 is used more than once, the 2-SWITCH

operation cannot be implemented with standard circuit-model elements. To

be explicit, the 2-SWITCH applies U1U2 to cj i2 (the lower qubit) if the

upper qubit is in 0j i1, and U2U1 to cj i2 if the upper qubit is in 1j i1.
Measuring the state of qubit 1 in the �j i basis allows one to

unambiguously decide if U1 and U2 commute or anti-commute with only a

single use of each gate. In this circuit, H is the Hadamard gate, and

�j i ¼ 0j i � 1j ið Þ=
ffiffiffi
2
p

.
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cannot be carried out with a single use of each gate8; this
limitation is evident in all previous experimental investigations of
commutation relations, which all used one gate at least twice21,22.
However, using the 2-SWITCH operation to apply U1 and U2 in a
superposition of both orders allows us to distinguish whether the
gates commute or anti-commute with only one use of each gate.
To see this, consider using the 2-SWITCH operation in the circuit
shown in Fig. 1d. Given that the 2-SWITCH applies U1U2 if the
upper qubit is in 0j i1 and U2U1 if upper qubit is in 1j i1, it is
straightforward to show that, when the input to the circuit is
initially in the state 1ffiffi

2
p 0j i1þ 1j i1
� �

cj i2 (where cj i2 is an
arbitrary state of qubit 2), the result (after performing a
Hadamard gate on the control qubit, and before measuring it)
is the state

1
2

0j i1 U1;U2f g cj i2þ
1
2

1j i1 U1;U2½ � cj i2: ð1Þ

In equation (1), [U1, U2] and {U1, U2} are the commutator and
anti-commutator of U1 and U2, respectively. Given the guarantee
of either commutation or anti-commutation, if the upper qubit is
measured and found in 0j i1 we know for certain that the gates
commute; on the other hand, if it is found in 1j i1 we know for
certain that the gates anti-commute. Thus one can
unambiguously distinguish between the two cases. Note that,
although Fig. 1d shows the 2-SWITCH operation as a gate in a
quantum circuit, it cannot be implemented by querying U1 and
U2 only once in a fixed order.

Experimental implementation. Although creating superpositions
of circuits is a conceptually simple idea, it is not immediately clear
how it could be carried out in the laboratory. The most obvious
solution is to place the physical circuit elements—such as wires or
optical fibres connecting the gates—in a quantum superposition.
However, this would require quantum control over macroscopic
systems, and is likely to remain unattainable in the foreseeable
future. Instead, we use additional degrees of freedom of our
qubits to control the order with which they traverse the gates.
Note that other implementations have been independently
proposed, both making use of internal degrees of freedom
(G. Chiribella, R. Ionicioiu, T. Jennewein and D. Terno, personal
communication, July 2012)10,23,24, and in adiabatic quantum

computing25. The internal degrees of freedom could be any degrees
of freedom of the physical system that the qubits are encoded in.
For example, trapped ions possess many electronic and vibrational
modes, many of which could be suitably controlled23. In our
experiment, we use a spatial degree of freedom of photonic qubits to
create a superposition of different gate orders acting on a qubit
encoded in the photon’s polarization. While the use of multiple
degrees of freedom of a single photon is a well-known tool in
photonic-quantum computing26–32, our work is the first
experimental demonstration which uses this tool to superimpose
quantum gate orders. Furthermore, using controlled-path gates31,
which coherently place a photon in one of two paths dependent
on the state of another photon, our technique would form the basis
of a 2-SWITCH operation between two different photons, making it
possible to create multi-particle circuits with no fixed-gate order.

At the centre of our implementation is a Mach–Zehnder
interferometer with a loop in each arm (see Fig. 2), which allows
us to create the required superposition of gate orders. In
particular, it enables one qubit (qubit 1 of the circuit in
Fig. 1d), encoded in a spatial degree of freedom of the photon,
to coherently control the order in which two gates are applied to
another qubit (qubit 2 of Fig. 1d), encoded in the photon’s
polarization. We choose to use a spatial degree of freedom as
control (that is different than previous theoretical work which
proposed using polarization as control10,23) since it proved
to be much more stable experimentally. Briefly, a single photon is
sent to a 50/50 beamsplitter, which creates the spatial qubit: 0j i if
transmitted, and 1j i if reflected. The unitary gates U1 and U2 are
implemented on the polarization state of the same photon
using a set of waveplates. Now, dependent on whether the
photon is reflected or transmitted, the polarization qubit
will see either U1U2 or U2U1. The two paths then coherently
recombine on a final 50/50 beamsplitter (enacting the Hadamard
gate shown in Fig. 1c). Finally, simply measuring the state of the
spatial qubit (that is, whether the photon exits port 0 or 1
of the final beamsplitter) tells us if U1 and U2 commute or
anti-commute.

Before continuing, we must specify what constitutes a ‘gate use’
in a photonic experiment. In accordance with previous work10,23,
we define a single gate use as a single photon passing through a
single physical copy of a gate. This definition is well motivated,
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Figure 2 | Experimental Implementation. Our optical implementation to distinguish whether a pair of unitary gates commute or anti-commute with only a

single copy of each gate. The photons for our experiment are generated in a separable polarization state using a Sagnac source (a). One photon is used as a

herald, and the second is fed into the interferometer (b). The unitary gates in question are each implemented with three waveplates, and act on the

polarization of single photons.
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since it quantifies both the number of physical devices required,
and the experimental cost of rerouting photons through the same
gate at a later time. If we imagine affixing counters to each set of
waveplates, which increment every time a photon passes by, then
we can read the number of uses of a gate directly off of the
counter. Note that such a counter system will factorize out, and
thus will not destroy the interference10. In this hypothetical
situation, each time a photon passes through our experiment the
counters of U1 and U2 will always read 1. Thus, by this definition,
we use each gate once in our experiment.

Data for sets of Pauli gates. To verify the successful imple-
mentation of this protocol we tested its performance on a number
of representative unitary gates. The first set of gates we tested
were the four Pauli gates (including identity), sx; sy; sz; I

� �
. The

Pauli gates have simple commutation and anti-commutation
relationships: each gate only commutes with itself and identity,
and anti-commutes with the other gates. For example, sx com-
mutes with I and sx, and anti-commutes with sy and sz. Thus,
setting U1¼sx means that when U2 is set to either I or sx the
photon will always exit port 0. On the other hand, if U2 is set to sy

or sz, the photon should always exit port 1.
To acquire data, U1 and U2 were first set to identity so that the

phase of the interferometer could be set to p; this was carried out
using a piezo-driven mirror (in Fig. 2). Then U1 and U2 could be
set to any desired single-qubit unitary gate by setting the
waveplate angles appropriately (See Supplementary Note 1 and
Supplementary Table 1). For the Pauli-gate data, we cycled U1

and U2 through all 16 possible permutations and monitored the
photon counts out of each port of the final beamsplitter. For every
Pauli-gate combination, the probability for the photons to exit
each port was estimated (see the Methods Section for details,
including a discussion of the error bars). The resulting
probabilities are plotted in Fig. 3. When the gates commute, we
expect all of the photons to exit port 0, while if they anti-
commute they should all exit port 1. Our observed data agrees
very well with this prediction. For the Pauli gates, we were able to
successfully determine whether a pair of gates commuted or anti-
commuted with a success rate (probability to exit the ‘correct
port’) of 0.973±0.016. For this data, the initial polarization state
was Hj i þ Vj ið Þ=

ffiffiffi
2
p

, but, as we verified experimentally, the
protocol is independent of the polarization (see Supplementary
Note 2 and Supplementary Fig. 1).

Comparison with the best fixed-order quantum circuit. With-
out using a superposition of different quantum circuits, it is
impossible to perfectly determine if two gates commute or anti-
commute with a single use of each gate8. However, it has not been
appreciated before that, using a fixed-order quantum circuit, this
task can be accomplished probabilistically. In the Supplementary
Note 3 we present a calculation, based on the ‘quantum comb’
formalism33–35, showing that the maximum average success rate
is 0.9288 (the full derivation is explicitly made another
publication36). To rigorously compare our protocol to such a
quantum circuit, we randomly generated 50 pairs of commuting
gates and 50 pairs of anti-commuting gates (see the Methods
Section D) and we tested our protocol with each pair. A subset of
the data for these gates is plotted in Fig. 4, and the full data
set in presented in Supplementary Fig. 2. The success rate of our
protocol over the 100 pairs of commuting and anti-commuting
gates is 0.976±0.015, which surpasses the fixed-order bound by
more than three s.d.

Discussion
Our experiment also has implications, in the broader context, for
the study of causal structures in quantum mechanics, a topic
that has recently received increasing theoretical6,7,37 and
experimental38,39 attention. Traditionally, space-time events are
defined with respect to some coordinate system, which describes a
given underlying space-time. If we attach some fixed space-
coordinates to the waveplates of our interferometer, one can say
that there are two different times at which each photon can
undergo the corresponding operation. In this perspective, one
would describe the experiment in terms of four space-time events
(in our experiment these would be: U1 first, U2 second, U1 second
and U2 first), whose causal order is determined by the underlying
classical space-time. Note, however, that any attempt to physically
distinguish the two times at which a photon can pass through a
gate would reveal which-way information and thus destroy the
interference. The results of the experiment confirm that such
information is not available anywhere and that the interpretation
of the experiment in terms of four, causally-ordered events
cannot be given any operational meaning. If, on the other hand,
one requires events to be defined operationally, in terms of
measurable interactions with physical systems (as in the
hypothetical photon-counter example discussed above), then
the experiment should be described in terms of only two events—
a single use of each of the two gates. Thus we can take the
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Figure 3 | Results for Pauli Gates. Experimental data showing the

probability with which the photon exits from a port when determining if a

pair of random gates commute or anti-commute. The blue bars are the

experimentally observed probabilities for the photon to exit port 1, and the

green bars to exit port 0. If the gates commute, then, ideally, the photon
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interference in our experiment to demonstrate that the two events
cannot be ordered according to any definite causal relation; in this
sense, our experiment can be seen as the first realization of a
‘superposition of causal orders’. Indeed, it is shown elsewhere36

that the 2-SWITCH realized here corresponds to an example of a
causally non-separable process, as defined in ref. 5.

In conclusion, we have shown how to use additional degrees of
freedom of the physical system encoding a quantum system to
apply quantum operations without a fixed, definite causal order.
This allowed us to accomplish a task which is impossible with a
fixed order of operations. Our demonstration of superimposed
quantum circuits illustrates that removing the requirement of a
fixed-gate order can provide quantum algorithms with real
practical advantages and it shows a feasible way to obtain this
advantage.

Methods
Single-photon source. The source generated photon pairs, in a separable
polarization state, by means of the process of spontaneous parametric down
conversion using a Sagnac loop40,41. The Sagnac loop was built using a dual-
wavelength polarizing beamsplitter and two mirrors. A type-II collinear
periodically-poled Potassium Titanyl Phosphate crystal of length 20 mm was placed
inside the loop and pumped by a 23.7 mW diode laser centred at 395 nm. Photon
pairs were created at degenerate wavelength 790 nm. We set the pump beam
polarization to be horizontal to generate the down-converted photons in a
separable polarization state Hj i Vj i. The dichroic mirror transmited the pump
beam and reflected the down-converted photons, and the half waveplate (HWP)
and quarter waveplate (QWP) were used to adjust the polarization of the pump
beam. Long and narrow band pass filters blocked the pump beam and selected the
desired down-converted wavelength. Polarizers were aligned to transmit only
down-converted photons with the desired polarization. After this, the down-
converted photon pairs were coupled into single-mode fibres, and one photon from
the pair was used as a herald while the other single photon was sent to our
interferometer using a fibre collimator.

Optical implementation. We implemented our protocol using a Mach–Zehnder
interferometer with two symmetric arm loops, see Fig. 2b. After the first beams-
plitter, the reflected and transmitted beams were sent to a different combination of
waveplates which formed the unitary gates. The symmetric loops were built to have
the same input direction through the unitary gates for both the transmitted and
reflected beams; that is, the photons always traversed the waveplates in the same
direction, regardless of whether they saw U1 or U2 first. After this, the two paths
were recombined on the second beam splitter. For the reflected beam, a HWP at 0�
was used before the waveplates implementing U2 to ensure that the polarization
state of the reflected and transmitted paths was the same before the unitary gates;
this was required because the reflected path picked up a reflection phase not seen
by the transmitted mode. Another a HWP at 0� was used in the transmitted arm
after U2 to compensate the reflection from the second beamsplitter.

After the interferometer, the photons exiting port 0 and 1 were coupled into
single-mode fibres. Then, the single photons were detected using avalanche
photodiodes which were connected to a home-built coincidence counter based on
Spartan 3E FPGA to register two-photon events between either port and the
heralding photon. Since the coupling efficiency of each port and the detection
efficiency of each avalanche photodiodes were slightly different we had to correct
for this to calculate the probabilities reported in Figs 3 and 4. To perform this
correction, we varied the phase of the interferometer to send all of the photons
from port 0 to port 1, and we recorded the counts out of port 0 (C0) and the counts
out of port 1 (C1) as the phase was varied. We then computed an efficiency factor Z,
such that C0þC1/Z was constant. We found that Z was typically around 0.7,
but its exact valued varied because the coupling efficiencies changed slightly from
one day to the next. Using this, we estimated the probability to exit port 0 as
P0¼C0/(C0þC1/Z), and the probability to exit port 1 as P1¼ 1�P0.

The visibility of the interferometer was 99.4±0.2 with a phase drift
o9 mrad min� 1. A complete data set (20 waveplate settings) was acquired in
B2 min (1 s of data was taken at each setting, so the majority of the time was spent
moving waveplates). The observed phase drift would lead to a negligible error
(of only E0.02%) over the 2-min measurement time. At each setting B40,000
photon pairs were observed. The error bars were estimated by performing each
measurement five times and observing the s.d.. Each measurement setting had a
slightly different s.d., but for convenience we took the largest s.d. as the error bar
for each measurement setting. The dominant contribution to these fluctuations was
a phase drift caused by rotating the waveplates, and the Poissonian error bars (due
to 40,000 counts) are much smaller than these observed fluctuations.

Polarization unitary gates. It is well known that the combination of three
waveplates (in a quarter-half-quarter configuration) can implement an arbitrary

single-qubit polarization gate. Since this method is completely general, we used it to
implement each of the two unitary gates U1 and U2. Each of the six waveplates were
mounted using a motorized rotation mount, which allowed the unitary gates to be
set remotely while only minimally disturbing the phase of the interferometer.
However, we still found a slight systematic phase drift when the waveplates were
rotated. We attributed this to slightly ‘wedged’ shaped waveplates, which could
change the optical path of each interferometer arm differently. For our waveplates
(true-zero order waveplates from Special Optics, which were the most parallel
waveplates we tested), we observed a maximum phase drift of 0.002 rad per deg of
waveplate rotation. The waveplate angles used to implement the different polar-
ization gates are tabulated in Supplementary Tables 1 and 2. On average, setting the
six waveplates to implement a specific U1 and U2 required a total rotation of E45�;
this would introduce a systematic error in the phase of the interferometer of
B0.009 rad and an additional error onto our measured probabilities of 0.4%.

Generating commuting and anti-commuting pairs of gates. We tested our
protocol on 50 randomly chosen pairs of commuting gates and on 50 randomly
chosen pairs of anti-commuting gates. To generate these gates we followed a very
simple protocol. First, we randomly chose a unitary gate R from the Haar measure.
Next, to generate two anti-commuting gates A1 and A2, we set A1¼RszRw and
A2¼RsyRw (where sy and sz are Pauli gates). Then, two commuting gates were
defined from R as

C1 ¼ R
1 0
0 eiy1

� �
Ry ð2Þ

and

C2 ¼ R
1 0
0 eiy2

� �
Ry; ð3Þ

where y1 and y2 were also chosen randomly (we selected them from a uniform
distribution between 0 and 2p). After this we computed the waveplate angles
required to implement C1, C2, A1 and A2 (these angles are listed Supplementary
Table 2).
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