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Previous studies showed that Danggui-Shaoyao-San (DSS), a traditional Chinese medicinal prescription, could alleviate cognitive
dysfunction of Alzheimer’s disease (AD) patients. However, the mechanisms remain unclear; we have now examined the effect of
DSS on SAMP8 and elucidated the possible mechanism. Animals were treated with DSS for 2 months, and step-down test and
Morris water maze (MWM) test were used to evaluated cognitive abilities. The estradiol (E2), NO, and glycine in blood plasma or
in hippocampus were detected to explore the possible mechanisms. The latency of SAMP8 in step-down test was shorter than that
of age-matched SAMR1, and DSS increased the latency especially in female animals. In MWM test, we got similar results; SAMP8
spent more time to find the platform, and DSS decreased the time before finding the platform, with little effect on swim velocity,
during the training sessions. During test session, DSS increased the time spent in target quadrant especially in female SAMP8. In
female SAMP8, plasma E2, NO, and glycine were elevated in plasma or hippocampus tissue. In conclusion, DSS could ameliorate
deterioration of cognition in SAMP8, especially in female animals. Increasing E2, NO, and glycinemight contribute to the cognitive
improvement effect of DSS in female SAMP8.

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neurodegen-
erative disorder of the central nervous system in old people
[1]. Many studies have showed that women are more vulner-
able to AD than men [2–4]. Furthermore, AD pathology [5–
7] and AD-related cognitive decline [4, 5, 8–10] are greater
in women than in men. Previous studies demonstrated that
women with lower level of estrogen have higher risk for
AD compared with age matched controls [11–13]. In animal
models, experimental depletion of sex steroid hormones by
ovariectomy (OVX) could increase A𝛽 accumulation, and E2
has preventive effects against OVX inducedA𝛽 accumulation
[13–17].

Danggui-Shaoyao-San (DSS), a traditional Chinese
medicinal prescription, is used widely in oriental countries,
such as China, Japan, and Korea [18–22]. DSS was initially
recorded in “Synopsis of Prescriptions of the Golden
Chamber,” which was compiled by Zhong-Jing Zhang

during the Han dynasty. This prescription was traditionally
used to relieve menorrhagia and other abdominal pains of
women; modulation of estrogen is believed to be one of its
mechanisms. DSS could increase the estrogen level in OVX
rats [23] and stimulates estrogen production in vitro [24].

In the 1980s, the therapeutic effect of DSS on ADwas first
reported by researchers in Japan [25]. Many researchers try
to unveil the underlying mechanisms of DSS on AD; mod-
ulation of cholinergic system, monoaminergic system, and
neurotransmitters are believed to be some of themechanisms
[26–30]. In our previous study, we found DSS and one of
its fractions (JD-30) have protective effects on some animal
model for AD [31, 32]. Although we havemade great progress
in understanding how DSS affects AD, the mechanisms need
further explorations.

Based on previous studies, we presume that modulation
of estrogen is one of the mechanisms for DSS against AD.
In this study, we used senescence-accelerated mouse prone
8 (SAMP8) as AD model to examine our hypothesis.
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Figure 1: Effects of DSS on step-down test. Effects of DSS on passive avoidance ability during the step-down test in SAMP8 for all animals
(male and female SAMP8, 𝑛 = 19–20) (a), male animals (𝑛 = 9-10) (b), and female animals (𝑛 = 9-10) (c); ∗𝑃 < 0.05, compared with SAMR1;
#𝑃 < 0.05, compared with SAMP8. The data are expressed as the mean ± SEM.

2. Materials and Methods

2.1. Preparation of DSS. DSS is composed of the following
6 raw herbs: Angelica sinensis (Oliv.) Diels (Umbelliferae),
Paeonia lactiflora Pall. (Ranunculaceae), Ligusticum chuanx-
iong Hort. (Umbelliferae), Poria cocos (Schw.) Wolf (Polypo-
raceae),Atractylodes macrocephalaKoidz. (Compositae), and
Alisma orientalis (Sam.) Juzep. (Alismataceae). These mate-
rials purchased from Tongrentang Pharmaceutical Company
(Beijing, China) were authenticated by Dr. Y. M. Zhao and
Dr. Q. Y. Ma, both being botanists in the Department of
Phytochemistry in our institute.The voucher specimens were
deposited in the Department of Phytochemistry, Beijing
Institute of Pharmacology and Toxicology.

The 6 raw herbs were mixed in the dry weight ratio
of 3 : 16 : 8 : 4 : 4 : 8, and the mixture was left in 95% ethanol
(1 : 5 w/v) overnight at room temperature and boiled twice
for 2 h each time. After filtration and centrifugation, the
extract was concentrated and referred to as DSS-A (10.36%,

w/w). The residue was boiled with distilled water twice for
1 h each time and filtered to obtain the filtrate. The filtrate
was concentrated and lyophilized to obtain the preparation
referred to as DSS-W (13.84%, w/w). DSS-A and DSS-Wwere
mixed and concentrated to 1 g/mL, known asDSS extract, and
stored at 4∘C.

2.2. Animals Groups and Drug Administration. Senescence-
accelerated mouse resistant 1 (SAMR1) and SAMP8 mice
were kindly provided by Dr. T. Takeda at Kyoto University,
Japan. The mice were maintained in the Beijing Institute of
Pharmacology and Toxicology under a 12 h light/12 h dark
cycle at a constant temperature of 25 ± 1∘C, with a humidity
of 55 ± 5%, and were fed a standard rodent diet. They were
allowed free access to water and food. The animal treatment,
husbandry, and experimental protocols in this study were
approved by the institute’s Animal Care and Use Committee
(IACUC) of the National Beijing Center for Drug Safety
Evaluation and Research (NBCDSER).
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Figure 2: Effects of DSS onMWM test. Velocity of SAMR1 and SAMP8 during the test sessions of the Morris water maze performance (male
and female, 𝑛 = 19-20) (a), time spent in the target quadrant during test session for all animals (male and female SAMP8, 𝑛 = 19-20) (b),
male animals (𝑛 = 9-10) (c), and female animals (𝑛 = 9-10) (d); ∗𝑃 < 0.05, ∗∗𝑃 < 0.01, compared with SAMR1;#𝑃 < 0.05, compared with
SAMP8. Data values are expressed as mean ± SEM.

Seven-month-old SAMP8 mice were separated into 4
groups at random, each group contains 20 mice (10 males
and 10 females). DSS was administrated by intragastric at 1.6,
3.2, 4.8 g/kg bodyweight. Control group and the age-matched
SAMR1 (10males and 10 females) were given an equal volume
of distilled water. Behavioral tests were performed 8 weeks
after drug administration, and the drugs administration
lasted until all tests were finished.

2.3. Step-Down Test. The tests were carried out between 8:00
and 12:00 AM.The apparatus was a 50 × 25 × 25 cm3 Plexiglas
box featuring a grid floor (3mm stainless steel rods set 5mm
apart) with a wooden platform (7 × 7 × 1.7 cm3) in the center
of the grid floor. In training session, each mouse was gently
placed on the wooden platform set in the center of the grid
floor. When the mouse stepped down and placed four paws
on the grid floor, a 36V shock was delivered for 2 s and
step-down latency was recorded. Tests were taken 24 h after

training; each mouse was again placed on the platform, and
the latency was recorded with an upper cut-off time of 180 s.

2.4. MorrisWater-Maze Task. Theprocedure ofMorris water
maze (MWM)was described previously [33]. Briefly, a plastic
platform (diameter: 10 cm; height: 30 cm) was placed at the
center of one quadrant in a poolwith a diameter of 100 cmand
height of 40 cm. Before the experiment, the pool was filled
with sufficient water so that the platform was approximately
1-2 cm beneath the water surface, and the water temperature
was fixed at 22±1∘C.During the experiment, all objects in the
room were fixed in place to provide additional cues to enable
the animals to locate the platform. Each animal was subjected
to 4 trials per day for 6 consecutive days. After 6 days of
training, the platform was removed from the pool and each
animal was then placed in the pool at the same position and
was allowed to swim for 1 minute. The swim velocity, latency
in finding the platform, and time in the target quadrant were
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Figure 3: Effects of DSS on E2 in blood plasma. The effects of DSS
on the plasma E2 concentration in female SAMP8. ∗𝑃 < 0.05,
compared with SAMR1; ###𝑃 < 0.001, compared with SAMP8; data
are expressed as mean ± SEM, 𝑛 = 6–10.

analyzed using the Any-maze. After 1 minute, the animal was
removed from the maze, dried with a towel, and returned to
its cage beside an electric radiator.

2.5. E2 Radioimmunoassay. Trunk blood was collected and
the plasma was stored at −30∘C until assayed. Plasma levels of
E2were quantified by anultrasensitive radioimmunoassay. E2
were assayed using commercially available RIAkits (Shanghai
Institute of Biological Product, Shanghai, China). The mean
intra- and interassay coefficients of variation for E2 were
5.78% and 6.96%, respectively.

2.6. Measurement of Glycine NO. Measurements of the
stable end products of NO, nitrite and nitrate, provide a
qualitative measure of NOS activity and NO production
[34–36]. Nitrite and nitrate were determined following the
reduction of nitrate to nitrite using nitrate reductase and the
NADPHregenerating system (G-6-P/G-6-PDH) as described
previously [37]. In brief, samples were incubated with reac-
tion mixture (nitrate reductase 30mU; NADPH 3 𝜇M; G-
6-P 750𝜇M; G-6-PDH 48mU in a final reaction volume
of 100 𝜇L) for 90min at room temperature in a 96-well
microtiter plate. At the end of incubation, 30 𝜇L of 0.62N
HCl and after 10min 30 𝜇L of 1.4 N NaOH were added to
the incubation mixture. The fluorescence was measured at
𝜆ex 360 nm and 𝜆em 450 nm using a microtiter plate reader
(PerkinElmer, USA). Tissue NO levels were expressed as
nmoles/mg of cytosolic protein, and plasma NO levels were
expressed as 𝜇M.

2.7. Measurement of Glycine. Amino acids levels were mea-
sured by using high-performance liquid chromatography
(HPLC) as previously reported [38]. Briefly, the brain tis-
sues were homogenized in 20 volumes of methanol on ice.
The homogenates were centrifuged at 4500 g for 10min,
and 20𝜇L of supernatant was evaporated to dryness at

40∘C. To the residue, 20𝜇L of water (H
2
O), 20𝜇L of 0.1M

borate buffer (pH 8.0), and 60 𝜇L of 50mM 4-fluoro-7-nitro-
2,1,3-benzoxadiazole (NBD-F) in acetonitrile (CH

3
CN) were

added.The reactionmixturewas then heated at 60∘C for 1min
and immediately supplemented with 100 𝜇L of H

2
O/CH

3
CN

(90/10) containing 1% trifluoroacetic acid to stop the reaction.
Ten microliters of the resultant solution was injected into the
HPLC system.

2.8. Statistical Analysis. All data are expressed as mean ±
SEM. Origin 7.5 (Originlab Co., USA) and SigmaStat 3.5
(Systat Software, Inc, USA) were used to plot and analyze
data by Student’s 𝑡-test for 2 groups, and one-way analysis
of variance (ANOVA) was used for >2 groups, followed by
a Student-Newman-Keuls (SNK) post hoc test; the escape
latency during the training sessions of MWM test was
analyzed by two-way repeated-measures ANOVA followed
by a SNK post hoc test. 𝑃 < 0.05 was taken as statistically
significant.

3. Results

3.1. Effects of DSS on Step-Down Test. In the step-down test,
the latency of SAMP8 is shorter than age-matched SAMR1,
especially in female animals. DSS increased the latency in
female SAMP8 significantly at the dose of 4.8 g/kg (Figures
1(a), 1(b), and 1(c)).

3.2. Effects of DSS on MWM Test. In the Morris water maze
performance training sessions, SAMP8 took more time to
find the platform compared with SAMR1. DSS shortened the
latency significantly, especially for female SAMP8 (Tables 1, 2,
and 3). Meanwhile, SAMP8 swam more slowly than SAMR1,
and DSS has little effect on the swim velocity of SAMP8
(Figure 2(a)).

On the day of probe trial following the final day of
training trial, SAMP8 spent less time in the quadrant, where
former platform was placed, than SAMR1; DSS increased the
time spent by SAMP8 in the target quadrant, especially in
female animals (Figures 2(b), 2(c), and 2(d)).

3.3. Effects of DSS on E2 in Blood Plasma. Compared with
SAMR1, E2 level was decreased in SAMP8, and DSS elevated
the plasma E2 in female SAMP8 significantly (Figure 3).

3.4. Effects of DSS on NO in the Blood Plasma and Hippocam-
pal Tissue. Compared with SAMR1, NO level was lower in
both plasma and hippocampus tissue in SAMP8, especially
in hippocampus. DSS elevatedNO level both in blood plasma
and hippocampus tissue (Figure 4).

3.5. Effects of DSS on Glycine in Hippocampal Tissue. There
is no difference of glycine in hippocampal tissue between
SAMP8 and SAMR1. DSS increased the glycine level in
SAMP8 significantly (Figure 5).
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Figure 4: Effects of DSS onNO in the blood plasma and hippocampal tissue.The effect of DSS on theNO level in plasma (a) and hippocampus
(b) of female SAMP8. ∗∗𝑃 < 0.01, compared with SAMR1; #𝑃 < 0.05, compared with SAMP8; data values are expressed as mean ± SEM,
𝑛 = 9-10.

Table 1: Effects of DSS on the latency during the training trial sessions for all animals (male and female SAMP8).

Day
Escape latency (s)

SAMR1 SAMP8 SAMP8 + DSS (g/kg)
1.6 3.2 4.8

1 28.65 ± 2.38 39.14 ± 3.41 35.56 ± 2.60 32.96 ± 2.87 37.24 ± 3.12

2 22.40 ± 3.04 40.52 ± 3.73∗∗ 30.26 ± 3.61 31.85 ± 2.58 29.86 ± 3.61#

3 21.84 ± 2.96 38.97 ± 2.98∗∗ 33.00 ± 3.42 29.77 ± 2.96# 32.03 ± 4.53

4 14.33 ± 1.96 33.85 ± 3.80∗∗ 30.97 ± 3.36 32.89 ± 3.31 27.90 ± 4.02

5 11.62 ± 1.35 29.88 ± 3.63∗∗ 22.20 ± 3.44 21.10 ± 1.84# 28.72 ± 4.21

6 10.67 ± 1.77 30.02 ± 4.06∗∗ 23.76 ± 3.46 20.88 ± 2.55 28.64 ± 4.48
∗∗

𝑃 < 0.01, compared with SAMR1; #𝑃 < 0.05, compared with SAMP8. Data values are expressed as mean ± SEM, 𝑛 = 19-20.

4. Discussion

SAM was originally developed from the AKR/J strain mice
in 1968 in the laboratory of Professor Toshio Takeda in
Kyoto, Japan, based on the data of the grading score of
senescence, life span, and pathologic phenotypes [39, 40].
SAMP8 is characterized by early onset of deficits in learning
and memory, cholinergic deficit in the hippocampus, age-
related increase in A𝛽-like deposition, and amyloid plaques
[41–43]. A comparison of the properties of SAMP8 and
the characteristic features of AD shows some similarities,
suggesting that SAMP8 serves as a good animal model to
investigate the fundamental mechanisms of AD and assess
the action of drugs [44, 45]. In this study, we found that
plasma E2 is decreased in female SAMP8 compared with
female SAMR1, and the cognitive ability also declined greater
in female SAMP8 than males. These results indicated that
female SAMP8 could be considered as an animal model for
female AD patients.

Deposition of amyloid-beta (A𝛽) in the brain is believed
to be the critical step at AD onset [46]; the ability of
estrogens to reduce A𝛽 accumulation may be their most
important neuroprotective action against AD [47, 48]. E2 can

increase the nonamyloidogenic pathway by promoting the
production of 𝛼-APPs and, as a consequence, can reduce the
amount ofA𝛽 generated [49–53]. In addition, estrogens could
regulate other processes against AD, including spine density
[54], long-term potentiation [55], neurotransmitter systems
[56], protection against neuron cell death [57, 58], and tau
hyperphosphorylation [48]. After menopause, the level of
estrogens dropped sharply, and this caused women to be
more vulnerable toAD.Many observational and clinical trials
in human suggested that hormone treatment is associated
with reduced incidence of AD [59–63]. So the increasing of
estrogen in female SAMP8 might be one of the mechanisms
for cognition enhancement effects of DSS.

Nitric oxide (NO) liberated from postsynaptic neurons
may travel back to presynaptic terminals to cause LTP
expression [64] and play an important role in synaptic
transmission. In AD patient, eNOS and NFTs and SPs have a
significant negative correlation [65]. Estrogens could induce
NO production via estrogen receptors (ERs) [66]. In this
study, we found that DSS could increase the content of NO
in the hippocampal tissue of SAMP8 at dose of 1.6 g/kg and
3.2 g/kg, so modulation of NO might be another mechanism
for DSS against AD. It is unclear why DSS has no effect
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Table 2: Effects of DSS on the latency during the training trial sessions for male SAMP8.

Day
Escape latency (s)

SAMR1 SAMP8 SAMP8 + DSS (g/kg)
1.6 3.2 4.8

1 30.53 ± 2.35 38.66 ± 5.48 37.43 ± 3.57 32.03 ± 4.77 37.13 ± 5.31

2 24.01 ± 4.78 35.94 ± 5.40 30.56 ± 5.73 33.53 ± 3.39 33.61 ± 5.03

3 21.18 ± 4.37 34.68 ± 3.93 35.68 ± 5.80 34.60 ± 3.97 36.92 ± 6.76

4 16.47 ± 3.95 30.27 ± 4.64∗ 26.38 ± 4.40 37.42 ± 4.63 32.89 ± 6.07

5 13.04 ± 2.16 24.35 ± 3.25∗∗ 17.73 ± 5.19 20.43 ± 3.03 34.16 ± 5.91

6 13.01 ± 3.09 23.55 ± 4.45 26.51 ± 5.82 22.93 ± 4.30 36.65 ± 7.11
∗

𝑃 < 0.05, ∗∗𝑃 < 0.01, compared with SAMR1; data values are expressed as mean ± SEM, 𝑛 = 9-10.

Table 3: Effects of DSS on the latency during the training trial sessions for female SAMP8.

Day
Escape latency (s)

SAMR1 SAMP8 SAMP8 + DSS (g/kg)
1.6 3.2 4.8

1 26.57 ± 4.35 39.66 ± 4.19∗ 33.70 ± 3.68 33.90 ± 3.17 37.36 ± 3.32

2 20.62 ± 3.80 45.61 ± 4.84∗∗ 29.96 ± 4.41# 29.99 ± 4.06# 25.70 ± 5.11#

3 19.25 ± 4.03 43.73 ± 4.17∗∗ 30.32 ± 3.41# 24.39 ± 3.88## 26.60 ± 5.76##

4 11.95 ± 2.45 37.83 ± 6.17∗∗ 35.55 ± 4.61 27.86 ± 4.38 22.35 ± 4.84

5 10.04 ± 1.48 36.02 ± 6.37∗∗ 26.67 ± 4.01 21.84 ± 2.13 22.67 ± 5.63

6 8.06 ± 1.14 38.10 ± 6.44∗∗ 21.00 ± 3.52# 18.61 ± 2.57# 19.75 ± 3.67#
∗

𝑃 < 0.05, ∗∗𝑃 < 0.01, compared with SAMR1; #𝑃 < 0.05. ##𝑃 < 0.01 compared with SAMP8. Data values are expressed as mean ± SEM, 𝑛 = 9-10.
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Figure 5: Effects of DSS on glycine in hippocampal tissue.The effect
of DSS on the glycine level in hippocampus of female SAMP8. #𝑃 <
0.05, compared with SAMP8; data values are expressed as mean ±
SEM, 𝑛 = 9-10.

on the level of NO at the dose of 4.8 g/kg. Some materials
contained in DSSmight inhibit NO production. It is reported
that Paeoniflorin, a small molecular compound inDSS, could
inhibit NO level in some experimental conditions [67, 68].

NMDA receptors are essential for cognitive abilities. In
1986, Morris reports the first evidence that NMDA receptors
are necessary for spatial learning [69]. These results were
confirmed by another study showing that a knock-out of
the NMDA receptor in CA1 results in deficits in LTP and

NOFemale
SAMP8

DSS

Estrogen
LTP
Learning
Memory

Glycine

Figure 6: Proposed mechanisms of DSS on cognition improving
effects in female SAMP8.

spatial memory [70]. Recently, many reports have indicated
that the function of NMDA receptors decreases in AD,
including gene expression [71], neurotransmitters (such as
glutamate) [72], and coactivator of NMDA receptor (such
as D-serine) [73]. Deficits in glutamatergic system were also
observed in animal models, such as senescence-accelerated
mouse/prone 8 (SAMP8) [74, 75]. Glycine is a coagonist
of NMDA receptors, and increasing glycine concentration
in the synaptic cleft can improve cognitive impairment in
animal models of AD [76] indicating that increasing glycine
is beneficial for AD. A previous study showed that DSS could
elevate glycine in female SAMP8 [77], and we got the same
results in this study. Estrogen was proved to stimulate glycine
incorporation [78], and increasing glycine in hippocampal
tissue might contribute to the protective effects for DSS
against AD.

In conclusion, DSS has better effects on female SAMP8
than males. Plasma E2 in female SAMP8 was increased by
DSS in a dose dependent manner. These results have good
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consistency with our hypothesis, indicating that DSS might
be more effective in female patients than males. DSS plays its
protective role against AD via modulation of estrogen, NO,
and glycine in plasma or hippocampal tissue (Figure 6).
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