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ABSTRACT: In this work, the catalytic effects of FeCl3 toward the
hydrogen storage properties of the MgH2−Na3AlH6 composite were
investigated for the first time. The temperature-programed
desorption results indicated that the onset temperature of the
hydrogen release of a 10 wt % FeCl3-doped MgH2−Na3AlH6
composite was ∼30 °C lower than that of the undoped MgH2−
Na3AlH6 composite. The addition of FeCl3 into the MgH2−
Na3AlH6 composite resulted in improved absorption and desorption
kinetics performance. The absorption/desorption kinetics measure-
ments at 320 °C (under 33 and 1 atm hydrogen pressure,
respectively) indicated that within 10 min, the doped sample
absorbed ∼4.0 wt % and desorbed ∼1.5 wt % hydrogen. By
comparison, the undoped sample absorbed only ∼2.1 wt % and desorbed only ∼0.6 wt % hydrogen under the same conditions and
time. Comparably, the apparent activation energy value of the doped composite is 128 kJ/mol, which is 12 kJ/mol lower than that of
the undoped composite (140 kJ/mol). The formation of the new species of MgCl2 and Fe in the doped composite was detected
from X-ray diffraction analysis after heating and absorption processes. These two components were believed to play a vital role in
reducing the decomposition temperature and kinetics enhancement of the MgH2−Na3AlH6 composite.

■ INTRODUCTION

The development of efficient and safe hydrogen storage
technology is required to commercialize the hydrogen
economy. So far, several states of storing hydrogen have
been explored, namely, gaseous state,1−3 liquid state,4−6 and
solid state.7−14 Each of these kinds of storage has its own
benefits. However, storing hydrogen in the solid state has more
benefits, particularly regarding its safety and high volumetric
hydrogen capacity. In recent years, a Mg-based hydride
material, MgH2, has been promptly promoted in numerous
studies because of its high hydrogen release (7.6 wt %), good
reversibility,15−18 and highest energy density (9 MJ/kg).19

Besides, NaAlH4 is also a potential candidate to store hydrogen
in the solid state due to its high theoretical hydrogen capacity
(7.4 wt %).20 However, the high temperature of hydrogen
release (up to 400 °C for MgH2 and up to 200 °C for
NaAlH4)

21−23 and poor sorption kinetics have impeded the
practical use of MgH2 and NaAlH4 as the hydrogen storage
medium.24−26 To deal with these issues, a number of methods
like enhancing the kinetics performance and lowering the
decomposition temperature by doping with a potential
catalyst27−40 and improving the surface properties using the
ball milling method41,42 have been widely studied by many
researchers.

Apart from the stated methods, reacting with other hydrides
is one of the alternative methods that have been applied in
solid-state hydrogen storage research to obtain better hydrogen
storage performance. In recent years, this type of method has
grown rapidly in finding potential solid-state hydrogen storage
materials.43−48 Previous research indicated that decomposition
temperatures of as-milled MgH2 and as-milled Na3AlH6 were
reduced to approximately 55 °C after the reaction of MgH2
and Na3AlH6.

49

By the combination of the two hydrides, the enthalpy
reaction can be improved, but it still cannot meet the practical
application of hydrogen storage as a suitable requirement.
Thus, a catalyst is used to enhance the sorption properties of
the destabilized MgH2−Na3AlH6 system. Our previous study
demonstrated that the catalyst based on the metal fluorides
had significantly improved hydrogen storage properties of the
MgH2−Na3AlH6 system.50 The TiF3-doped MgH2−Na3AlH6
sample began releasing hydrogen at 140 °C, which is 30 °C
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lower than the undoped MgH2−Na3AlH6. The reaction
mechanism analysis indicated that the formation of NaF,
AlF3, and Al3Ti plays a dominant role by serving as an active
mechanism for nucleation and growth of dehydrogenated
products.
Motivated by our previous research, another catalyst from a

different metal group, namely, iron chloride (FeCl3), was
introduced to study its effect on the MgH2−Na3AlH6
composite. To the best of our knowledge, no report has
been claimed on the application of FeCl3 as the catalyst for the
hydrogen storage properties of the MgH2−Na3AlH6 system to
date. The effect of FeCl3 on the Li−N−H system reported by
Zhang et al.51 demonstrated that the dehydrogenation peak
and termination temperature of the doped 1 mol % FeCl3
sample had been reduced, and the apparent activation energy
was reduced by approximately 14.93 kJ/mol. Hence, it is
interesting for this research to explore the effect of FeCl3 on
the hydrogen storage properties of the MgH2−Na3AlH6
composite and gain an understanding of the nature and
catalytic mechanism of the catalyst in the system. Hydro-
genation properties and thermal properties were studied by
pressure composition temperature (PCT) and differential
scanning calorimetry (DSC), respectively. Meanwhile, the
surface morphology of the sample was determined by scanning
electron microscopy (SEM), and the structural character-
ization of the samples was determined by X-ray diffraction
(XRD).

■ RESULTS AND DISCUSSION
Characterization of Na3AlH6. The XRD characterization

of the NaH−NaAlH4 (2:1) composite after milling for 20 h is
displayed in Figure 1. The XRD pattern indicates that only

Na3AlH6 peaks were present, whereas the peaks of NaH and
NaAlH4 were absent, indicating a complete transformation,
which is represented by eq 1

+ →2NaH NaAlH Na AlH4 3 6 (1)

The metastable β-Na3AlH6 peaks were also detected after
the process of ball milling. It is expected that the polymorphic
transformation of Na3AlH6 and β-Na3AlH6 has partially
occurred as reported in previous work.52

Dehydrogenation Temperature. Figure 2 illustrates the
TPD performance of the as-milled MgH2, as-milled Na3AlH6,
MgH2−Na3AlH6 composite, and MgH2−Na3AlH6−10 wt %

FeCl3. As displayed in Figure 2, the as-milled MgH2 and
Na3AlH6 exhibit the same decomposition process, which is
only one dehydrogenation step. The dehydrogenation process
of each one of the samples starts at around 350 and 230 °C. By
comparing the decomposition properties, the MgH2−Na3AlH6
composite with and without a catalyst has three dehydrogen-
ation steps. These properties could have corresponded to the
decomposition of Na3AlH6 and MgH2 during the heating
process. For the composite without a catalyst, the first
dehydrogenation process had started at 170 °C and released
1.0 wt % hydrogen after heating at 220 °C. Next, the
dehydrogenation process in the second stage occurred within
270−350 °C. Then, the third dehydrogenation process with a
total hydrogen release of 5.9 wt % occurred at 375 °C.
Meanwhile, the onset temperature for the composite with
FeCl3 is 140 °C, which results in the reduction of the
decomposition temperature compared to the pristine MgH2−
Na3AlH6 composite. With further heating, the dehydrogen-
ation process for the second stage takes place at 270−350 °C,
and the third stage occurs at 360−450 °C.

Sorption Kinetics Properties. The rehydrogenation of
the dehydrogenated samples of MgH2−Na3AlH6 with a 10 wt
% FeCl3 catalyst was conducted for the reversibility property.
Figure 3 displays the rehydrogenation kinetics profile of the
studied materials at 33 atm hydrogen pressure and an
operating temperature of 320 °C. For a duration of 60 min,
approximately 4.2 wt % hydrogen was absorbed by the
catalyzed composite, whereas it was approximately 3.1 wt % for

Figure 1. XRD profile of the NaH−NaAlH4 (2:1) composite milled
for 20 h.

Figure 2. TPD profile of the as-milled MgH2, as-milled Na3AlH6,
MgH2−Na3AlH6, and MgH2−Na3AlH6−10 wt % FeCl3 composites.

Figure 3. Rehydrogenation kinetics under a constant temperature of
the composites at 320 °C and under 33 atm.
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the pristine composite under a similar test condition. These
results indicate that the absorption properties and the
rehydrogenation process of the MgH2−Na3AlH6 system were
enhanced by the addition of FeCl3.
The catalytic effect of FeCl3 on the dehydrogenation

properties of materials was explored at 1 atm in 60 min and
an operating temperature of 320 °C, as illustrated in Figure 4.

For comparison, the undoped composite was characterized
under the same condition. It can be observed that in 60 min,
the catalyzed composite released approximately 1.7 wt %
hydrogen at 320 °C. Conversely, the composite without the
catalyst released 0.85 wt % hydrogen. These results indicate
that the addition of FeCl3 contributed to improving the
desorption kinetics. The comparison of the hydrogen storage
properties of 4MgH2−Na3AlH6 doped with different catalysts
is shown in Table 1. Clearly, the onset dehydrogenation
temperature of the FeCl3-doped MgH2−Na3AlH4 sample is
lower than that of the SrTiO3-doped MgH2−Na3AlH4 sample.
For the rehydrogenation kinetic performance, the FeCl3-doped
MgH2−Na3AlH4 sample is better than the TiF3- and SrTiO3-
doped MgH2−Na3AlH4 samples. In addition, compared with
other Mg−Al−H systems, such as Mg(AlH4)2 that was
synthesized by high-energy ball milling of Mg(AlH4)2(Et2O)
in a specially designed jar,53 the MgH2−Na3AlH4 system
showed a slightly higher onset decomposition temperature.
According to Pang et al.,53 the as-synthesized Mg(AlH4)2
nanorods start to decompose at about 130 °C and 9.0 wt %
hydrogen capacity was released within a two-step reaction.
Kinetic models can be used to further analyze the behavior

of the sorption kinetics of the composite. In this study, the
absorption and desorption behavior of the composites have
been calculated using two kinetics models: (i) contracting
volume and (ii) Johnson−Mehl−Avrami (JMA). The models
are considered because the experimental data can be fitted to
the models, and they are relatively accurate, as mentioned by
Pang and Li.55 The experimental data and the kinetics equation
can be used to deduce the rate-limiting step of the kinetics

process. The best linear plot from the models represents the
rate-limiting step of the sorption behavior.
The calculation of the kinetic models based on equations in

Table S1 (Supporting Information) is performed for the
sorption kinetics operated at 320 °C and is illustrated in Figure
5. The calculations for both cases were done for a hydrogen

capacity range of 0−80%.56 The result indicates that the rate-
limiting step of the absorption and desorption of the doped
composite at 320 °C is the diffusion of 3D growth that is
regulated by reducing the interface velocity.

Thermal Properties. DSC curves of the doped and
undoped MgH2−Na3AlH6 composites at 20 °C/min (heating
rate) are plotted in Figure 6. Two endothermic peaks of the
undoped composite were observed at temperatures of 250 °C
(first peak) and 390 °C (second peak). These endothermic
peaks were attributed to the decomposition process of
Na3AlH6

57 and MgH2,
25 respectively. For the doped

composite, two decomposition peaks were observed in which
the peaks were decomposed at a lower temperature as
compared to that for the undoped composite. The first and

Figure 4. Dehydrogenation kinetics under a constant temperature of
the materials at 320 °C and 1 atm hydrogen pressure.

Table 1. Comparison of the Hydrogen Storage Properties of 4MgH2−Na3AlH6 Doped with Different Catalysts

system dehydrogenation temperature (°C) rehydrogenation time (min) hydrogen absorb (wt %)

4MgH2−Na3AlH6 + TiF3
50 140.0 10.0 3.3

4MgH2−Na3AlH6 + SrTiO3
54 145.0 10.0 3.7

4MgH2−Na3AlH6 + FeCl3 (this work) 140.0 10.0 4.0

Figure 5. Calculation result of different kinetics equations of the
MgH2−Na3AlH6−10 wt % FeCl3 composite based on Table 1 for (a)
absorption at 320 °C and (b) desorption at 320 °C.
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second peaks were decomposed at 240 and 365 °C,
respectively. There is a reduction of around 10 and 25 °C in
the decomposition temperature compared to that of the
undoped composite. These findings are compatible with the
TPD outcomes described in Figure 2 but at a higher
temperature. The disparity in the measurement condition
between the two methods might be the reason for this
phenomenon, as discussed in previous studies.58,59

Apparent Activation Energy. To determine the effect of
the introduction of FeCl3 on the kinetic characteristic of the
MgH2−Na3AlH6 composite system, the apparent activation
energy for hydrogen release from the MgH2−Na3AlH6−10 wt
% FeCl3 sample was investigated. The apparent activation
energy of the undoped composite was also measured for
comparison. A Kissinger plot was developed based on the
Kissinger equation60 presented as follows to determine the
value of activation energy

β[ ] = − +T E RT Aln / /P
2

A P (2)

where β is the heating rate, TP is the temperature of the peak in
the DSC curve, R is given as the gas constant, and A is the
linear constant. Meanwhile, in a graph of ln[β/TP

2] against
1000/TP, the apparent activation energy, EA, can be calculated
from the slope. Figure 7a,b indicates the DSC curves for the
undoped and doped samples at different heating rates.
The apparent activation energy for the decomposition of

MgH2 (second stage) of the undoped composite is 140 kJ/

mol, based on the Kissinger analysis illustrated in Figure 8. By
contrast, the apparent activation energy for the decomposition

of MgH2 (second stage) of the doped composite was
calculated to be 128 kJ/mol. The value for the reduction is
approximately 12 kJ/mol. These values indicate that the FeCl3
additive played a crucial role in decreasing the activation
energy of the 4MgH2−Na3AlH6 composite.

Scanning Electron Microscopy Analysis. Figure 9
illustrates the morphologies of the doped and undoped
MgH2−Na3AlH6 composites with FeCl3. Morphologies of
pure MgH2, milled MgH2, milled Na3AlH6, and pure FeCl3
have been added for comparison purposes. The pure particle
image of MgH2 reveals an angular thin shape that is larger than
50 μm (Figure 9a). After milling for 1 h, particle sizes were
reduced and less homogeneous for MgH2, as illustrated in
Figure 9b. Figure 9c presents the SEM image of milled
Na3AlH6 in which the particle is deposited in a coral-like shape.
Meanwhile, the SEM image of the as-received FeCl3 is
presented in Figure 9d. The particles’ sizes are larger than 1
μm without any further purification. Additionally, the MgH2−
Na3AlH6 composite shows a decrease in particle sizes, as
illustrated in Figure 9e. Following the addition of FeCl3 to the
composite MgH2−Na3AlH6 (Figure 9f), the particle sizes were
decreased relative to the undoped composite. Smaller particle
sizes can improve the absorption performance of the hydrogen
because they increase the total particle reaction surface area
and minimize the hydrogen diffusion length.61

Figure 6. DSC profiles at 20 °C/min for the MgH2−Na3AlH6 and
MgH2−Na3AlH6−10 wt % FeCl3 samples.

Figure 7. DSC curves of (a) the MgH2−Na3AlH6 composite and (b) the MgH2−Na3AlH6−10 wt % FeCl3 composite at different heating ramps
(15, 20, 25, and 30 °C/min).

Figure 8. Kissinger analysis of (a) the MgH2−Na3AlH6 and (b)
MgH2−Na3AlH6−10 wt % FeCl3 composites.
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Reaction Mechanism Analysis. The XRD analysis results
at various stages of dehydrogenation for the undoped MgH2−
Na3AlH6 composite are illustrated in Figure 10. After a 60 min

process of ball milling, peaks of MgH2, Na3AlH6, and
metastable β-Na3AlH6 appeared (Figure 10a). New hydride
phases in the form of perovskite, NaMgH3 and MgH2, that did
not react were observed at the first stage of the 230 °C
dehydrogenation process (Figure 10b). This phenomenon
occurred because the Na3AlH6 phase disappeared after the
process of heating. Moreover, there were a few Al peaks that
were clearly observed after the desorption process at 230 °C.
The formation of NaMgH3 and Al peaks was due to the
decomposition of Na3AlH6 that had reacted with MgH2, as
displayed in eq 3

+ → + +Na AlH 3MgH 3NaMgH Al 3/2H3 6 2 3 2 (3)

In Figure 10c, when the MgH2−Na3AlH6 composite was
heated to 375 °C, the NaH phase was detected. However, the
intermediate peaks of Mg17Al12 and Mg dominated the XRD

phase. Furthermore, phases of MgH2 and NaMgH3 dis-
appeared. The observation of the diffraction peaks indicated
that the desorption of hydrogen at 375 °C corresponded to
MgH2 whose decomposition and reaction with Al are
presented in eqs 4 and 5, respectively. Meanwhile, the
decomposition of NaMgH3 is represented by eq 6.

→ +MgH Mg H2 2 (4)

+ → +17MgH 12Al Mg Al 17H2 17 12 2 (5)

→ + +NaMgH NaH Mg H3 2 (6)

When the process temperature was increased up to 450 °C,
as displayed in Figure 10d, the peak of Na was detected. It was
believed that the NaH phase had fully dehydrogenated at this
stage, as illustrated in eq 7

→ +NaH Na 1/2H2 (7)

To clarify the impact of FeCl3 on the destabilized MgH2−
Na3AlH6 system, the XRD measurements were also conducted
at various dehydrogenation stages, as illustrated in Figure 11.
The peaks of MgH2, Na3AlH6, metastable β-Na3AlH6, and
FeCl3 were detected after 60 min of ball milling, as illustrated
in Figure 11a. When the FeCl3-doped MgH2−Na3AlH6 sample
was heated at 220 °C, new phases, Fe and MgCl2, were
detected from the XRD pattern (Figure 11b). Additionally,
MgH2, NaMgH3, and Al species also appeared, which are liable
for improving the desorption temperature of the MgH2−
Na3AlH6 system. Additional phases were detected after the
heating process at 350 and 420 °C and are depicted in Figure
11c,d, respectively. These results indicate that new species of
MgCl2 and Fe that formed and acted as the active species were
due to the reaction between FeCl3 and Mg components, as
illustrated in eq 8

+ → + +3MgH 2FeCl 3MgCl 2Fe 3H2 3 2 2 (8)

The XRD analysis was run for 4MgH2−Na3AlH6 and the
destabilized MgH2−Na3AlH6−10 wt % FeCl3 system to

Figure 9. Surface morphology of pure MgH2 (a), milled MgH2 (b), milled Na3AlH6 (c), pure FeCl3 (d), MgH2−Na3AlH6 composite (e), and
MgH2−Na3AlH6−10 wt % FeCl3 composite (f).

Figure 10. XRD profiles of the MgH2−Na3AlH6 sample (a) after 1 h
of milling and after desorption at (b) 230 °C, (c) 375 °C, and (d) 450
°C.
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examine the reaction mechanism after the absorption process.
These measurements were carried out under 33 atm H2
pressure at 320 °C, as depicted in Figure 12. Figure 12a

indicates that NaMgH3, Al3Mg2, MgH2, Al, and MgO phases
can be identified in the MgH2−Na3AlH6 sample. After addition
of FeCl3 (Figure 12b), Fe and MgCl2 were detected in the
doped composite. The diffraction peaks were previously
observed in the destabilized MgH2−Na3AlH6−10 wt %
FeCl3 system after dehydrogenation. The peaks of Mg17Al12
and Mg disappeared after the absorption process for undoped
and doped samples. These results indicated full conversion of
MgH2, as illustrated in eq 9

+ −

→ + − + −

y

y y y

Mg Al (17 2 )H

Mg Al (17 2 )MgH (12 3 )Al
17 12 2

2 3 2 (9)

The formation of Fe and MgCl2 species during the
desorption process with the addition of FeCl3 could play a
significant role in enhancing the hydrogen sorption perform-
ances of the MgH2−Na3AlH6 composite. Fe is well known for
being a promising catalyst for MgH2.

62−64 The in situ formed
Fe may interact with molecules of hydrogen and cause
hydrogen molecules to dissociate, subsequently boosting the
re/dehydrogenation kinetics. Meanwhile, the catalytic effect of
Cl-containing species (MgCl2) may also have an impact on the

sorption kinetics. MgCl2 plays a crucial part in ameliorating the
rehydrogenation kinetics of MgH2 doped with NiCl2 and
CoCl2, as reported by Mao et al.65 Additionally, the desorption
and absorption kinetics can be enhanced by shortening the
diffusion distance of reaction ions from MgCl2 and like an
active site for the products of the nucleation and desorption.
Thus, the newly developed products, MgCl2 and Fe, have a
promising catalytic impact on enhancing the hydrogen
sorption performances of the destabilized MgH2−Na3AlH6
system. Therefore, these new species also served as active
sites for the dehydrogenated products in nucleation and
growth, thus enhancing the hydrogen sorption properties of
the MgH2−Na3AlH6 system.

■ CONCLUSIONS

In summary, doping with the FeCl3 catalyst increased the
efficiency of the MgH2−Na3AlH6 composite in hydrogen
storage. The FeCl3-doped MgH2−Na3AlH6 composite starts to
release hydrogen at approximately 140 °C, which is
approximately 30 °C lower than the onset dehydrogenation
temperature of the undoped 4MgH2−Na3AlH6 composite.
Additionally, the absorption and desorption kinetics of the
MgH2−Na3AlH6 composite were reinforced by the addition of
FeCl3. The apparent activation energy for MgH2-relevant
decomposition in the MgH2−Na3AlH6 composite was
decreased from 140 to 128 kJ/mol utilizing FeCl3 from the
Kissinger plot. For the SEM images, the doped composite
displayed smaller sizes of particles compared to those of the
undoped composite. These improvements were made possible
by the formation of catalytic species, Fe and MgCl2, during the
heating processes. It is rational to assume that the development
of such active species increased the interaction between MgH2
and Na3AlH6, thus further enhancing the efficiency of the
MgH2−Na3AlH6 system in hydrogen storage.

■ EXPERIMENTAL DETAILS

Starting materials, magnesium hydride (MgH2), sodium
hydride (NaH), sodium aluminum hydride (NaAlH4), and
iron(III) chloride (FeCl3) were purchased from Sigma-Aldrich
with nearly 100% purity. Na3AlH6 was synthesized through the
mechanochemical reaction by mixing NaH and NaAlH4 at a
molar ratio of 2:1.66 The composite made of MgH2 and
Na3AlH6 with a mole ratio of 4:1 (denoted as MgH2−
Na3AlH6) and the FeCl3 catalyst were milled in a planetary ball
mill (NQM-04) for 1 h at a rotation speed of 400 rpm. The
sample was placed into a sealed stainless steel vial together
with hardened stainless steel balls. The ball-to-powder ratio in
terms of weight was 40:1. To avoid the exposure of samples to
moisture, all sample preparations were conducted in a glovebox
(MBraun Unilab) under an inert gas atmosphere (argon).
For the temperature-programed desorption (TPD) measure-

ment, a sample of approximately 60 mg was heated from room
temperature to 450 °C at a 5 °C/min heating rate in a Sieverts-
type PCT apparatus. Moreover, the absorption and desorption
kinetics were investigated at a constant temperature of 320 °C
under 33 and 1 atm hydrogen pressure, respectively. For the
evaluation of the thermal properties of samples, the DSC
measurement was conducted using a Mettler Toledo TGA/
DCS 1. Around 5 mg of samples were heated from room
temperature to 450 °C under an argon flow and different
heating rates (15, 20, 25, and 30 °C/min) were used.

Figure 11. XRD profiles of the MgH2−Na3AlH6−10 wt % FeCl3
sample (a) after 1 h of milling and after desorption at (b) 220 °C, (c)
350 °C, and (d) 420 °C.

Figure 12. XRD profiles of the (a) MgH2−Na3AlH6 and (b) the
MgH2−Na3AlH6−10 wt % FeCl3 composites after absorption at 320
°C.
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A scanning electron microscope (JEOLJSM-6360LA) was
used to determine the morphology of the as-received MgH2,
as-milled MgH2, synthesized Na3AlH6, and as-milled MgH2−
Na3AlH6 composite with and without FeCl3. Meanwhile,
reaction mechanisms of the FeCl3-doped MgH2−Na3AlH6

composite after the milling and decomposition and after the
absorption processes were evaluated by an X-ray diffractometer
(Rigaku MiniFlex). The scans were carried out over diffraction
angles from 20 to 80° at a speed of 2.00°/min.
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