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Abstract On the basis of conventional scaling theory, the two-point scaling theory was
modified in order to describe the influence of composition on the partial molar heat capacity
and volume during the micellization process. To verify the theory, isobaric heat capacities
and densities of aqueous sodium octanoate solutions were measured over wide composition
and temperature ranges and the modified approach was used to analyze the calculated partial
molar heat capacities and volumes of the surfactant in water. The results obtained indicate
that the micellization process is subject to the scaling laws. The results were compared with
those for other systems. Peculiar behavior of the critical indices was observed and correlated
with the structure of the micelles.
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1 Introduction

Research on colloidal systems is carried out using many different experimental techniques.
Interpreting the experimental data requires a model which combines a description of the
thermodynamics together with a description of the structure. One of such models is scaling
theory [1], particularly the two-point scaling theory introduced by Wojtczak et al. [2, 3] for
the description of paramagnetic–ferromagnetic phase transitions, which extends the theory
to the case of noncontinuous phase transitions. This idea came from the fact that some
analogies can be perceived between the phase transitions that occur in the two systems
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(i.e. paramagnetic–ferromagnetic and regular solution–micellar systems): a dominant role
is played by surface effects and changes in degree of order of surface particles. Moreover,
the similarity between the shape of the curve describing the partial molar heat capacities at
constant pressure of surfactant on molality, and the shape of the temperature dependence of
the specific heat capacities under the constant external field in the case of magnetic systems,
gave us additional encouragement to consider whether phase transitions in these solutions
also follow scaling laws.

Our research showed indeed that the thermodynamic relations following from the scaling
theory can be used for the description of colloidal [4] and microheterogeneous systems
[5, 6]. The application of the theory, however, was completely “intuitive” and, in order to
interpret the results, a reformulation of the theory with respect to the original basis was
necessary.

2 Theoretical Study

In physics, critical phenomena is a term related with critical points, which are conditions
at which a phase boundary ceases to exist. For chemists, commonly known critical points
are the critical temperature (or pressure) at which vapor pressure curve terminates, or in
liquid systems the critical temperature of mixing. Another kind of critical phenomena are
the paramagnetic–ferromagnetic phase transitions, which are described by the conventional
scaling theory [1].

Scaling theory assumes that thermodynamic potentials are homogeneous functions with
respect to the external field and the reduced temperature ε. According to Stanley [1] the
static scaling hypothesis states that they are of more general form, namely: f (λax,λby) =
λf (x, y) rather then f (λx,λy) = λpf (x, y). The reduced temperature is defined as:

ε = |T − Tc|
Tc

(1)

where Tc is the critical temperature.
The external field term can have many meanings. In the conventional theory it was the

magnetic field [1] but it can be the pressure p when solutions are considered.
Application of scaling theory to the description of solutions requires the introduction of

one more variable, namely the reduced amount of solute μ defined as:

μ = |n2 − nc|
nc

(2)

where n2 is the amount of the solute and nc is the critical amount of the solute; by analogy to
the conventional theory it is the amount of solute at which the critical phenomenon occurs.

As a result the thermodynamic potential, in our case the Gibbs energy, can be expressed
as a function of three variables:

G = G(ε,p,μ) (3)

When the amount of solvent n1 is constant and its mass is equal to 1000 g, the amount of
solute n2 is equal to the molality of solution by means of:

n1 = 1000

M1
⇒ n2 = m (4)

which allows use of the molality instead of the amount of solute, and equates the critical
amount of the solute with the critical micellar concentration c.m.c.
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The conventional theory describes the behavior of the molar properties of pure sub-
stances. In the case of solutions, partial molar quantities should be considered instead. The
singularities in the behavior of thermodynamic functions related to the critical phenomena
in solutions occur with increasing molality, not temperature, as in the case of conventional
theory.

On the basis of the fundamental assumption of scaling theory about the homogeneity of
thermodynamic potentials, we can write:

λG(ε,p,μ) = G
(
λaε,λbp,λcμ

)
(5)

for any λ and arbitrary a, b, c (non-vanishing simultaneously).
Differentiating both sides of Eq. 5 we obtain:

λ
∂2G(ε,p,μ)

∂p∂n
= ∂2G(λaε,λbp,λcμ)

∂p∂n
= ± 1

nc

λbλc ∂2G(λaε,λbp,λcμ)

∂(λbp)∂(λcμ)
(6)

Taking into account the thermodynamic fundamentals ( ∂2G
∂p∂n2

)T ,n1 = V2 and applying it
to the homogeneous function:

(
∂2G(λaε,λbp,λcμ)

∂(λbp)∂(λcμ)

)

T ,n1

= V2
(
λaε,λbp,λcμ

)
(7)

we obtain:

± 1

nc

λV2(ε,p,μ) = ± 1

nc

λb+cV2

(
λaε,λbp,λcμ

)
(8)

and:

V2 = λb+c−1V2
(
λaε,λbp,λcμ

)
(9)

Since Eq. 9 is valid for all values of λ it must hold also for the particular choice:

λ = μ
− 1

c (10)

which is equivalent to:

λcμ = 1 (11)

If we consider a constant (or zero, in conventional theory) field (the pressure in our
case), constant temperature, and the above (Eqs. 10 and 11) value for λ, then the expression
V2(λ

aε,λbp,λcμ) becomes constant and we denote it as V o
2 . This leads to:

V2 = μ
1−b−c

c V o
2 (12)

Taking into account the above results, the equation for the partial molar volume, as a
function of solution molality, at constant pressure and temperature, can be derived in the
form of a power law as follows:

V2 = V o
2 μβ ′

(13)

with the critical index β ′:

β ′ = 1 − b − c

c
(14)

A similar relation can be derived for the partial molar heat capacity:
(

∂3G(λaε,λbp,λcμ)

∂(λaε)2∂(λcμ)

)

p,n1

= − 1

T
Cp,2

(
λaε,λbp,λcμ

)
(15)
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with an expression Cp,2(λ
aε,λbp,λcμ) which becomes constant at constant temperature

and pressure:

Cp,2 = μ
− 2a+c−1

c C◦
p,2 (16)

Cp,2 = C◦
p,2μ

−α′
(17)

and the critical index α′:

α′ = 2a + c − 1

c
(18)

Relations for other thermodynamic functions can also be derived.
For the partial molar isothermal compressibility we obtain:

κT,2 = κ◦
T ,2μ

γ ′
(19)

γ ′ = 2b + c − 1

c
(20)

Analogously, the relation for the pressure dependence of the partial molar volumes in
terms of the scaling law has the form:

V2 = V ◦
2 p

1
δ′ (21)

δ′ = b

1 − b − c
(22)

Similar to the original theory [1] where the relation ξ ∝ μ−ν can be proven, we suspect
the relation for the “partial molar correlation length”, a property which characterizes only
the solute, is in the form:

ξ2 = ξ ◦
2 μ−ν′

(23)

with the critical index ν ′.
In the conventional theory some relations between the critical indices, e.g. Rushbrooke

relation α + 2β + γ = 2 or Widom relation β(δ − 1) = γ , can be proved [1]. The modified
theory causes some of these relations to have different forms:

α′ + 2β ′ + γ ′ = 2a + c − 1 + 2 − 2b − 2c + 2b + c − 1

c
= 2a

c
�= 2 (24)

but they can be transformed into the original form for the case when the temperature, rather
than molality, is a variable and consequently the constant a is the denominator of the fraction
of Eq. 24:

c → a ⇒ 2a

c
= 2 (25)

Some other relations remain unchanged:

β ′(δ′ − 1
) = 1 − b − c

c

(
b

1 − b − c
− 1

)
= 2b + c − 1

c
= γ ′ (26)

In the conventional approach the so called geometrical relation can be assumed to be in
the form:

G

kT V
∝ ξ−d (27)
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resulting from the fact that thermodynamic potential divided by kT V has the same dimen-
sion as the inverse of volume, which can be expressed, using the correlation length, as ξ−d .

Taking into account that heat capacity is the second derivative of the thermodynamic po-
tential, the behavior of the Gibbs energy can be described using the heat capacity critical
index α in the form of G ∝ ε2−α . Correlation length, in turn, in terms of scaling can be
written as ξ ∝ ε−ν . Comparison of the indices of both functions results in the relation which
links the critical index α (describing the behavior of heat capacity) with the dimensional-
ity of the system d , by means of the critical index ν which describes the behavior of the
correlation length [7], namely:

2 − α = νd (28)

The modification of the theory makes that we cannot be sure if this relation is true in the
case of a solution. However, assuming the relation:

2 − α′ = ν ′d ′ (29)

by analogy to Eq. 28, we can see that d ′ denotes the dimensionality with respect to solutions,
by analogy with the conventional approach, but a precise definition at this stage is difficult,
due the lack of appropriate experimental data.

Agreement of the relations between the critical indices indicates the possibility that our
treatment of the scaling theory could be applied to the description of solutions and phase
transitions induced by changes of solution composition.

The conventional scaling theory can be used for the description of the continuous phase
transitions (second order), in the case where the order parameter changes continuously. It can
be extended, however, to the case of noncontinuous phase transitions (first order). Such an
extension is described by the two-point scaling theory [2, 3], which is considered when the
system can appear in n phases confined by the stability points of each phase. The two-point
scaling is also based on the assumption that the thermodynamic potentials are generalized
homogeneous functions, although their singularities are related to the stability points of each
phase instead of the phase transition points which now are situated in the intervals between
stability points. This approach results in a different temperature scale for each phase. The
values of msp denote the stability points for lower limits of the concentration of phase s

while the values msf represent the stability points for upper limits of the concentration of
the phase s. In our case it refers to the regular solution of surfactant monomers (s = 1) and
the phase of micellar structures (s = 2), respectively. In the case of a regular solution of
surfactant monomers we consider only the upper stability point, and therefore we denote
it simply as mf . Similarly for the micellar phase we consider only the lower limit denoted
as mp .

The crossing points of the curves for each phase indicate the critical molality mc , which
can be considered as the boundary between the concentration range in which the solution
predominantly exhibits properties characteristic for a regular solution (m < mc) and the
range in which the solution properties become typical for micellar systems (m > mc). This
point corresponds to the transition point in the conventional approach to scaling.

Considering the two-point version of scaling theory, the relations for the heat capacities
for each phase with respect to the molality variable m can be written as follows:

Cp,2(m ≤ mf ) = C◦1
p,2

(
1 − m

mf

)−α′
1

(30a)

Cp,2(m ≥ mp) = C◦2
p,2

(
m

mp

− 1

)−α′
2

(30b)
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Taking into account that the apparent molar quantities can be determined directly from
experiment, the relations describing the concentration dependence of the apparent molar
heat capacities can be derived in terms of scaling:

Cp,�,2(m ≤ mf ) = C◦1
p,2

(
1

1 − α′
1

)
mf

m

[
q◦

f −
(

1 − m

mf

)1−α′
1
]

(31a)

Cp,�,2(m ≥ mp) = C◦2
p,2

(
1

1 − α′
2

)
mp

m

[
q◦

p +
(

m

mp

− 1

)1−α′
2
]

(31b)

For the calculation of the partial molar heat capacities Cp,2 the derivative of the apparent
molar heat capacity Cp,�,2 is needed:

Cp,2 = Cp,�,2 + m
dCp,�,2

dm
(32)

and this quantity can be also expressed in terms of scaling:

dCp,�,2

dm
(m ≤ mf ) = C◦2

p,2

(
1

1 − α′
1

)
mf

m2

×
[
−q◦

f +
(

1 − m

mf

+ (
1 − α′

1

) m

mf

)(
1 − m

mf

)−α′
1
]

(33a)

dCp,�,2

dm
(m ≥ mp) = C◦2

p,2

(
1

1 − α′
2

)
mp

m2

×
[
−q◦

p −
(

m

mp

− 1 − (
1 − α′

2

) m

mp

)(
m

mp

− 1

)−α′
2
]

(33b)

Similar equations can be written for each phase in the case of partial molar volumes:

V2(m ≤ mf ) = V ◦1
2

(
1 − m

mf

)β ′
1

(34a)

V2(m ≥ mp) = V ◦2
2

(
m

mp

− 1

)β ′
2

(34b)

as well as for the apparent molar volumes:

V�,2(m ≤ mf ) = V ◦1
2

(
1

1 + β ′
1

)
mf

m

[
q◦

f −
(

1 − m

mf

)1+β ′
1
]

(35a)

V�,2(m ≥ mp) = V ◦2
2

(
1

1 + β ′
2

)
mp

m

[
q◦

p +
(

m

mp

− 1

)1+β ′
2
]

(35b)

and their derivatives:

dV�,2

dm
(m ≤ mf ) = V ◦2

2

(
1

1 + β ′
1

)
mf

m2

×
[
−q◦

f +
(

1 − m

mf

+ (
1 + β ′

1

) m

mf

)(
1 − m

mf

)β ′
1
]

(36a)
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Fig. 1 Qualitative influence of
molality on the partial molar heat
capacity and on the partial molar
volume according to the
two-point scaling theory

dV�,2

dm
(m ≥ mp) = V ◦2

2

(
1

1 + β ′
2

)
mp

m2

×
[
−q◦

p −
(

m

mp

− 1 − (
1 + β ′

2

) m

mp

)(
m

mp

− 1

)β ′
2
]

(36b)

The shape of the curve for the partial molar heat capacity (and for the partial molar
volume) versus molality following from the two-point scaling theory is the same as the
shape of the curve for the heat capacity (and magnetization, respectively) versus temperature
following from the conventional scaling theory. The graphical representation of the obtained
results is showed in Fig. 1.

In the original theory the magnetization denotes the order parameter, the value of which is
equal to zero after the transition point, and differs from zero before the critical point. In our
case the partial molar volumes can also correspond to an order parameter whose behavior is
characterized as follows: the parameter has a more or less constant value before the c.m.c.
while it starts to increase after the c.m.c.

To determine if our approach is applicable and if the phase transition in a solution obeys
the scaling laws, comparison with experimental data is necessary. We decided to study rep-
resentative compounds of a few different types of surfactants and test our approach.

In our previous research we investigated solutions of the cationic surfactant de-
cyltrimethylammonium bromide (C10TAB) [4], and the microheterogeneous aqueous so-
lutions of 2-butoxyethanol [5] and 2-(2-hexyloxyethoxy)ethanol [6].

Equations 30a, 30b to 33a, 33b, which describe the concentration dependence of heat
capacity, obtained as the result of the theory modification, are the same as those used pre-
viously [5, 6], Thus, we can see that our “intuitive” approach was correct, and the results
obtained can be discussed in terms of the modified theory, presented now in a more rigorous
form.

In order to extend the group of systems on which we test our approach, in the present
paper we study the heat capacity of the solutions of a representative of another group of the
surfactants, the anionic surfactant sodium octanoate (OctNa).
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3 Experimental

According to De Lisi et al. [8] the alkyltrimethylammonium bromides undergo micellize in
a different way than the carboxylates since their apparent molar heat capacity goes through
a maximum at the c.m.c., while for carboxylates a “hump” at c.m.c. can be observed. These
authors have analyzed the influence of composition on the apparent molar heat capacity, the
apparent molar relative enthalpies and the apparent molar volumes of sodium decanoate with
a “phase-separation” model, and they attributed the “hump” at the c.m.c. to the “relaxation”
contribution.

Sodium octanoate in aqueous solution has quite a high c.m.c. [9], which is crucial from
the point of view of calorimetric experiments.

Sodium octanoate micelles have a small aggregation number [10–14]. It is known from
the computer simulation [10–14] that, in the case of small micelles such as those of OctNa,
large thermal fluctuations are present.

González-Pérez et al. investigated sodium octanoate aqueous solutions in the molality
ranges 0.04–0.9 mol·kg−1 [9] and 0.4–2.0 mol·kg−1 [15]. From the speed of sound and
density versus molality isotherms the authors calculated c.m.c. values which decrease from
0.3828 mol·kg−1 at 298.15 K to 0.3589 mol·kg−1 at 318.15 K [9]. The same authors ob-
served also the point called the critical micelle transition (c.m.t.) [15] at which the transition
from spherical to nonspherical micelles occurs. The obtained c.m.t. values have a maximum
value of 0.95 mol·kg−1 at 308 K [15]. The values were calculated from the density and
conductivity data but it should be pointed out that the changes in these functions were very
small and the criteria for determination of the c.m.t. are doubtful. In the case of adiabatic
compressibilities the authors did not observe a change of slope but only an inversion of the
temperature behavior of compressibilities at the point corresponding to c.m.t. The authors
calculated the apparent molar volumes and compressibilities of the surfactant in water but
did not present the appropriate values or graphs.

Apparent molar volumes and adiabatic compressibilities at 298.15 K in the molality
range up to 2 mol·kg−1 were investigated also by Huang et al. [16, 17], who observed that
the apparent molar volume of surfactant increases slightly up to 0.4 mol·kg−1 after which it
starts to increase rapidly. At higher concentrations it remains almost constant. Huang et al.
[16, 17] determined aggregation numbers equal to 10–15 [17], but did not observe the c.m.t.
A similar value, equal to 16 at 293.15 K was obtained by D. Adair et al. [18] from viscosity
measurements.

Aqueous solutions of sodium octanoate were extensively investigated by Ekwall et al.
[19–25]. By analyzing the influence of composition on partial molar volumes, the au-
thors indicate the existence of three critical points of micellization. Rapid increases of ap-
parent molar volumes were observed at 0.38–0.52 mol·dm−3, 1.15–1.41 mol·dm−3, and
2.4–3.1 mol·dm−3 intervals; however, the increase in the second region is much smaller than
in the first and the change in the third region is not pronounced. On the basis of viscosity
measurements, Ekwall et al. [20, 21] found that spherical micelles existed in the solution in
the concentration range up to 1.9 mol·dm−3. Above this concentration cylindrical micelles
were observed.

Hayter and Zemb [26] investigated OctNa aqueous solutions using small angle neutron
scattering (SANS) in the concentration range between the c.m.c. and c.m.t. values suggested
by other authors. They observed a linear increase of the aggregation number with increasing
concentration. The aggregation number obtained changed from 15 at the concentration of
0.60 mol·dm−3 up to 23 for a 1.20 mol·dm−3 solution. An extrapolation gives the value
13 ± 1 for a solution at the concentration equal to c.m.c. On the basis of the results obtained,
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the authors [26] suggest a continuous increase of the micelle size rather than a transition to
spherical structure.

Apparent molar heat capacities and volumes were investigated by Rosenholm et al. [27,
28] who observed a maximum in the apparent molar heat capacity versus molality curve
as well as a rapid increase of the apparent molar volumes in the concentration range above
0.37 mol·dm−3. These measurements were only at 298.15 K and not over a large concentra-
tion range, and this was also a reason for us to investigate this system.

3.1 Experimental

Sodium octanoate (Sigma-Aldrich ≥ 98%) was used as received without further purification.
Deionized water was triply distilled in an argon atmosphere and degassed under vacuum. All
solutions were prepared by weight.

The heat capacities under constant pressure were measured by means of a high sensitivity
differential calorimeter Micro DSC III (Setaram, France) based on the Calvet principle. The
cp measurements were carried out within the temperature range 285.15–358.15 K using the
“continuous with reference” mode. In this method the differential heat flow, between a cell
filled with the investigated liquid and a reference, occurring during a continuous increase
of calorimeter temperature is determined. In the temperature range under investigation, the
scanning rate was 0.35 K·min−1. For measurements we used a batch-type cell of about 1 cm3

volume. The cp values for each temperature were calculated from cp = f (T ) function, by
interpolation. As a reference substance of known heat capacity, water was used. Using the
procedure developed in our laboratory and described widely by Góralski et al. [29], the
uncertainty in the cp values can be estimated to be smaller than 0.25% with an error in the
absolute temperature determination of 0.05 K.

The densities of all surfactant solutions were measured using a flow densimeter (Sodev,
model 03, Sherbrook, Quebec). The densimeter was calibrated with reference to pure wa-
ter and nitrogen gas (absolute 1 atm). The density of water was taken from Kell [30] and
that of nitrogen was calculated from the van der Waals equation of state. The reproducibil-
ity of the density measurements was 5 × 10−6 g·cm−3 and the uncertainty was estimated
as 2 × 10−5 g·cm−3. The stability of the temperature in the densimeter (±0.001 K) was
achieved with a closed loop thermostat and controlled using a special device calibrated with
a PT 100 thermometer that allowed estimation of the absolute uncertainty in the temperature
as 0.02 K. The measurements were performed under static conditions.

All solutions were prepared by weight with a mean uncertainty in the molality of 2 ×
10−5 mol·kg−1.

3.2 Results

3.2.1 Heat Capacity

From the calorimetrically determined cp (listed in Table S1 of supplementary material) data
the apparent molar heat capacities were calculated from the following equation:

Cp,�,2 = M2cp + 1000(cp − c∗
p,1)

m2
(37)

The partial molar heat capacities were then calculated according to Eq. 32. This pro-
cedure was previously used for the determination of partial molar heat capacities of other
colloidal systems and satisfactory agreement was found with data available in the litera-
ture [4, 5]. The values of the apparent molar heat capacities of sodium octanoate in aqueous
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Fig. 2 Influence of composition
on the apparent molar heat
capacity of sodium octanoate in
aqueous solutions. Symbols
represent experimental results at
P 293.15 K, ! 313.15 K,
1 333.15 K and e 353.15 K

solution, obtained as a function of molality at four temperatures, are shown in Fig. 2. For
each temperature a maximum can be observed at a salt molality of about 0.3–0.5 mol·kg−1,
which shifts to the higher values with increasing temperature. At the lowest temperature the
maximum is most pronounced. The locations of these maxima correlate qualitatively with
the c.m.c. values available in the literature [9, 15]. The shape of the curve for the partial
molar heat capacity versus molality, and its values, correspond well with those investigated
by Rosenholm et al. [27, 28]. At low molality, the apparent molar heat capacities increase
with increasing temperature. In the salt molality range 0.6–1.0 mol·kg−1 this relation starts
to change and, at high molality, inverse behavior of Cp,�,2 is observed. Within the same
composition range González-Pérez et al. observed similar behavior for the adiabatic com-
pressibilities and, on the basis of conductometry, the authors [15] also identified the c.m.t.
within that range.

To analyze the data, the two-point scaling approach was applied. The apparent and partial
molar heat capacities as well as the derivatives of the apparent molar heat capacities were
fitted simultaneously to Eqs. 31a, 31b, 30a, 30b and 33a, 33b, respectively, for both phases.
The results of this fitting for the four chosen temperatures are shown in Figs. 3, 4, 5, 6
together with the experimental points. The values of the critical indices obtained and other
fitting parameters are given in Tables 1 and 2.

3.2.2 Molar Volumes

From the measured density data (listed in Table S2 of supplementary material) the apparent
molar volumes at 293.15 K were calculated from the following equation:

V�,2 = M2

d
+ 1000(d − d∗

1 )

m2dd∗
1

(38)

where d∗
1 is density of the pure solvent (water). The partial molar volumes were calculated

as follows:

V2 = V�,2 + m2
dV�,2

dm2
(39)

The values of the apparent molar volumes of sodium octanoate in aqueous solution, as a
function of molality at 293.15 K, are shown in Fig. 7.

The two-point scaling approach was applied to the analysis of the data. The apparent,
partial molar volumes and the derivatives of apparent molar volumes were fitted simulta-
neously to Eqs. 35a, 35b, 34a, 34b and 36a, 36b, respectively, for both phases. The results
are shown in Fig. 8 together with the experimental data. The values of the critical indices
obtained and other fitting parameters are given in Tables 3 and 4.
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Fig. 3 Influence of composition
on the apparent, partial and the
derivative of apparent molar heat
capacities of sodium octanoate in
aqueous solution at 293.15 K.
Curves represent the best fit of
the two-point scaling equations

Table 1 The values of the critical exponents α′
1, α′

2, stability points mf , mp , constants C◦1
p,2,C◦2

p,2, and the
critical molality mc of the considered system

T

/K
α′

1 α′
2 mf

/mol·kg−1
mp

/mol·kg−1
C◦1

p,2

/J·mol−1·K−1

C◦2
p,2

/J·mol−1·K−1

mc

/mol·kg−1

293.15 0.125 0.125 0.446 0.440 582 269 0.4400

313.15 0.125 0.125 0.448 0.381 589 303 0.3813

333.15 0.125 0.125 0.490 0.338 560 357 0.3408

353.15 0.125 0.125 0.312 0.263 525 438 0.2711

4 Discussion

As one can see from Figs. 3, 4, 5, 6 and 8, the influence of composition on the partial molar
heat capacities as well as the partial molar volumes is subject to the scaling laws. The values
of the critical indices obtained are temperature independent as was observed previously
for all of the examined systems [4–6]. The parameter α′

1 has also the same value α′
1 =

0.125 as in all the previously examined systems and the parameter α′
2 has the same value

as the parameter α′
1. The same situation was observed previously for aqueous solutions of

decyltrimethylammonium bromide. The values of critical molalities and their changes with
the temperature are close to the values determined by means of different techniques given
in literature [9, 15–17, 19–25]. Also the values of stability limits for each phase determined
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Fig. 4 Influence of composition
on the apparent, partial and the
derivative of apparent molar heat
capacities of sodium octanoate in
aqueous solution at 313.15 K.
Curves represent the best fit of
the two-point scaling equations

Table 2 Values of the two fitting
parameters q◦

f
and q◦

p used for
the description of the
experimental behavior of the
Cp,�,2 and (dCp,�,2/dm)

functions

T

/K
q◦
f

q◦
p

293.15 1.0007 2.1197

313.15 1.0010 1.7454

333.15 1.0046 1.3920

353.15 1.0000 1.0586

Table 3 Values of the critical exponents β ′
1, β ′

2, the stability points mf ,mp , constants V 01
2 , V 02

2 , and the
critical molality mc of the considered system

T

/K
β ′

1
× 103

β ′
2

× 103
mf

/mol·kg−1
mp

/mol·kg−1
V ◦1

2
/cm3·mol−1

V ◦2
2

/cm3·mol−1
mc

/mol·kg−1

293.15 −0.57 0.68 0.438 0.416 162 164 0.4180

from the partial molar heat capacity behavior and the partial molar volume behavior are close
to each other. Similar observations in the case of the critical molality additionally confirm
that the micellization process is subject to the scaling laws.

As mentioned above, the critical index describing the behavior of the heat capacity in the
conventional theory can be related to the dimensionality of the system by means of Eq. 28.



330 J Solution Chem (2012) 41:318–334

Fig. 5 Influence of composition
on the apparent, partial and the
derivative of apparent molar heat
capacities of sodium octanoate in
aqueous solution at 333.15 K.
Curves represent the best fit of
the two-point scaling equations

Table 4 Values of the two fitting

parameters q
f
o and q

p
o used for

the description of the
experimental behavior of the
V�,2 and dV�,2/dm functions

T

/K
q◦
f

q◦
p

293.15 1.0001 0.9960

For a precise calculation of the dimensionality, values of the ν ′
i indices are necessary, but

it can be observed that the values of α′
i are related to the structure of the solution. For the

solutions of monomers (concentration range below c.m.c.), the values of α′
1 obtained are

equal to 0.125 for each previously analyzed system [4–6] as well as for the present system.
For the micellar solutions, in which spherical micelles are formed (C10TAB [4], OctNa,
present work), the α′

2 index also takes the value 0.125. For microheterogeneous solutions
(2-butoxyethanol [5], and 2-(2-hexyloxyethoxy)etanol aqueous solutions [6]), the value of
α′

2 is equal to 0.33 for both systems.

5 Conclusion

The two-point scaling theory was modified in order to describe the phase transition in so-
lution. Based on assumptions similar to those in the case of the conventional scaling theory
and using the same procedures, relations describing the influence of composition on the
partial molar heat capacities and volumes were derived.
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Fig. 6 Influence of composition
on of the apparent, partial and the
derivative of apparent molar heat
capacities of sodium octanoate in
aqueous solution at 353.15 K.
Curves represent the best fit of
the two-point scaling equations

Fig. 7 Influence of composition
on the apparent molar volumes of
sodium octanoate in aqueous
solution at 293.15 K

The form of the relations obtained is the same as in our “intuitive” approach [5, 6],
and the previously obtained results can be discussed in terms of the modified theory in the
present paper.

Our approach can be extended to the discussion of some other thermodynamic properties
such as the partial molar isothermal compressibilities. The appropriate equations can be
derived, but the lack of experimental data prevents our obtaining the other critical indices
and further discussion.

The values of the critical indices α′
1 for the sodium octanoate monomer solution are the

same as for all the previously investigated systems, and the values of α′
2 are the same as for

the decyltrimethylammonium bromide solutions, which could indicate universality of the
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Fig. 8 Influence of composition
on the apparent, partial and the
derivative of apparent molar
volumes of sodium octanoate in
aqueous solution at 293.15 K.
Symbols represent experimental
results. Curves represent the best
fit of the two-point scaling
equations

micellization process. The value of the critical index α′
2 depends on the structure of the ag-

gregates formed. The stability points for each phase, and critical molalities determined from
the scaling analysis of data from two independent measurements, were close to each other.
The results obtained confirm that the aggregation process is subject to scaling laws and the
scaling analysis can provide much useful information. Our model, based on scaling laws,
seems to be more versatile than e.g. the phase separation model used by De Lisi et al. [8] for
the analysis of the micellization of the carboxylates, which, as the authors suggest, does not
work well for alkyltrimethylammonium bromides solutions. In our case we cannot distin-
guish the “relaxation” contribution. It seems to be incorporated in our model, as the scaling
laws consider the singular part of the thermodynamic potentials. This “relaxation” effect is
related to the shift of equilibrium when the temperature is changed [31]. This equilibrium
means that the change of thermodynamic properties at c.m.c. can be “slow” (occurs over
some concentration range). In our approach this fact is taken into account by the “phase
coexistence” region, whose width (span) changes with the temperature, and depends on the
type of surfactant. From this point of view our approach exhibits some advantages for ana-
lyzing the behavior of different types of surfactants.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.
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