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Cereal grain 3D point cloud 
analysis method for shape 
extraction and filled/unfilled grain 
identification based on structured 
light imaging
Zhijie Qin1, Zhongfu Zhang1, Xiangdong Hua1, Wanneng Yang2, Xiuying Liang1, 
Ruifang Zhai3 & Chenglong Huang1*

Cereals are the main food for mankind. The grain shape extraction and filled/unfilled grain recognition 
are meaningful for crop breeding and genetic analysis. The conventional measuring method is mainly 
manual, which is inefficient, labor-intensive and subjective. Therefore, a novel method was proposed 
to extract the phenotypic traits of cereal grains based on point clouds. First, a structured light scanner 
was used to obtain the grains point cloud data. Then, the single grain segmentation was accomplished 
by image preprocessing, plane fitting, region growth clustering. The length, width, thickness, 
surface area and volume was calculated by the specified analysis algorithms for grain point cloud. 
To demonstrate this method, experimental materials included rice, wheat and corn were tested. 
Compared with manual measurement results, the average measurement error of grain length, width 
and thickness was 2.07%, 0.97%, 1.13%, and the average measurement efficiency was about 9.6 s 
per grain. In addition, the grain identification model was conducted with 25 grain phenotypic traits, 
using 6 machine learning methods. The results showed that the best accuracy for filled/unfilled grain 
classification was 90.184%.The best accuracy for indica and japonica identification was 99.950%, while 
for different varieties identification was only 47.252%. Therefore, this method was proved to be an 
efficient and effective way for crop research.

Because of population explosion, global warming, and water shortages, we are facing severe challenges in agri-
cultural  production1–3. Cereals mainly including rice, wheat, corn, and sorghum have occupied a dominant 
position in the human’s  food4, and cereal production is of great importance to the food  security5,6. Cereal grain 
traits including grain shape, grain plumpness have performed direct influence on the final yield, and grain traits 
measurement are necessary for yield-related  research7. Grain shape is a very important basis of grain classifica-
tion, and plumpness is the criterion for judging the quality of rice varieties. Therefore the grain trait extraction 
is essential for cereal  research8. However, the conventional method mainly depends on manual measurement, 
which is inefficient, labor-intensive and subjective. Therefore, it is urgent to develop a novel method for grain 
trait extraction with high throughput and high accuracy.

The measurement of rice grain size is of great significance in rice breeding and genetic research. With the rapid 
development of computer technology, machine vision has been applied in grain size  measurement9,10. Tanabata 
et al.11 developed Smart-Grain software for high-throughput measurement of seed shape based on digital images 
and the open computer vision library (OpenCV). Ma et al.12 extracted the length and width information of rice 
grains based on the images taken by smart phones. Le et al.13 proposed a method to study the morphology of 
developing wheat grains based on X-ray μCT imaging technique. However, most of the researches focus on the 
2D  traits14, and it is not easy to obtain the 3D grain traits such as volume, surface area and thickness. Since the 
grain size are small, high quality and complete point cloud of which is needed. Point clouds obtained by binocular 
stereo vision, structure from motion and space carving are relatively  sparse15–18, on the contrary the structured 
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light imaging, an active three-dimensional vision technology, can obtain high-precision point clouds, which is 
widely used in industrial detection, reverse engineering and cultural relic  protection19, and it provides an effec-
tive method for high precision analysis of cereal grain 3D traits.

The rice grain plumpness is one of the determinants in yield, which is of great importance to rice breeding. The 
number of filled grains per panicle is directly related to the crop  yield20. Therefore, counting of filled and unfilled 
grains of a panicle is critical to judge the rice quality. Traditionally, grain counting is performed manually, which 
is labor-intensive, time-consuming and subjective. Manually, filled grain is distinguished from unfilled grain by 
water-based or wind-based  methods21,22. To improve it, some automated methods were developed for identify-
ing and counting the filled grain. Duan et al.23 proposed a method based on visible light imaging and soft X-ray 
imaging, which was expensive, and of radiation risk. Kumar et al.24 built an automated system for discriminating 
and counting filled and unfilled grains of a rice panicle based on thermal images. Since the system required to 
monitor the temperature after heating the grains, it was complicated and difficult to achieve high-throughput 
measurement. Therefore, it is urgent to develop a new method for the recognition of filled/unfilled grains, with 
high efficiency and low radiation risk.

In this study, cereal grain traits analysis method based on point cloud was proposed. The high-precision point 
cloud of grains are obtained by structured light scanner, and the specified algorithms and integrated user soft-
ware were designed for automatic segmentation of the grain point clouds and 3D grain trait extraction. Finally, 
25 grain traits were computed, based on which, the model for filled/unfilled grain identification was set up. In 
conclusion, our research demonstrated a novel method for grain 3D and plumpness information extraction 
with high throughput and high accuracy, which was definitely helpful to the rice breeding and genetic research.

Material and methods
Material. In this study, the test materials included rice, wheat, and corn three types of cereals, which were 
purchased from the market and rice was the main part. 10 rice varieties including 5 indica and 5 japonica sub-
species were selected. Each rice variety contained 100 filled grains and 100 unfilled grains, and a total of 2000 rice 
grains were used as experiment materials. In the filled and unfilled rice grains judgment, three experimenters 
would judge the same grain and the average judgment would be taken as ground truth. Moreover, 100 grains of 
wheat and corn were selected to validate the adaptability of this method. The experimental materials were shown 
as Fig. 1, and the rice experimental materials include Zhonghua 11, Wuyunjing 3, Nanjing 2728, Zhenghan 10, 
Nipponbare, C Liangyou Huazhan, Zhulaingyou 211, Liangyou 336, Fengliangyou No.4, Guangliangyouxiang 
66. The first five varieties belonged to the rice subspecies of japonica, and the last five varieties belonged to the 
rice subspecies of indica.

Figure 1.  Display of experimental materials, including wheat grains, corn grains and 10 different varieties of 
rice grains.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3145  | https://doi.org/10.1038/s41598-022-07221-4

www.nature.com/scientificreports/

System design. 3D structured light scanner. The 3D structured light scanner (Reeyee Pro, China) was 
adopted in the study, which was based on white light LED raster scanning technology. Combing the advantages 
of structured light and binocular stereo vision, the scanner can achieve a single-sided accuracy of 0.05  mm 
within 2 s, which is suitable for high-precision scanning of small-sized work pieces, plastic products, and medi-
cal equipment. The main equipment is composed of a projector, two cameras and an internal modulated light 
source. Based on the principle of triangulation and sinusoidal grating image, it can obtain the dense point cloud 
data of objects. The detailed parameters of Reeyee Pro scanner are listed in Table 1. The structure of the scanner 
is shown in Fig. 2b.

Cereal grain scanning system. As shown in Fig. 2a, the whole system consists of 6 parts: structured light scan-
ner, robot, scanner fixture, object platform, industrial computer and control unit. AUBO i5 robot was adopted, 
which was a 6 degrees of freedom (DOF) collaborative robot with a positioning accuracy of ± 0.02 mm and a 
maximum load of 5 kg. The working range of the robotic arm was a sphere with a radius of 886.5 mm, which 
ensured sufficient scanning space. In order to fix the scanner on the robot, a fixture was designed and 3D printed 
with ABS material, and the entire weight of the scanner and the fixture was less than 2.5 kg. The object platform 
was designed to fix the robot and place samples. The industrial computer was connected with the control unit 
and the scanner, to achieve the cooperative operation of robot movement and the scanner imaging.

Cereal grain point cloud acquisition. The cereal grain point cloud acquisition is shown as Fig. 3, which could be 
divided into 4 steps: the scanner calibration, the selection of the placement schemes, the scanning path determi-
nation, and the batch scanning.

Table 1.  Reeyee Pro scanner detailed parameters.

Parameter Value

Light source White LED

Point distance 0.16 mm

Spatial resolution 0.05 mm

Scanning area 210× 150mm

Working distance 290–480 mm

Maximum scan size 200× 200× 200mm

Figure 2.  Schematic diagram of cereal grain scanning system. (a) The overall structure, (b) the structured light 
scanner.
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(1) Calibration of the scanner. The structured light scanner needed to be calibrated and corrected before 
working. When calibrating the camera, the calibration board need to be set in four positions including 
the directions of 0°, 90°, 180°, and 270°. Then the distance between the scanner and the calibration board 
should be adjusted from 350 to 450 mm, while collecting images.

(2) Selection of the placement schemes. At present, there are mainly two kinds of three-dimensional scanning 
schemes for grains. One way is to spread the grains flatly on a platform, and another is to fix the grains 
through the seed  holder25. The former has high efficiency, but the accuracy is low because the scanning 
grain is not complete. The latter obtains the complete point cloud of grain with high accuracy, but the 
disadvantage is that it can only scan a single grain, which is too time-consuming. To improve it, the grains 
were directly fixed vertically on the stage, and multiple grains could be scanned completely in the study.

(3) Determination of the scanning path point. As shown in Table 1, the minimum space point distance of 
Reeyee Pro is 0.16 mm. To achieve as high spatial resolution as possible, the robot was studied to obtain 
proper scanning path point. In this study, the average minimum point distance of the grain point cloud 
was capable of reaching 0.1731 mm.

(4) Batch scanning. Due to the limitation of scanning area and rotation effect, the grain placement range was 
set to 100× 100mm in the center. In addition, the distance between adjacent grains was set as 20 mm to 
avoid grain shading. Meanwhile, the grain placement strategy was 6× 4+ 1 (4 rows for every 6 grains in a 
row, and the last one is placed separately), which is helpful for matching the manual and automatic values. 
What is more, the scanning strategy of rotating 8 times and scanning 45 degree a time was adopted.

System development environment. The configuration of the industrial computer is I5 3470 and GTX1050TI. 
The development environment is Windows 7 Pro, Visual Studio 2015, cross-platform open source Point Cloud 
library version 1.8.1(PCL) based on C++ (https:// point clouds. org), QT version 5.9.8 (https:// www. qt. io), Python 
3.7.6 and Visualization Toolkit version 8.0.0(VTK) (https:// vtk. org). In addition, there is a software, Reeyee-
Pro_V2.6.1.0 (https:// www. wiibo ox. net/ suppo rt- softw are. php), which can display the 3D data collection of the 
point cloud in real time. And the robot is controlled by the Robot Operating System (ROS) system in the Ubuntu 
environment.

Cereal grain point cloud processing pipeline. The overall processing pipeline of cereal grain point cloud is shown 
in Fig. 4. It mainly includes 4 steps: point cloud preprocessing, point cloud segmentation, phenotypic traits cal-
culation, and filled/unfilled grain recognition.

Preprocessing of point clouds. The preprocessing procedure of grain point cloud was shown in Fig. 5, 
mainly including 3 steps: coordinate transformation, down sampling, and filtering.

(1) The coordinate transformation were conducted as Eqs. (1, 2). Firstly, move the original coordinates (T0) 
to the centroid point of point cloud. Then, based on principal component  analysis26 (PCA), the covariance matrix 
(MT) was computed to generate the new coordinate. The transformed result was shown as Fig. 5b.

(1)TA = MT × (T0 − A)

(2)MT = {e1, e2, e3}
T

Figure 3.  Flow chart of obtaining point cloud of cereal grains using structured light scanning system.

https://pointclouds.org
https://www.qt.io
https://vtk.org
https://www.wiiboox.net/support-software.php
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where e1, e2, e3 are the three unit eigenvectors of the covariance matrix MT ; T0 is the original point cloud coor-
dinates; TA is the new coordinates after coordinate transformation; A is the translation matrix from the original 
coordinates (T0) to the centroid point of point cloud.

(2) Point cloud down sampling and filtering was shown as Fig. 5c. Based on voxel grids, all points in the 
voxel were replaced by the gravity center to reduce the point cloud, which can effectively improve the processing 

Figure 4.  Cereal grain point cloud processing pipeline.

Figure 5.  The process and result of preprocessing. (a) Original point cloud position, (b) transformed point 
cloud position, (c) single grain point cloud.
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 efficiency27. Then statistical filtering algorithm was applied to remove point  data28, in which the point distance 
is abnormal.

Segmentation of point cloud. The segmentation of point cloud was conducted as Fig. 6. After the preprocessing, 
the random sample consensus algorithm (RANSAC) was adopted to fit the sample stage  plane29 and separate 
the grain point clouds from the background. Then, based on curvature and normal angle, the single grain point 
cloud was identified by region growing  algorithm30.

Phenotypic traits calculation. After single grain was obtained, phenotypic traits were extracted, including 
length, width, thickness, volume, surface area, projected area and perimeter in the main direction. Figure 6d–g 
shows the processing steps for grain trait extraction.

(1) Grain length, width and thickness extraction
  As shown in Fig. 6d,e, the extraction of grain length, width and thickness was mainly achieved by con-

structing a bounding box. Firstly, the coordinate system of the segmented single grain point clouds were 
transformed to convert axis-aligned bounding box (AABB)31 into orientation bounding box (OBB)32. 
Secondly, the maximum and minimum values of the transformed single grain point cloud in the new 
coordinate system were calculated as xmax , xmin, ymax , ymin, zmax , zmin respectively. Finally, the grain length, 
width and thickness were computed as following equations.

Figure 6.  Cereal grain segmentation and traits extraction pipeline.
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where l, w and h are the length, width and thickness of a grain, respectively.
(2) Grain surface area extraction
  Firstly, the triangular mesh model of the point clouds was established by greedy projection triangulation 

 algorithm33.Secondly, the holes were filled by reconstructing the mesh boundary edges, which were gener-
ated by the grain segmentation. As shown in Fig. 6g, the length of the side of the triangle was calculated by 
the coordinates of the three vertices of the triangle. Then, based on Helen’s  formula34, the areas of all the 
triangular surfaces were calculated and the sum of them was used to approximate the surface area of the 
grain. The calculation formula is as Eqs. (6–7).

where S0 is surface area of a grain, k is total number of triangles, si is area of the i-th triangle, pi is half the 
perimeter of the triangle, ai , biandci represent the length of each side of the triangle.

(3) Grain volume extraction
  The grain volume was extracted as Fig. 7. Firstly, the convex pentahedrons were constructed by the 

triangular mesh and central plane projection, and then grain volume V was the sum of their volumes. 
Figure 7a is the central plane of the triangular mesh projection. And as shown in the Fig. 7b, A1,B1andC1 
are the three vertices of a triangular mesh. It is assumed that the volume of the straight triangular prism 
A0B0C0ABC is equal to the volume of this convex pentahedron, then the height of the straight triangular 
prism could be approximated as the height of the gravity center of �A1B1C1.

where h is height of the straight prism, h0 is height of the center of gravity of �A1B1C1

(4) Projected area and perimeter of grain in the main direction extraction
  In this study, three main directions of grain point cloud were projected, and the projected area and perim-

eter of cross section, longitudinal section, and horizontal section were obtained as the shape description of 
grain (Fig. 6f). Firstly, the point cloud of a single grain after coordinate transformation was projected on 
the plane of x = 0, y = 0, z = 0 respectively. Then, based on the greedy projection triangulation  algorithm33, 
the areas of the projected triangular mesh and the perimeter of the mesh edges were calculated.

Filled/unfilled grain analysis. A total of 25 phenotypic traits were extracted in the study, including 11 basic 
traits and 14 derived traits, as shown in Table 2. Compactness index, as a comprehensive grain shape description 
 factor35, is calculated by the following formula:

(3)l = xmax − xmin

(4)w = ymax − ymin

(5)h = zmax − zmin

(6)S0 =

k
∑

i=1

si

(7)si =
√

pi
(

pi − ai
)(

pi − bi
)(

pi − ci
)

(8)VA1B1C1ABC = VA0B0C0ABC = S�ABC × h ≈ S�ABC × h0

Figure 7.  Grain volume calculation method in this study. (a) The central plane of triangular mesh projection, 
(b) the projected area integration method.
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where c is the compactness index, C is perimeter of cross-section, A is area of cross-section.
With the rice grain phenotypic dataset, the models of recognition between filled and unfilled grains, distinc-

tion between indica and japonica subspecies, and classification of different rice varieties were established by six 
different machine learning algorithms including decision tree, random forest, support vector machine, Naive 
Bayes, XGBoost, and BP neural  network36–38.

System software design. In order to facilitate grain 3D point cloud analysis, A specific user software was 
designed based on QT Designer, PCL, QVTKWidget and XGBoost as shown in Fig.  8, in which the above 
algorithms including grain point cloud processing, grain traits calculation and analysis were integrated. The 
segmentation window displayed the original point cloud and the grain segmentation result as shown in Fig. 8a. 
Meanwhile, in order to predict the grain category and the plumpness, the python script was adopted to load the 
filled/unfilled grain classification model, and the result window displayed the single grain point cloud, 11 basic 
traits, categories and plumpness as shown in Fig. 8b. Moreover, the software parameters of plane segmentation 
threshold and cluster point cloud range were able to be easily modified by users to optimize the grain segmenta-
tion result. Finally the results including grain point cloud and traits would be saved, and the software operation 
was shown as Supplementary Video S1.

Approval for plant experiments. We confirmed that all experiments were performed in accordance with 
relevant named guidelines and regulations.

(9)c =
C2

4πA

Table 2.  25 phenotypic traits.

No Symbol Trait No Symbol Trait

1 l Length 14 w/h Width-thickness ratio

2 w Width 15 Vobb Box volume

3 h Thickness 16 S/V Specific surface area

4 V Volume 17 S/l Surface area-length ratio

5 S Surface area 18 S/w Surface area-width ratio

6 Cyz Perimeter of cross section 19 S/h Surface area-thickness ratio

7 Syz Area of cross section 20 V/l Volume-length ratio

8 Cxz Perimeter of longitudinal section 21 V/w Volume-width ratio

9 Sxz Area of longitudinal section 22 V/h Volume-thickness ratio

10 Cxy Perimeter of horizontal section 23 cyz Compactness index of cross section

11 Sxy Area of horizontal section 24 cxz Compactness index of longitudinal section

12 l/w Length–width ratio 25 cxy Compactness index of horizontal section

13 l/h Length-thickness ratio

Figure 8.  The user software for grain 3D point cloud analysis. (a) Grain 3D point cloud processing, (b) grain 
traits extraction.
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Results
To verify the accuracy of the algorithm, three experimenters used micrometers to measure the length, width and 
thickness of 2000 rice (including filled and unfilled grains), 100 wheat and 100 corn grains, and the mean value 
of the three measurements was taken as ground truth. The accuracy of the error analysis result is evaluated by 
mean absolute percentage error (MAPE), root mean square error (RMSE) and determination coefficient ( R2 ). 
The relevant formula is as follows:

where n is the total number of measurements; xi is the manual measurement results; yi is the system measure-
ment results, and y is the mean of the system measurements.

Comparison of placement scheme. To verify the measurement accuracy, 100 filled grains of Zhong-
hua 11 were taken as samples to compare the precision of the horizontal placement scheme with the vertical 
placement scheme. Figure 9a–f shows the point cloud comparison in the two schemes. As the results shown 
in Fig. 9g–l, the measurement errors of length, width and thickness of the horizontal placement scheme were 
4.55%, 4.05% and 3.82%, while the measurement errors of the vertical placement scheme were 2.15%, 0.68% and 
1.18%. As the Fig. 9c,f shown, the grain point clouds obtained by horizontal placement were incomplete due 
to the restriction of scanning angle, which obviously led to lower measurement accuracy, therefore the vertical 
placement scheme was proved to be preferable.

Accuracy analysis for length, width, thickness, surface area and volume. Accuracy analysis was 
performed on all 2200 samples including rice, wheat and corn, and the measuring results were shown in Fig. 10. 
Figure 10a shows that the length measurement results of R2

, RMSE,MAPE was 0.9940, 0.210 mm and 2.07% 
respectively. Figure 10b shows that the width measurement results of R2

, RMSE,MAPE was 0.9960, 0.076 mm 
and 0.97% respectively. And Fig. 10c shows that the thickness measurement results of R2

, RMSE,MAPE was 
0.9960, 0.048 mm and 1.13% respectively. The results showed that the system value was in good consistency 
with the manual value and the system method was able to extract the grain length, width and thickness of grains 
with high precision. Meanwhile, as shown in Fig. 10d, the measurement errors of wheat and corn were generally 
smaller than rice, especially in the length, because the wheat and corn were more stable than rice when placed 
vertically, which led to higher scanning accuracy.

Due to the irregular surface morphology of the grains, the surface area and volume are difficult to measure 
in a non-destructive way. Therefore, a standard sphere with a radius of 10 mm was adopted to verify the system 
method validity. The results showed that the surface area and volume measuring error were 2.83% and 1.75% 
respectively.

Statistical analysis of grain traits. The 25 grain traits extracted in this study could quantitatively describe 
the geometric shape of grain completely. In order to eliminate the influence of different dimensions of traits, the 
data was preprocessed based on the Z-score standardization method. The relevant formula is as follows:

where  X* is the result of Z-score standardization, X is the sample data, µ is the mean of sample data, σ is the 
standard deviation of sample data.

Then the correlation analysis was carried out on the traits of grain varieties For example, with the extracted 
traits in Zhonghua 11, a correlation matrix of Pearson  coefficients38 was calculated to identify inter-relationships. 
Intergroup correlation analysis was completed based on SPSS version 25.0 (https:// www. ibm. com/ produ cts/ spss- 
stati stics), and the results were shown in Fig. 11. The results demonstrated that the correlation among the basic 
traits was strong and all of them were positive except thickness. Thickness as an important trait in grain shape 
had little correlation with length and width. In particular, the three compactness index were highly independent.

Recognition model of filled and unfilled grains. Filled and unfilled grain identification has great 
importance to the finally yield evaluation. In this study, the classification models were studied by 6 different 
machine learning method with 25 phenotypic traits. All classification models were performed on the Sklearn 
Tool Kit version 0.24.2 (http:// www. lfd. uci. edu/ ~gohlke/ pytho nlibs/# scikit- learn), and the main parameters 
were decided by learning curve and grid search method. Then tenfold cross-validation method was applied to 
validate each model. The data set was randomly divided into 10 parts, while 9 of them were taken as the train-
ing set in turn, and the rest as the test set. Then the average of the 10 results was used as the model’s accuracy. 

(10)MAPE =

1

n

∑

i

|xi − yi|

xi
× 100%

(11)RMSE =

√

∑

i(xi − yi)
2

n

(12)R2
= 1−

∑

i(xi − yi)
2

∑

i(xi − y)2

(13)X∗
=

X − µ

σ

https://www.ibm.com/products/spss-statistics
https://www.ibm.com/products/spss-statistics
http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn
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The model results for filled and unfilled grains classification were shown in Table 3, the details of which was as 
follows:

(1) Classification and regression trees (CART): The model was constructed as follows: the information entropy 
was set as impurity criterion. Meanwhile, the maximum tree depth was 4, and tree branch decision mode 
was random. The accuracy of model classification was 85.447%.

(2) Random forest (RF): In this model test, the depth of the forest was set to 2, while the Gini coefficient was 
adopted, and the number of base evaluators was set to 24. According to the validation results, the model 
classification accuracy reached 88.605%. Compared with CART, the model accuracy was significantly 
improved.

Figure 9.  Comparison of two placement schemes, (a–c) the effect of horizontal placement scheme, (d–f) the 
effect of vertical placement scheme, (g–i) the measuring result in vertical placement, (j–l) the measuring result 
in horizontal placement.
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(3) Support vector machines (SVM): Since the distribution of original phenotypic traits is linearly inseparable, 
an optimal high-dimensional space was constructed by selecting the kernel function and the penalty factor. 
In this study, Gaussian kernel function was selected, and the penalty factor was set as 6. As a result, the 
accuracy of model classification was 89.684%.

(4) Naive Bayes (NB): in this study, Gaussian Naive Bayes was selected and the classification accuracy rate was 
88.079%.

(5) Back propagation (BP) neural networks: The hidden layer was divided into two layers, in which the number 
of neurons in the first layer is 100 and the second layer is 50. The number of iterations was set to 2000, the 
initial learning rate was set to 0.0003237, and other parameters were the default values. Eventually, the 
classification accuracy of the model was 88.105%.

(6) Extreme gradient boosting (XGBoost): The classifier was constructed based on tree model. After the logistic 
regression loss function was selected, the number of weak classifiers was set as 20, while the maximum tree 
depth was set as 5, and the learning rate was set as 0.3. As a result, the classification accuracy of the model 
was 90.184%, which was the best in all the models.

In order to explore the contribution of phenotypic traits, the XGBoost classifier was analyzed in detail and 
the results were shown in Table 4. From the results, the thickness weight had reached 0.34, which was proved to 
be dominant in filled and unfilled grain classification. Furthermore, the traits including volumetric-width ratio, 
volume, length-thickness ratio and surface area-length radio were all related to length, the weight of which were 
greater than 4%. Moreover, 4 varieties of rice grains were selected to verify the traits significance in the filled 
and unfilled grain classification. As shown in Fig. 12, the results indicated that the thickness had higher differ-
ence than width and length. The result also proved that the length had higher difference than width, especially 
in indica.

Figure 10.  The sample accuracy analysis. (a) Length (b) Width (c) Thickness (d) japonica, indica, wheat and 
corn grains mean relative error.
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Classification of different rice varieties and classification of indica and japonica. Based on the 
same 6 machine learning methods, the grain phenotypic traits of 10 different varieties which belonged to the 
two subspecies of indica and japonica, were used to build classification model according to the tenfold cross-
validation method. The results showed that the best performance for the different varieties classification was 
47.252% by the SVM model, however the best performance for different subspecies classification was 99.950% 
by the SVM model. This is because the grain phenotypic traits in the same subspecies had much less difference 
than in different subspecies. The detailed classification results of different rice varieties and subspecies were 
shown in Table 3.

Figure 11.  The result of grain traits correlation analysis.

Table 3.  The classification target results of each classification method based on 25 phenotypic traits.

Classification target Method Precision (%) Recall score F1 score

Filled and unfilled

CART 85.447 0.85333 0.85706

RF 88.605 0.88722 0.89145

SVM 89.684 0.89667 0.90371

NB 88.079 0.88167 0.89363

BP 88.105 0.88167 0.88811

XGBoost 90.184 0.89333 0.90615

10 rice varieties

CART 37.027 0.36586 0.30779

RF 40.363 0.39406 0.34210

SVM 47.252 0.46856 0.44847

NB 41.435 0.41175 0.39172

BP 38.311 0.38047 0.36313

XGBoost 45.960 0.45692 0.44967

Indica and japonica

CART 98.785 0.98750 0.98745

RF 99.400 0.99400 0.99400

SVM 99.950 0.99950 0.99950

NB 99.450 0.99450 0.99450

BP 99.250 0.99250 0.99245

XGBoost 99.750 0.99950 0.99945
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Efficiency evaluation. To obtain the complete point clouds, 25 cereal grains would be scanned 8 times, 
and it took about 14 s for each time, while the sample turntable rotated 45 degree. Therefore, it took about 2 min 
for the point clouds acquisition. Meanwhile it took about 2 min for point clouds segmentation and phenotypic 
traits computation. Thus 25 grains measurement totally cost about 4 min, and the average efficiency was 9.6 s 
per grain. However the manual measurement efficiency was about 120 s per grain, which was one-twelfth of the 
system efficiency.

Table 4.  Weight rank of characteristic traits (> 4%).

Rank Trait Importance weight

1 Thickness 0.342219

2 Length 0.067255

3 Perimeter of horizontal section 0.062472

4 Volume-width ratio 0.056376

5 Compactness index of horizontal section 0.053502

6 Volume 0.049749

7 Length-thickness ratio 0.042486

8 Surface area-length ratio 0.042199

Figure 12.  The Comparison of main traits between filled grain and unfilled grain. (a) Zhonghua 11 (b) 
Wuyunjing 3 (c) C Liangyou Huazhan (d) Zhuliangyou 211.
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Discussion
Cereal grain traits have important impact on the final yield, which are also necessary for crop breeding and 
genetic analysis. Phenotypic traits such as length, width, thickness, volume and surface area are of great signifi-
cance. In this study, a novel method for grain trait extraction by 3D structured light imaging was invented with 
high-throughput and high-accuracy. In addition, the grain identification model was conducted with 25 grain 
phenotypic traits, using 6 machine learning methods. The results indicated that the thickness was dominant in 
filled and unfilled grain classification. The result also proved that the length had higher difference than width, 
especially in indica.

At present, distinguishing filled grain from unfilled grain mainly relies on water-based or wind-based methods 
which are inaccurate and destructive. There are few researches on the filled/unfilled grain distinction. Therefore, 
there is an urgent need for a method that can accurately identify filled and unfilled grains. Liu et al.20 designed a 
method based on image analysis to measure grain plumpness by the grain shadow in four directions. In addition, 
some methods were proposed based on X-ray and thermal  imaging23,24, but all these methods were identified in 
2D imaging and could not provide more phenotypic information. Hua et al.25 extracted the point cloud of rice 
grains based on a laser scanner to calculate phenotypic information. However, it was not suitable for require-
ments of high throughput. The method of this study can obtain the phenotypic information of grains with high 
precision and high efficiency, which provides a method for crop breeding research.

In the research of the placement method, it was confirmed that the vertical placement was more accurate than 
the horizontal placement. Also, it is worth noting that during the scanning process, the stability of the vertical 
placement played great effects on the measuring result. From the results, the measurement errors of wheat and 
corn were generally smaller than rice, especially in the length, because the wheat and corn were more stable 
than rice when placed vertically.

With the rice varieties and subspecies classification results, it is demonstrated that the performance for rice 
subspecies classification were much better than different rice varieties classification. In the parental research of 
rice material, it was found that the same rice subspecies had the same intersecting pedigrees. For example, the rice 
varies of Zhonghua 11 and Nipponbare, which both belong to the subspecies of japonica, had the same parant of 
Nonglin 22, and it would definitely lead to the relatively consistent phenotypic  traits40,41. However the different 
subspecies would had few intersecting pedigrees, which would result in significant phenotypic traits difference.

Conclusion
Based on the 3D structured light imaging, a novel method for cereal grain shape extraction and filled/unfilled 
grain identification was proposed. The results showed that the system measurement had high consistency with 
the manual measurement and the system method was able to extract the grain length, width and thickness of 
grains with high precision. Filled/unfilled grain identification, and grain subspecies classification were achieved 
by XGBoost and SVM Model, while a specific user software was developed to facilitate grain 3D point cloud 
analysis. In conclusion, our research demonstrated a novel method for grain 3D and plumpness information 
extraction with high throughput and high accuracy, which was definitely helpful to the rice breeding and genetic 
research. Based on the experiment results, the following conclusions are drawn.

(1) Considering grain placement methods, the vertical placement scheme performed better results than the 
horizontal placement scheme. The measurement errors of length, width and thickness in the horizontal 
placement were 4.55%, 4.05% and 3.82%, while the measurement errors in the vertical placement were 
only 2.15%, 0.68% and 1.18%.

(2) 25 phenotypic traits of cereal grains could obtained automatically in batch, including 11 basic traits, 14 
derived traits. And the average efficiency for single grain measurement was about 9.6 s, including 3D 
structure light imaging and point clouds analysis.

(3) 2200 samples including rice, corn and wheat were tested to evaluate this method, and the results showed 
that the average relative errors of length, width and thickness were 2.07%, 0.97% and 1.13%.

(4) With the extracted traits, a correlation matrix of Pearson coefficients was calculated to identify inter-rela-
tionships. The results demonstrated that thickness as an important trait in grain shape had little correlation 
with length and width. In particular, the three compactness index were highly independent.

(5) 6 machine learning methods were used to classify the phenotypic traits of the filled/unfilled grains of 10 
kinds of grains. The results showed that XGBoost was the best in all the models, with the classification 
accuracy of the model was 90.184%, while the thickness was proved to be dominant in filled and unfilled 
grain classification. And for the classification among 10 different varieties of rice grains, the best perfor-
mance was 47.252% by the SVM model. What’s more, all the models performed great to classify indica and 
japonica, and the best performance was 99.950 by the SVM model.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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