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Abstract: Stroke is a fatal morbidity that needs emergency medical admission and immediate med-
ical attention. COVID-19 ischemic brain damage is closely associated with common neurological
symptoms, which are extremely difficult to treat medically, and risk factors. We performed literature
research about COVID-19 and ischemia in PubMed, MEDLINE, and Scopus for this current narrative re-
view. We discovered parallel manifestations of SARS-CoV-19 infection and brain ischemia risk factors.
In published papers, we discovered a similar but complex pathophysiology of SARS-CoV-2 infection
and stroke pathology. A patient with other systemic co-morbidities, such as diabetes, hypertension,
or any respiratory disease, has a fatal combination in intensive care management when infected
with SARS-CoV-19. Furthermore, due to their shared risk factors, COVID-19 and stroke are a lethal
combination for medical management to treat. In this review, we discuss shared pathophysiology,
adjuvant risk factors, challenges, and advancements in stroke-associated COVID-19 therapeutics.

Keywords: COVID-19; anti-coagulants; ischemia; SARS-CoV-2; therapeutics; neurology;
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1. Introduction

The current COVID-19 (coronavirus disease 2019) pandemic, also known as the severe
acute respiratory syndrome (SARS-CoV-2), was caused by a novel coronavirus (severe acute
respiratory syndrome coronavirus 2; SARS-CoV-2). Wuhan, China, was the site of the first
reports of an atypical pneumonia outbreak with an unknown etiology in December 2019 [1].
Initially, local clinicians diagnosed it as virus-based pneumonia or virus-induced pneumo-
nia and respiratory illness based on the symptoms and clinical diagnosis. Cases continued
to emerge quickly, and the etiological agent, a novel coronavirus strain (2019-nCoV), was
identified by 2020 [2]. A new coronavirus was discovered in the bronchoalveolar lavage
fluid/saliva of infected patients at Wuhan Jinyintan Hospital. After a virological research
investigation, it was discovered to be an enveloped, positive-sense, single-stranded RNA
virus, a member of the Coronavirus family, the same virus family associated with severe
acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) [3].
Later, WHO designated a virus with many new names: Wuhan coronavirus, 2019-nCoV,
SARS-CoV-2, and novel coronavirus (nCoV)—based on the epidemic’s original location:
Wuhan City, Hubei Province, China in 2019. The disease is classified as COVID-19 disease,
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and symptoms range from asymptomatic to severe. Epidemiologic clinical studies and
case reports from around the world have shown that SARS-CoV-2 can cause significant
respiratory, hepatic, and neurological complications [4–8]. Aging, diabetes, hypertension,
neutrophilia, lymphocytopenia, high inflammatory indicators, and coagulopathy are also
major causes of death and breathing distress in COVID-19 patients. Since the beginning
of the global pandemic, the most common COVID-19 symptoms have been fever, cough,
dyspnea, sore throat, nausea, vomiting, anorexia, and fatigue [9]. Dyspnea, a high breath-
ing rate, and low blood oxygen saturation levels are all symptoms of severe COVID-19.
Some coronavirus patients, particularly those over 65 and those with chronic medical
conditions such as diabetes, hypertension, cancer, and pulmonary asthma, may be at risk
for acute respiratory distress syndrome and organ dysfunction [10,11]. Critical disease
symptoms include respiratory failure, septic shock, and multiple organ failure (MOF) [12].
Accumulating evidence also indicated that one-third of the affected population experienced
neurological symptoms, such as dizziness, headache, myalgia, impaired consciousness,
ageusia, anosmia, encephalitis, and cerebrovascular stroke, with nerve pain, visual impair-
ment, seizure, occipital neuralgia, and ataxia being uncommon [1,13–17]. SARS-CoV-2 has
the potential to affect both the central nervous system (CNS) and the peripheral nervous
system (PNS), resulting in neurological symptoms and complications. SARS-CoV-2 can
enter the CNS directly, via retrograde neuronal transport within vagal nerve afferents,
or via transcribrial route or through infiltrate with infected leukocytes [18,19]. Further-
more, SARS-CoV-2 can compromise the blood–brain barrier (BBB) integrity by targeting
angiotensin-converting enzyme 2 (ACE-2) receptors found on the endothelial cells of blood
vessels in the brain, promoting BBB permeability and viral entry into the CNS [20,21].
COVID-19 may cause ischemic stroke through hypercoagulability, severe inflammation,
renin-angiotensin-aldosterone system dysfunction, cardiac dysfunction, and the effects of
severe respiratory illness, according to this. In addition to traditional stroke mechanisms,
hypercoagulability, severe inflammation, renin-angiotensin-aldosterone system (RAAS)
dysfunction, cardiac dysfunction, and the consequences of severe respiratory illness are
potential mechanisms of ischemic stroke associated with COVID-19. Patients who have
excessive coagulation, blood stasis, and endothelial damage are also predisposed to throm-
bosis and, as a result, stroke. Stroke is currently the world’s second leading cause of death,
according to the latest WHO report, and one of the common health issues in the developed
countries. It is a serious neurological complication that has been observed during the ongo-
ing COVID-19 pandemic caused by SARS-CoV-2. Blockage of an artery as well as rupturing
or injury to the artery itself can result in stroke, which can be classified as ischemic, hemor-
rhagic, or traumatic stroke. Stroke incidence has been observed in approximately 1 to 3%
of COVID-19 inpatients, indicating high odds of stroke in more severe COVID-19 subjects.

2. Materials and Methods

A PubMed, MEDLINE, and Scopus review was carried out to identify all studies dealing
with ischemic stroke in COVID-19 patients. The following search terms were used from
database inception to December 2020: stroke, ischemic stroke, SARS-CoV-2 infection,
COVID-19, SARS-CoV-2. A total of 3182 articles, including those listed in the references
of the retrieved studies, were found originally. We then excluded the following items: all
publications not dealing with ischemic stroke and COVID-19 or neuropathology; all studies
different from original articles (e.g., case report/case series, letters, commentaries, etc.); all
preclinical studies or research performed on animals or cell cultures; non-English written
papers; and any other publication that did not comply with the goal of the present review.
Further relevant references were identified from the bibliography of extracted articles as
needed. After this process, a total of 88 studies were included in this review.
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3. Results
3.1. Epidemiology

Stroke appears to be uncommon in the COVID-19 setting [22,23]. In terms of preva-
lence, ischemic stroke outnumbers hemorrhagic stroke. The rates of ischemic stroke and
intracranial hemorrhage associated with COVID-19 in hospitalized patients ranged from 0.4
to 2.7 percent and 0.2 to 0.9 percent, respectively. Furthermore, cryptogenic stroke accounts
for 10–30% of all ischemic strokes and is directly related to COVID-19 disease [24]. The
rates of COVID-19-related cerebrovascular incidents are primarily based on retrospective
cohort studies of COVID-19-treated patients hospitalized in various epicenters around the
world, including China, Spain, and the United States [24–32]. These reports cover a wide
range of populations in terms of disease severity, co-morbidities, and follow-up periods, all
of which can lead to stroke. Nonetheless, the risk of stroke varies depending on the severity
of COVID-19. According to early case reports, the risk is 1% for patients with minor ill-
nesses, but it may be as high as 6% for patients in intensive care [14]. Stroke usually occurs
1–3 weeks after ongoing COVID-19 symptoms, but in a small number of reported patients,
stroke was the first symptom that led to hospitalization [33,34]. Two patients in a group
of ten COVID-positive patients treated with mechanical thrombectomy for major artery
blockage exhibited no signs of COVID-19 prior to the onset of the stroke [34]. In separate
research of 32 hospitalized patients with ischemic stroke and COVID-19, it was observed
that stroke was the primary reason for admission in 44% of the cases [24]. COVID-19, on
the other hand, appears to be an independent risk factor for in-hospital stroke [33].

3.2. Risk Factors

In COVID-19 patients, the risk of ischemic stroke is increasing. Ischemic stroke is the
most common cerebrovascular complication reported in COVID-19 patients. Furthermore,
there have been reports of cerebral sinus thrombosis, intracerebral hemorrhage, and sub-
arachnoid hemorrhage [26,35,36]. The mechanisms of stroke in COVID-19 are proposed
to be multifaceted, involving both specific pathophysiological features of the SARS-CoV-
2 virus, such as endothelial activation and thrombosis, as well as nonspecific effects of
impaired coagulation and inflammation, which are superimposed on preexisting risk fac-
tors [24,37]. In addition, several cases of cryptogenic stroke in COVID-19 patients suggest
that SARS-CoV-2 can cause stroke via atypical or novel mechanisms, such as COVID-19
infection-associated hypercoagulability and a pro-inflammatory state [38–40]. Analysis of
the clot waveform has shown hypercoagulability that precedes or coincides with severe
disease [38,40]. Hypercoagulability, together with a systemic inflammatory response to
viral infection, could lead to the formation of macro- and micro-thrombi, ultimately causing
cerebrovascular accidents [38]. A thromboelastography study of the coagulation profile in
critical COVID-19 patients yielded consistency with a hypercoagulative state. A substantial
increase in factor VIII has been hypothesized to be associated with COVID-19-related
hypercoagulability [39]. Activation of the complement pathway, inflammatory cytokines,
as well as cytoplasmic microparticles originating from platelets or lymphocytes could also
induce hypercoagulative state [38,39].

Age, gender, ethnicity, and genetics are traditional stroke risk factors, as are vas-
cular risk factors such as hypertension, dyslipidemia, diabetes, cardiovascular disease,
cardioembolism, atrial fibrillation, obesity, inflammation, and infection [41,42]. Extracor-
poreal membrane oxygenation (ECMO) is required in conditions such as hypercoagula-
bility, thrombosis, and coagulopathy. When comparing COVID-19-related stroke cases
to older patients with vascular risk factors, data analysis from several reports shows
that younger patients with low prevalence of standard stroke risk factors and elevated
markers of inflammation (ferritin) and coagulation outnumber COVID-19-related stroke
cases [16,23,32,36,43–47]. As a result, endotheliitis caused by direct viral invasion and
inflammation caused by cytokine storm may be the COVID-19-peculiar mechanisms un-
derlying such anomalies [48,49]. Serious infections, such as influenza, sepsis, and minor
respiratory and urinary tract infections, have been linked to an increase in inflammation
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and subsequent thrombosis, which can lead to an acute stroke. However, preliminary data
show that, when compared to influenza, COVID-19 is linked to a 7.6 percent increased risk
of ischemic stroke [50]. Furthermore, because extremely elevated D-dimer levels (a marker
of clot turnover) have been confirmed in a significant number of patients within the first
few weeks of disease, especially in more severely affected individuals; a hypercoagulable
state is highly anticipated in COVID-19 patients [3,7]. However, recent studies have found
D-dimer levels are only slightly increased in COVID-19 patients, especially when compared
to septic patients [51]. Although the presence of D-dimer suggests fibrinolytic pathways
are intact and actively dissolving (lysing) fibrin, the discovery of fibrin deposits in lungs
and other organs suggests dysregulation of the balance in fibrin forming (i.e., thrombin
generation) and fibrin-dissolving (i.e., plasmin generation) pathways is a major aspect of
COVID-19 pathogenesis [51]. Certain ischemic stroke patients had significantly higher
D-dimer levels, and aggressive thrombosis was observed [52]. Furthermore, compared to
non-COVID stroke patients, COVID-19 patients may have a higher rate of early re-occlusion
after mechanical thrombectomy due to underlying hypercoagulability [45]. Thrombotic
risk is likely to appear in COVID patients, according to preliminary reports, because anti-
cardiolipin, antiphospholipid, and beta-2 glycoprotein-1 antibodies have been linked to
COVID-related stroke [53]. Very recently, it was shown that NETs can be found in brain
tissue from ischemic stroke patients and that NETs contribute to ischemic stroke brain
damage, showing the pathological role of NETs in the acute setting of ischemic stroke and
their contribution to long-term results [54]. Several papers reported that neutrophils are
primed to make NETs in the setting of COVID and contribute to immunothrombosis in
COVID-19 acute respiratory distress syndrome [55–58]. Results support the hypothesis that
NETs may represent drivers of severe pulmonary complications of COVID-19, may explain
the prothrombotic clinical presentations in COVID-19, and suggest that NET-targeting
approaches could be considered for the treatment of uncontrolled tissue-damaging and
thrombotic responses in COVID-19 [55,58]. Furthermore, antiphospholipid antibodies seem
to play a key role in this process. Therefore, an interesting hypothesis is that COVID-19
exacerbates the neutrophil-like response contributing to worse stroke outcomes [59]. Pa-
tients with antiphospholipid syndrome form durable autoantibodies to phospholipids
and phospholipid-binding proteins, such as prothrombin and β2 glycoprotein I (β2GPI).
These autoantibodies engage cell surfaces, where they activate endothelial cells, platelets,
and neutrophils, thereby tipping the blood endothelium interface toward thrombosis [59].
Higher titers of phospholipid-binding proteins were associated with neutrophil hyperactiv-
ity, including the release of neutrophil extracellular traps (NETs), higher platelet counts,
more severe respiratory disease, and lower clinical estimated glomerular filtration rate [59].
SARS-CoV-2 infection has also been linked to arrhythmia, heart failure, and myocardial
infarction, all of which can lead to a cardioembolic stroke [60]. In line with this, COVID-
19-related coagulopathy has been linked to spontaneous intraparenchymal and cortical
subarachnoid hemorrhage, suggesting that anticoagulants may be a promising treatment
option for such patients [26,37]. Furthermore, COVID-19 ECMO patients have an increased
risk of ischemic stroke and infrequent intracranial hemorrhage due to air embolism [61].
This points to a complicated relationship between traditional risk factors, COVID-19 infec-
tion, and stroke and raises concerns about relatively younger patients who suffer a stroke
during the ongoing pandemic. In contrast, the underlying cause-and-effect relationship
remains unknown [62,63].

3.3. COVID-19 Infection and Neuro-Pathogenesis

COVID-19-related neurologic complications are caused by a variety of mechanisms
that are multifactorial. Neurologic symptoms can develop because of both the virus’s
direct effects and the body’s systemic response to infection [15]. Strokes in patients with
COVID-19 may be due to usual causes such as atherosclerosis, hypertension, and atrial fib-
rillation. It seems likely that these COVID-19-related mechanisms would also increase the
risk of stroke in infected persons who harbor the more conventional stroke risk factors [49].
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The three main mechanisms appear to be responsible for the occurrence of ischemic strokes
in COVID-19 are hypercoagulable state, vasculitis, and cardiomyopathy. While the patho-
genesis of hemorrhagic strokes in the setting of COVID-19 has not been fully elucidated,
it is possible that the affinity of the SARSCoV-2 for ACE2 receptors, which are expressed
in endothelial and arterial smooth muscle cells in the brain, allows the virus to damage
intracranial arteries, causing vessel wall rupture [64]. Direct viral invasion in the nervous
system, neurologic injury from systemic dysfunction, RAAS dysfunction, and immune
dysfunction are the distinct pathomechanics that lead to neuropathogenesis in COVID-
stroke patients. Hypoxemia, which is common in COVID-19 patients, is likely to aggravate
vascular and metabolic abnormalities in the brain, eventually leading to ischemic insult.
Few autopsy studies have found evidence of direct viral invasion of the nervous system,
but the severity of neuropathological findings has nothing to do with these findings [65,66].
However, due to the scarcity of evidence, it is unclear whether SARS-CoV-2 directly in-
fects the cerebral vessels. Aside from that, a few postmortem studies have revealed that
SARS-CoV-2 can directly invade endothelial cells via plausible pulmonary, cardiac, renal,
liver, and bowel endotheliitis and is associated with inflammation and apoptosis [67,68].
However, this remains debatable given that viral particles seen in electron microscopy
of kidney vessel endothelium may have been normal structures or artefacts [69,70]. Re-
cently, Hottz et al. [71] identified a subset of inflammatory monocytes presenting high
CD16 and low HLA-DR expression as the subset mainly interacting with platelets during
severe COVID-19. Although no pathological tests were performed, some case reports
suggested that multifocal ischemic and hemorrhagic lesions could be associated with
endothelial implication, microthrombosis, or vasculitis in small vessels [72,73]. Another
important pathophysiological mechanism of COVID-19 infection is maladaptive activity of
the RAAS system. The membrane-bound protein angiotensin converting enzyme 2 allows
SARS-CoV-2 to enter cells (ACE2). ACE2 converts angiotensin II to angiotensin-(1–7), a
vasodilator with antiproliferative, antifibrotic, and antihypertensive properties [74,75]. The
SARS-CoV-2 virus may cause secondary cardiomyopathies and cerebrovascular effects by
binding to ACE2. A cytokine storm-mediated systemic immune response to SARS-CoV-2
is a critical mechanism for COVID-19-related clinical manifestations [76,77]. TNF-, IL-2,
IL-6, IL1B, IL7, IL10, IFN-, GCSF, CXCL10, CCL2, ferritin, D-dimer, fibrinogen, leukocyto-
sis, and C-reactive protein (CRP) levels are significantly higher in critically ill COVID-19
patients [78–80]. For the majority of these cytokines and chemokines, including those
that are typically associated with macrophage activation syndrome (IL-6, IL-18, IFN-γ,
TNF-α, CXCL9), the increase was less pronounced in COVID-19 critical condition than in
macrophage activation syndrome patients [81]. On the other hand, some markers (i.e., IL-5,
IL-7, IL-17A, CXCL8, and VEGF) were increased in critical COVID-19 patients only and not
in macrophage activation syndrome [81]. Proinflammatory cytokine levels in the blood can
cause confusion and alter consciousness as well as “thromboinflammation”, which raises
the risk of stroke and other thrombotic events [82–85]. Furthermore, complement activation
in patients with severe COVID-19 can result in thrombotic microvascular injury [86–88].
Besides, pro-inflammatory cytokine release may activate microglia, resulting in cerebral
insult [87]. While several COVID-19-related stroke mechanisms have been proposed, one
important mechanism appears to be host immune response or virus-related thrombophilia,
as evidenced by elevated markers of hypercoagulability and inflammation [83] (Figure 1).
COVID-19-endotheliitis could explain the systemic impaired microcirculatory function
in different vascular beds and the related clinical complications [89]. Relevant to this,
recent autoptic studies of COVID-19 patients have shown the presence of fibrin thrombi
within distended small vessels and capillaries along with extensive extracellular fibrin
deposition [90].
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allowing the virus to enter the cell. A difference in ACE2 levels may make people more susceptible 
to SARS-CoV-2 infection. (B) An inflammatory state in the pulmonary alveoli, which leads to 
pulmonary tissue edema and, eventually, systemic involvement of pro-inflammatory cytokines. (C) 
Thrombotic complication (stroke) caused by COVID-19 infection. Microvascular and macrovascular 
thrombosis complications result from anticipated intravascular thrombosis, including cerebral 
insult and stroke [67]. As a result of potent local and systemic cytokine production, platelets become 
activated and interact with neutrophils, enhancing the process of neutrophil extracellular trap 
(NET)osis. As a result, it may increase thrombin production and fibrin deposition. Excess fibrin 
deposition and fibrinolysis shutdown result in intravascular thrombosis and hypercoagulability, 
which eventually lead to clinical thromboembolic stroke complication. As a result, inflammatory 
and hypercoagulability markers are elevated in infected individuals, assisting in prognosis and 
diagnosis. Thrombolytics, anticoagulants, anti-inflammatory therapy, antivirals, angiotensin-
converting enzyme (ACE) inhibitors, and angiotensin receptor blockers are among the potential 
therapies used to treat COVID-19 and COVID-19-associated stroke (ARBs). 
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Figure 1. Schematic illustration of pathomechanisms related to COVID-19 infection and COVID-19-
linked stroke. (A) The mechanism by which the SARS-CoV-2 enters cells is depicted. Angiotensin-
converting enzyme 2 (ACE2), the main protein, interacts with the spike protein of SARS-CoV-2,
allowing the virus to enter the cell. A difference in ACE2 levels may make people more susceptible to
SARS-CoV-2 infection. (B) An inflammatory state in the pulmonary alveoli, which leads to pulmonary
tissue edema and, eventually, systemic involvement of pro-inflammatory cytokines. (C) Thrombotic
complication (stroke) caused by COVID-19 infection. Microvascular and macrovascular thrombo-
sis complications result from anticipated intravascular thrombosis, including cerebral insult and
stroke [67]. As a result of potent local and systemic cytokine production, platelets become activated
and interact with neutrophils, enhancing the process of neutrophil extracellular trap (NET)osis. As a
result, it may increase thrombin production and fibrin deposition. Excess fibrin deposition and fibri-
nolysis shutdown result in intravascular thrombosis and hypercoagulability, which eventually lead
to clinical thromboembolic stroke complication. As a result, inflammatory and hypercoagulability
markers are elevated in infected individuals, assisting in prognosis and diagnosis. Thrombolytics, an-
ticoagulants, anti-inflammatory therapy, antivirals, angiotensin-converting enzyme (ACE) inhibitors,
and angiotensin receptor blockers are among the potential therapies used to treat COVID-19 and
COVID-19-associated stroke (ARBs).

3.4. Linking of Mitochondrion Dysfunction, Ischemia, and COVID-19 Infection

It is well-reported that COVID-19 affects the CNS in a variety of ways, and its neu-
rological manifestations vary from individual infected [91]. COVID-19, according to new
research, hijacks immune cells’ mitochondria, replicates within mitochondrial structures,
and affects mitochondrial dynamics, causing cell death. COVID-19-infected cells’ mito-
chondria are extremely vulnerable, and this vulnerability increases with age. Mitochondria
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were first studied for their bioenergetic role, but they are now known to have a part in
a wide range of cellular processes and signaling events. Viruses can take advantage of
mitochondrial fission and fusion during host infection [92]. Fission and fusion are the vital
processes of mitochondrial cell survival by producing balanced ROS production. Infected
mitochondria with SARS-CoV-19 infection induce an excessive amount of ROS by increased
fusion activity. which leads to too much iron storage, impaired mitophagy, and platelet
apoptosis (Figure 2). This SARS-CoV-2-affected mitochondria serves as double membrane
vesicle for viral entry [2]. From the initial stages of cerebral artery occlusion through the
late stages of recovery, the inflammatory process plays a role in the ischemic cascade [2,5,93].
The inflammatory response encompasses both innate and adaptive immune-cell responses,
possibly opening the door to novel treatment approaches [94]. The mitochondria are the center
of oxidative equilibrium in the cell. A growing body of evidence links COVID-19 patients’
disease progression to a hyper-inflammatory state known as the “cytokine storm”, which
involves major systemic perturbations, such as iron dysregulation manifested as hyperfer-
ritinemia linked to disease severity, as well as reactive oxygen species (ROS) production and
oxidative stress [95]. The increased inflammatory/oxidative state may cause mitochondrial
malfunction, which might result in platelet damage and death. Furthermore, mitochondrial
oxidative stress may contribute to microbial dysbiosis by changing coagulation pathways and
fueling the inflammatory/oxidative response, thus perpetuating the vicious cycle [77].
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glutamate excitotoxicity caused by ischemic stroke are depicted schematically. Excessive Ca2+ influx
induces mitochondrial malfunction and the formation of reactive oxygen species (ROS), which leads
to pathological processes as mitochondrion-dependent apoptosis, mitochondrial fission and fusion,
mitophagy, DNA damage response, and inflammatory responses. A cytokine storm leads to platelet
dysfunction, whose association with microglia activation, caused by mitochondrial dysfunction and
ROS production, can cause ischemic stroke.

3.5. Diagnostic Assessment

During the pandemic, all patients with suspected stroke should have COVID-19 tested
at the time of admission [96]. This recommendation is based on the fact that many stroke
patients can test positive for COVID-19 despite the absence of systemic infection and
clinical symptoms. When systemic COVID-19 symptoms are detected early, patients who
test positively can be isolated appropriately. Given that traditional vascular risk factors
and typical stroke pathophysiologic mechanisms are linked to the stroke frequency in
COVID-19, the initial diagnostic approach should be the same as that used for all patients
with suspected stroke. A hypercoagulability test, for example, is used to confirm stroke,
and a similar approach should be used for COVID-19 patients with an unknown or defined
underlying mechanism of stroke. Brain and neurovascular imaging as well as cardiac
evaluation should be used to identify the underlying stroke mechanism, and treatment
should be tailored to the identified mechanism. For all COVID-19 patients, regular tests
include a complete blood count (CBC), platelet count, prothrombin time (PT), activated
partial thromboplastin time (aPTT), fibrinogen, and D-dimer. However, the risks of arterial
and venous thrombosis as well as central nervous system lesions must be evaluated in
order to reduce the negative effects and death of COVID-19 victims [97].

3.6. Management Issues

The specific stroke treatment, along with infection control precautions, is recom-
mended for the management of ischemic or hemorrhagic stroke in patients with suspected
or confirmed COVID-19 [98–100]. Thrombolytics, anticoagulants, anti-inflammatory ther-
apy, antivirals, angiotensin-converting enzyme (ACE) inhibitors, and angiotensin receptor
blockers are among the potential treatments for COVID-19-related stroke patients (ARBs).
Because of the risk of bleeding, the FDA-approved intravenous tissue plasminogen activa-
tor (tPA; alteplase) is primarily used in the early stages of stroke, as the patient becomes
ineligible for tPA administration after 4.5 h. There are no obvious safety concerns with tPA
in specific COVID-stroke patients, necessitating appropriate evaluation for thrombolyt-
ics as well as mechanical thrombectomy in such a comorbid setting [30,101]. Mechanical
thrombectomy, on the other hand, has produced conflicting results in small cohort studies of
COVID-19 and acute large vessel occlusion patients [16,45]. Consistent with this, COVID-19
patients may be at increased risk of re-occlusion after initial recanalization, possibly due to
infectious hypercoagulability. Given the high thrombotic risk seen in COVID-19 patients,
it is reasonable to begin anticoagulants as soon as possible in patients with suspected or
confirmed COVID-stroke, provided the bleeding risk is tolerable. Heparin and warfarin
anticoagulants, which target multiple clotting factors, may be more effective than direct
oral anticoagulants (DOACs), which target a single clotting factor. More evidence will
be provided by larger studies [67]. However, before deciding on antithrombotic therapy,
the severity of the disease, the presence of other impending thrombotic events, and the
risk of bleeding should all be considered. Anti-inflammatory therapies (Tocilizumab, IL-B
antagonists) are primarily concerned with the delayed elimination of the virus, which
increases the risk of secondary infections in COVID-19 patients. Anecdotal evidence sug-
gests that corticosteroids could be used to treat COVID-19 complications; however, the role
of anti-inflammatory drugs and corticosteroids in stroke is debatable. Furthermore, the
first FDA-approved antiviral drug for SARS-CoV-2, Remedesvir, has no reported role in
stroke [61]. COVID patients are typically prescribed ACE inhibitors or ARBs, but these
medications should be stopped if they develop co-morbidities, such as hypotension or
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acute kidney injury, or are in the acute phase of an ischemic stroke. Although it has been
suggested that COVID-19 patients who receive these agents are more likely to experi-
ence adverse side effects, observational studies have not supported this. As with any
stroke patient, long-term treatment of vascular risk factors and an adequate amount of
antithrombotic should be initiated for secondary stroke prevention. Finally, the increased
risk of intravascular blood coagulation associated with SARS-CoV-2 can lead to stroke,
which has proven to be a significant complication impeding COVID-19 management. Clini-
cians managing patients with suspected or confirmed SARS-CoV-2 infection during the
COVID-19 pandemic should monitor these patients for potential late complications, as
delayed diagnosis can lead to increased patient morbidity and mortality, as frequently
reported [102,103].

3.7. Severity and Prognosis

According to observational studies, stroke associated with COVID-19, which causes
a high rate of death and disability following ischemic stroke, is more serious than stroke
without COVID-19 [104,105]. In addition, limited data show that Afro-Americans have
higher mortality rates and poorer predictions of acute stroke associated with COVID-19
than other races [106]. Stroke can, however, be caused by ageing, oxidative stress, endothe-
lial dysfunction, inflammation, or other vascular risk factors. COVID-19-induced hypoxia,
hypercoagulation, and a pro-inflammatory state contribute to the occurrence, progression,
and prognosis of COVID-19-related stroke [107,108]. Critically ill patients present several
additional risk factors for nervous system damage. Reasons for these include deep sedation
and extended muscular paralysis, bed rest for several days, and the inability to receive
proper physical rehabilitation [48,49,109].

3.8. Preventive Measures

Acute cerebral stroke is still a potentially fatal and disabling illness, and patients who
test positively for COVID-19 should seek immediate medical attention as well as optimal
medical care, which has been shown to improve stroke outcomes. Universal precautions
should be taken to prevent the spread of COVID-19 infection. Patients with cerebrovascular
disease should keep an extra supply of medications on hand in case of a home quarantine
or a disruption in supply chains. A highly safe and efficient telehealth visit is frequently
performed in patients suffering from transient ischemic attack (TIA) for rapid ambulatory
evaluation and in secondary prevention and rehabilitation of stroke during the COVID-
19 pandemic [110–115]. However, the increased risk of stroke in the COVID-19 setting
may result in a COVID-19-related widespread stroke epidemic, necessitating critical care
measures to prevent a stroke epidemic in people with COVID-19 disease [97,105]. Platelets
represent a potential therapeutic target for improved clinical outcomes in patients with
COVID-19. Recent trials in which thromboprophylaxis was assessed for COVID-19 patients
showed in noncritically ill patients with COVID-19, an initial strategy of therapeutic-dose
anticoagulation with heparin increased the probability of survival to hospital discharge
compared with usual-care thromboprophylaxis [116], whereas in critically ill patients with
COVID-19, an initial strategy of therapeutic-dose anticoagulation with heparin did not
result in a greater probability of survival to hospital discharge or a greater number of days
free of cardiovascular or respiratory organ support than did usual-care pharmacologic
thromboprophylaxis [117]. Berger et al. [118] evaluated the benefits and risks of adding
a P2Y12 inhibitor to anticoagulant therapy among non-critically ill patients hospitalized
for COVID-19, reporting no increased odds of improvement in organ-support-free days
within 21 days during hospitalization. Similarly, Chow et al. [119] in their study of adults
hospitalized with moderate COVID-19 showed that early aspirin use was associated with
lower odds of 28-day in-hospital mortality. Further randomized clinical trials that include
diverse patients with different COVID-19 clinical condition are warranted to adequately
evaluate heparin and aspirin’s efficacy in patients with different risk conditions.
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4. Conclusions

Stroke is an iniquitous SARS-CoV-2-linked neurovascular complication. Stroke has
been associated with age, co-morbidities, and serious diseases in COVID-19 subjects.
Although stroke is a rare complication of COVID-19, when it occurs, it frequently causes
considerable morbidity and mortality. The coagulation factors and respiratory issues lead
to the risk factors of stroke, i.e., hypoxic brain dead and associated neurodegeneration.
The key to the minimum mortality and morbidity of patients with acute stroke is timely
evaluation and hyperacute treatment. Stroke is a common neurovascular complication of
SARS-CoV-2. Stroke has been linked to age, co-morbidities, and serious diseases in COVID-
19 subjects. Even though stroke is a rare complication of COVID-19, it frequently results
in significant morbidity and mortality. Coagulation issues and respiratory problems are
risk factors for stroke, which results in hypoxic brain death and neurodegeneration. Timely
evaluation and hyperacute treatment are critical in reducing mortality and morbidity in
patients suffering from an acute stroke. During the current pandemic, medical teams should
be aware of a wide range of COVID-19 neurological manifestations and ensure adequate
isolation and protection for any suspected patients. It is critical to collect comparative data
on stroke phenotypes, treatment details, and actual outcomes in patients with and without
COVID-19 to better understand these emerging co-existing phenomena.
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