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Quantitative Structure Activity Relationship (QSAR) analysis techniques are tools largely utilized in many
research fields, including drug discovery processes.
In this work electronic descriptors are calculated with the Gaussian 03W software using the DFT method with

](?le;marin the BecKe 3-parameters exchange functional and Lee-Yang-Parr correlation functional, with Kohn and Sham
MLR orbitals (KS) developed on a Gaussian Basis of type 6-31G (d), in combination with five Lipinski parameters that
Validation have been calculated with ChemOffice software, in order to develop a statistically verified 2D-QSAR model able to
Domain of applicability predict the biological activity of new molecules belonging to the same range of coumarins rather than chemical
Docking synthesis and biological evaluations that require more time and resources. Two QSAR models against both MCF-7

Cross validation
Y-randomization
External validation

and HepG-2 cell lines are obtained using the multiple linear regression method.

The predictive power of these models has been confirmed by internal and external validation. The Leverage
method was used to determine the domain of applicability of the 2D-QSAR models developed. The results indicate
Qsar that the best QSAR model is the one that links the 2D descriptors with the CDK inhibitory activity of the cell line
(HepG-2) R? = 0.748, R%cv = 0.618, MSE = 0.03 for the learning series and R* = 0.73, MSE = 0.18 for the test
series. This model implies that coumarin inhibitory activity is strongly related to dipole moment and the number
of hydrogen bond donors. The results obtained suggest the importance of studying structure-activity relationships
as a principal axis in drug design. The docking procedure using AutoDOCK Tools was also used to understand the
mechanisms of molecular interactions and consequently, to develop new inhibitors.

1. Introduction

There are monitoring points in a cell cycle to supervise them when a
cell decides to divide into two identical daughter cells according to
fundamental aspects namely: a sufficiently important growth of the cell,
the DNA is completely repaired, that this DNA is duplicated (2 complete
and identical copies of DNA) and that the mitotic spindle with the mi-
crotubules and the alignment of the chromosomes was properly
constituted.

The control of different stages of the cell cycle is ensured by molecules
(proteins) either alone or in macromolecular complexes (several proteins
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associated with each other). For this reason, we use two proteins: cyclins
and CDK.

Cyclin is a protein that is always produced inside the cell in small
quantities, they appear and then suddenly disappear at specific moments
of the cycle, periodically. The CDK can, therefore, be activated or deac-
tivated depending on whether or not they are associated with their
cyclin.

As soon as CDK is combined with a cyclin, they become enzymatically
active and are then able to activate other proteins by phosphorylating
them to progress the cell cycle [1].

In brief, cell cycle disorders lead to uncontrolled proliferation, which
can lead to cancer.
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The specific inhibitors of CDK are important targets in drug discovery
due to their anti-tumor activity, they induce apoptosis by disrupting the
cell cycle.

Morsy and his collaborators [2] tested the anticancer activity of a
series of 24 coumarin derivatives in vitro against 2 tumor cell lines,
human breast cancer (MCF-7) and hepatocellular carcinoma (HepG-2).

Coumarins are oxygenated heterocycles belonging to the benzopyr-
one family, whose name according to IUPAC is 2H-1-benzopyran-2-one
[3], they are produced by combining a benzene ring with a pyran, hav-
ing a ketone function in alpha position with respect to oxygen.

Isolated the first time from Coumarounaodorata by Vogel in 1820 [4],
today nearly a thousand of coumarins have been described in more than
800 species of plants and microorganisms.

From a structural point of view, they are classified into simple cou-
marins with substituents on the benzene ring, furanocoumarins, pyr-
anocoumarins, those substituted at positions 3 and or 4 and the latter are
dicoumarins and tricoumarins [5].

Coumarins have many biochemical and pharmacological properties.
The activity of these molecules depends on the structure and nature of the
substituents. The majority of coumarins and their derivatives have been
subjected to deep investigations to evaluate their effects on human
health. Research has shown that they can be anti-HIV, anti-tumor [6],
anti-cancer, anti-microbial [7], anti-inflammatory [8, 9], anti-fungal
[10], antioxidant [11] and even vasodilator agents [12].

A 2D-QSAR study was processed to find descriptors that can be
correlated to anti-cancer activity expressed in ICsp(mol/L) values [ the
concentration of test compounds required to reduce the cell survival
fraction to 50% of the control], they converted to negative logarithms of
IC50(pICsp) to obtain the linear relationship with the independent
variables.

The principle of QSAR computational methods is to implement a
mathematical relationship quantitatively linking molecular descriptors
with a macroscopic observable (physicochemical property or biological
activity) for a series of similar chemical compounds using statistical data-
analytical methods.

The most general mathematical form of QSAR is [13]:

Activity = f (X)

X: physicochemical and/or structural properties.

The goal of these methods is, therefore to analyze the structural data
to detect the determining factors for the property or activity measured.

In the last step, the developed models are subjected to various in-
ternal and external validation procedures to test their statistical signifi-
cance, robustness and predictive power [14]. The current challenge in
the QSAR model development process is no longer in developing a sta-
tistically robust model to predict activity within the calibration set, but in
developing a model that can accurately predict the activity or property of
new chemicals [15].

The QSAR study of 24 coumarins was carried out using descriptors
from quantum chemistry to quantify the different inter and intra-
molecular interactions, and also has the advantage of being directly
related to the reactivity properties of molecular systems, the latter is
derived from the DFT method which can achieve similar accuracy to
other methods in less time and lower cost from a computer point of view,
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and to describe the compounds that could be orally delivered drugs we
used the descriptors that correspond to the Lipinski rule (see Figure 1).

Structural biology is interested in the relationship between the
structure of molecules and the activation or inhibition of their biological
activity, and this can only be done by predicting the affinity between two
molecules, understanding how they function, and defining the residues
involved. This is the problem then of molecular docking, which aims to
predict the interactions intervening in the formation of molecular com-
plexes, which is considerably easier to implement, cheaper, and faster
than the use of in vitro experimental methods [16].

Docking software is therefore practical tools for the design of new
ligands likely to interact more favorably with targets of therapeutic in-
terest [17].

2. Materiel and methods
2.1. Experimental data

At this stage, we evaluated the values of the inhibitory and anticancer
activities of CDK in vitro against two types of human tumor cell lines
from the work of Shaimaa A. Morsy et al [2] who developed the design of
a series of 6-methyl-4-substituted coumarin and 4-substituted benzo-
coumarin as shown in Figure 2. Reported values of ICso (mol/L) were
converted to pICsg by taking a negative logarithm (pICso = - 1og10 ICs0)
and then used as dependent variables to develop the QSAR model. The
ICsp values of the compounds 5h, 7d, 7h, 7h, 9h, 9a, 13a and 13d
mentioned in Table 1 showed a remarkably high affinity and selectivity
towards the MCF-7 and HepG-2 cell lines, in addition to compound 13a
which has the greatest cytotoxic activity compared to 5-fluorouracil (the
reference molecule).

The structural potential of our derivatives has been confirmed by a
QSAR study to find descriptors that can be correlated to activity and
subsequently for the successful design of new improved coumarin anti-
cancer structures.

2.2. Molecular descriptors

Obtaining a statistically robust model depends very much on the
ability of the descriptors, which are the final result of a logical and
mathematical procedure [18], to encode the variation of activity with the
structure.

The information coded by the descriptors generally depends on the
type of molecular representation and the algorithm defined for its
calculation and to predict the correlation between the 24 coumarin de-
rivatives and their antitumor activity against the two cell lines MCF-7 and
HepG-2. The chemical structures of the compounds were drawn using
ChemDraw Professional 16.0 software [19] the initial optimizations of
the geometry were carried out with the Molecular Mechanics (MM)
method using the MM2 force field implemented in the Chem3D 16.0
software [19] The values of the 5 Lipinski descriptors [20], for all mol-
ecules including molecular weight (MW), lipophilicity (log P), hydrogen
receptors (HA), hydrogen bond donors (DH) and the number of NRB
rotational bonds, were calculated using the program module "calculation
properties" as compiled in Table 2.
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Figure 1. The combination of benzene with a pyran into a coumarin.
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Figure 2. Design of the studied coumarin derivatives.
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Table 1. The different substituents associated with coumarin derivatives as well as the experimental values of cytotoxic activity.

Compounds R R! R? PICsoexp(HepG-2) PICs0exp(MCF-7)
5a CHjs H H 7.114 6.842
5b CH3 CH3 H 6.879 7.301
5c CH3 NOy H 7.244 6.754
5d CHj3 H F 6.848 6.585
5e CH3 CH3 F 7.046 6.896
5f H H H 7.398 6.854
5g H CH3 H 6.693 6.721
5h H NOy H 7.602 6.807
5i H H F 7.046 7.000
5j H CH3 F 6.807 7.222
7a CHj3 H - 6.585 7.770
7b CH3 CH3 - 6.796 7.046
7c CHs NO, - 6.770 7.301
7d CH3 F - 7.398 6.921
7e H H - 7.097 7.398
7f H CH3 - 6.745 7.523
78 H NOy - 6.708 7.097
7h H F - 7.347 6.951
9a CH3 - - 7.770 6.721
9b H - - 6.824 7.699
13a NHNH2 CN C6H5 7.886 7.222
13b C6H6N CN C6H5 6.959 7.824
13c C4H8NO CN C6H5 6.721 6.987
13d C4HON2 CN C6H5 7.523 7.699

The 24 structures were transferred to the Gaussian 03W [21] software
for optimization with the B3LYP/6-31 G (d) method based on
density-functional theory (DFT), to find a geometry for which the energy
is minimal and to extract a set of 4 quantum chemistry descriptors,
namely the energies of the highest occupied molecular orbit HOMO and
the lowest vacant LUMO, the total energy of the molecule (Et) and the

dipole moment, the nature of commonly used descriptors (structural,
topological, electronic and geometric) and the degree of coding of mo-
lecular structural characteristics linked to certain specific physical

properties are at the heart of any QSAR study [22].

Table 2. The values of parameters calculated for the 24 molecules of both cell lines MCF-7 and HepG-2.

N° PpICso (HepG-2) pICso(MCF7) Bt EHOMO ELUMO MD Log P AH DH MW NRB
1 7.114 6.842 -45622.0823 -6.1666 -1.9475 5.1264 7.27 4 0 425.51 5
2 6.879 7.301 -46691.7168 -6.0444 -1.9301 5.6902 7.71 4 0 439.53 5
3 7.244 6.754 -51184.516 -6.5453 -3.1064 2.161 7.17 5 0 470.5 6
4 6.848 6.585 -48321.721 -6.2882 -1.9986 5.4411 7.44 5 0 4435 5
5 7.046 6.896 -49391.3555 -6.1600 -1.9826 5.9475 7.87 5 0 457.52 5
6 7.398 6.854 -48732.3731 -6.0047 -1.9712 4.2549 8.10 4 0 461.54 5
7 6.693 6.721 -49802.0068 -5.9799 -1.9540 4.7195 8.54 4 0 475.57 5
8 7.602 6.807 -54294.8076 -6.1472 -3.0974 2.6889 8 5 0 506.54 6
9 7.046 7.000 -51432.0118 -6.0495 -2.0199 4.4166 8.27 5 0 479.53 5
10 6.807 7.222 -52501.6463 -6.0313 -2.0033 4.9825 8.7 5 0 493.56 5
11 6.585 7.770 -39876.3654 -6.5513 21271 5.4651 5.19 4 0 350.39 4
12 6.796 7.046 -40946.008 -6.4876 -2.1034 5.9216 5.63 4 0 364.42 4
13 6.770 7.301 -45438.7237 -6.7154 -3.4250 5.6828 5.09 5 0 395.39 5
14 7.398 6.921 -42576.034 -6.6011 -2.1780 4.6732 5.35 5 0 368.38 4
15 7.097 7.398 -42986.6562 -6.1467 -2.1358 4.4837 6.02 4 0 386.42 4
16 6.745 7.523 -44056.2988 -6.1276 -2.1138 4.9235 6.46 4 0 400.45 4
17 6.708 7.097 -48549.0172 -6.2868 -6.2868 5.7511 5.92 5 0 431.42 5
18 7.347 6.951 -45686.3275 -6.1886 -6.1886 3.9234 6.18 5 0 404.41 4
19 7.770 6.721 -66700.6427 -6.7002 -2.6544 4.6144 5.6 4 0 494.6 6
20 6.824 7.699 -72921.2215 -6.2504 -2.6637 5.2431 7.26 4 0 566.66 6
21 7.886 7.222 -45457.6408 -6.5510 -6.5510 6.6793 3.39 6 2 415.47 6
22 6.959 7.824 -50238.6162 -6.4229 -6.4229 7.0884 5.87 5 1 476.55 7
23 6.721 6.987 -50243.1877 -6.5110 -6.5110 5.9868 4.47 6 0 470.55 6
24 7.523 7.699 -49702.8806 -6.0566 -6.0566 7.4255 4.28 6 1 469.56 6
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2.3. Statistical analysis

Chemometric techniques constitute the mathematical basis for the
construction of a QSAR model and among the easiest methods to inter-
pret is the descending multiple linear regression analysis contained in
XLSTAT 2014 software [20].

The selection of a regression method allows us to specify how the 9
descriptors were entered into the analysis. Using descending selection,
we were able to construct two QSAR models from the 24 molecules
studied.

In this case, all the variables are introduced into the equation and
then eliminated one by one. the variable having the smallest partial
correlation with the dependent variable is the variable whose deletion is
studied first, if it meets the elimination criteria, it is removed. Once the
first variable is eliminated, the elimination of the next variable remaining
in the equation and having the lowest partial correlation coefficient is
studied [21].

The procedure will be repeated until all the variables stored
contribute significantly to the improvement of R? [22].

The objective will, therefore, be to develop predictive models for the
cytotoxic activity of a series of coumarins against the 2 cell lines MCF-7
and HepG-2 using a reduced number of relevant descriptors and
respecting all the protocol of the QSAR methodology.

1. First, the quality of the model is often visualized on a scatter diagram,
on which the calculated values of biological activity are displayed,
according to the experimental ones. More the points in this graph are
close to the adjustment line, more the modeling is better and this can
be evaluated by the determination coefficient R? [23]which measures
the proportion of total variation of Y around the average explained by
the regression.

The Fisher index is also used as an indicator of the degree of statistical
significance of the model, i.e., the relevance of the choice of de-
scriptors that compose it.

2. In addition, to verify the stability of the predictive model and to test

the influence of each element of the training set on the final model,
"leave-one-out" cross-validation techniques are applied.
Typically, one compound is removed each time, before redefining the
model using the n-1 of the remaining compounds as training set, so
that the biological activity value for the extracted compound is pre-
dicted once for all the compounds. This process is repeated n times for
all the compounds of the initial set, thus obtaining a prediction for
each object [24]. It is quantified by the R2cv coefficient [25].

3. Subsequently, the perfect validity of the model is examined by

external validation, which evaluates its generalization.
This validation consists of predicting the activity of a test series that
has not been included in any step of the model construction [26], it is
characterized by the parameters R? (test) R%cv (test) but they remain
insufficient to verify the predictive strength of the QSAR models.
Therefore, other parameters must be verified known as the" Tropsha
criteria" [27].

4. A QSAR model is not universal, it is developed for a given number of
compounds. For this, it is necessary to determine an applicability
domain for each model. It is a tool that eliminates molecules from the
test set that are located outside the chemical space of the training set,
which is required in the validation processes implemented at the
OECD level [28].

Different methods are used to define the domain of applicability of a
QSAR model, including that of "leverage" [29].

5. To check the robustness of a QSAR model, the randomization test is

often used. It consists of randomly mixing the experimental activities
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for the learning series (Y) according to the same descriptors (X), new
QSAR models are obtained. These latter must have very low R? and
RZcv performances. Another metric CRZP is also verified to meet this
test, it must not be lower than the threshold value of 0.5, to conclude
that the correlations are not fortuitous [30].

3. Results and discussion
3.1. Dataset for analysis

According to research conducted by Shaimaa A. Morsy et al, on the
anticancer activity of coumarin derivatives concerning the 2 tumor cell
lines MCF-7 and HepG-2, 25% of the synthesized molecules were
randomly selected as a test set (6 molecules), while the other compounds
(18 molecules) participated in the formation of the 2D-QSAR models.

The quantification of logarithmic values of biological activity pICsg
with relevant molecular descriptors was performed by multiple linear
regression (MLR) analysis.

3.2. Multiple linear regressions (MLR)

The MLR was used to generate the linear 2D-QSAR models between
pICsg values and molecular descriptors. Two molecular descriptors (MD
dipole moment and number of hydrogen bond donors DH) were selected
to explain the variation of biological activity of coumarin derivatives.
The best-selected models of HepG-2 and MCF-7 cell lines are given
below:

@ For the cell line (HepG-2):

pICsp = 7.915-0.196 MD+0.598 DH (2)
Regression statistics:

N = 18 R = 0.86 R? = 0.748 R%just = 0.715 MSE = 0.03 MAE = 0.13

Niest = 6 Rest = 0.73 MSEjest = 0.18 MAEegt = 0.38 F = 22.312

@ For the cell line (MCF-7):

pICsy = 7.789-0.159 MD+0.520 DH ©)
Regression statistics:

N = I8 R = 0.74 R?* = 0.545 R%just = 0.5 MSE = 0.04 MAE = 0.15

Niest = 6 R2est = 0.52 MSEjes; = 0.20 MAE s = 0.4 F = 8.980

For HepG-2, 74.8% of the variability is explained by the dipole
moment and the number of hydrogen bond donors, the same descriptors
were obtained for MCF-7 but explain only 54.5% of the variability.
Generally, more the value of R? will be close to 1 (ideal case), more the
predicted and observed values are correlated.

According to ANOVA [31] tables S1 and S2 (in the <i>supplementary
material</i>), the observed Fisher statistics [32] (Fops1 = 22.312 and
Fobs2 = 8.980) are greater than [F¢ (0.05; 2;15) = 3.68], which allows to
accept the alternative hypothesis H1 and to confirm that there is at least
one coefficient different from zero, i.e. a descriptor correlated with the
inhibitory activity explained by pCsg values.

From tables S3 and S4 (in the supplementary material), the observed
student statistic values are higher than those in the distribution table, t
(0.025; 15) = 2.131, this allows us to reject the null hypothesis, i.e. the
coefficients included in the two different models are significantly
different from zero. This judgment is consolidated by the low probability
values for the descriptors in Egs. (1) and (2).
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Afterward, we proceeded to the problem of co-linearity and multi-
collinearity [33] respectively through the examination of the correlation
matrix, by calculating the correlation coefficient for all possible pairs of
descriptors and the confirmation by the tolerance factor [34] indicated
by:

1
TF(xk)=———— =1 — R?
() = e xk

where VIF (xk) is the inflation factor of the variance for the descriptor xk
and R2xk is the squared correlation coefficient resulting from the
regression of the descriptor xk on all other descriptors.

The examination of the correlation matrices (Tables 3 and 4) confirms
the absence of collinearity problems between the descriptors of the 2
models, explained by the low values of the correlation coefficients (R <
0.9) and since the TF values are all less than 0.5, we can confirm the
absence of strong multicollinearity between the descriptors.

The positive sign of DH in regression Egs. (2) and (3) indicates that
pICsp is directly proportional to this descriptor while the negative co-
efficients for MD indicate that inhibition is inversely proportional to this
descriptor.

A high value of MD dipole moment is expected to participate in
hydrogen bonds, as well as dipole-dipole interactions and n-x stacking, it
is often used to explain a molecule's activity because it can be directly
related to its chemical reactivity.

Since the number of H-bond donors (DH) has a positive sign in Egs.
(2) and (3), we need to increase the number of hydrogen atoms bound to
the heteroatoms to boost the activity.

3.3. Internal and external validation

To evaluate the significance of generated models and their precise
predictive capacity, internal and external validations were used [35, 36].
The best HepG-2 and MCF-7models revealed a leave one out
cross-validation coefficients chv [37] values of 0.618 and 0.509,
respectively. The predictability of HepG-2 and MCF-7models were veri-
fied by a test set of 6 compounds, which gave a determination correlation
coefficient (R%est) values of 0.73 and 0.52, respectively. The predicted
values of the molecular activity of the learning and validation sets of the
two models are presented in Table 5.

3.4. Y-randomization

To test the robustness of the obtained models, we then carried out the
randomization test [38], which allows us to affirm that the good corre-
lations between the descriptors and the activity are not due to chance. To
do this, the observations are randomly disorganized ten times, i. e. the
column of the pICsg response will be changed randomly, but the columns
of the descriptors remain unchanged. We, therefore obtain ten models
with an average R? and R%v of 0.24 and 0.15 for HepG-2 as well as 0.2
and 0.102 for MCF-7 respectively. This result indicates that the models
obtained are not due to a chance.

3.5. The applicability domain

A QSAR model is not universal, it is developed for a given number of
compounds that do not cover all the chemical space and only predictions
concerning molecules in this domain can be considered admissible.

The determination of ADs is therefore of great importance as it is
explicitly requested in the validation processes put in place at the OECD
level [39].

The applicability domain is the region of the chemical space including
the compounds of the model learning set.

The analysis of the applicability domain in this work is performed
using the "Leverage" method which is based on the variation of the
standardized residuals of the dependent variable <i>p</i>ICsy with
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"Leverage" (the distance between the values of the descriptors and their
means).

Figures 2 and 3 show that all observations have standardized residues
between [-3; 3].

We note the absence of outliers in Figure 3 since the "Leverages"
obtained are lower than the threshold value 0.67 (h* = 3p/n). But
Figure 4 shows that there is a compound (No. 11) of the training set with
an h slightly higher than the critical value (h>h* = 0.7), it is possible that
the structure of this molecule influence on the prediction or the de-
scriptors chosen does not give any special consideration to this coumarin
derivative.

According to the results obtained by MLR, the QSAR model repre-
sented by Eq. (2) shows a major correlation of 2D descriptors with CDK
inhibitory activity concerning the cell line (HepG-2). This model is highly
predictive and gives very interesting results and structural information
that can be guided by other research, on anti-cancer drugs.

If we analyze the experimentally obtained pICso (HepG-2) values, we
note that in the group of coumarin derivatives (5a-5j), the presence of a
nitro substituent as for the compound 5h is favorable to the activity, with
a pICsg value of 7.602, whereas a substitution by a methyl group leads to
a reduction of the activity to 6.693. It can be deduced that the greater the
effect of the electron donor group, the higher the antitumor activity. For
the second group of compounds, including 7a-7h, shows that the pres-
ence of a fluorine atom in position 4 of the phenyl ring linked to the
oxadiazole fraction generates a very active compound 7d of this range,
and the fact of substituting the phenyl ring with a hydrogen atom in this
position has decreased the activity to 6.585 as for compound 7a. This
reveals that the presence of electronegative groups in this area could
present a good anti-tumor activity.

On the other hand, compound 9a was found to be very active (pICso =
7.770) and this could be attributed to the substitution of thiadiazole with
a methyl coumarin group instead of benzocoumarin groups. When
introducing the series of compounds 13a-13d, it is to see the effect of the
structural modification of the basic skeleton on the antitumor activity, by
considering them as starting compounds for future selective modifica-
tions of the coumarin molecule, given the very high value of activity
(pICsp = 7.886) that provides the structure 13a.

Therefore, based on the skeleton of these molecules and depending on
the nature of the chosen substitutions, new series of active coumarins
(Table 6) can be designed from the selected MLR model that will reduce
the time and cost of synthesis, having higher or similar activity values to
the existing one.

3.6. Docking studies

This docking study consists of finding the best position for the ligand
(coumarin derivative N.21 of the HepG-2 line) in the receptor-binding
site (1KE9), which was obtained from the PDB databank with a resolu-
tion of 2A [40]. Before its use by AutoDock, the complex is separated
from its ligand to release the active site after eliminating the water
molecules, the prepared files are saved in pdbqt format.

To increase the speed of energy evaluation of the system AutoDock
uses a three-dimensional grid broadly encompassing the active site of the
1KE9 protein and allowing free rotation of the ligand in this site. In our
case, the center of this box is determined by the coordinates X = -9.477,Y
=50.349, and Z = 11.383 with dimensions 30*40*40 A3. The box is then

Table 3. Correlation matrix of the descriptors of Eq. (2).

Correlation coefficient TF
MD DH pICso
MD 1 0.421
DH 0.459 1 0.215
PpICso -0.310 0.575 1

The values in bold represent the maximum correlation between the descriptors.
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Table 4. Correlation matrix of the descriptors of Eq. (3).

Correlation coefficient TF
MD DH PICso
MD 1 0.427
DH 0.426 1 0.234
pCso -0.171 0.577 1 -
The values in bold represent the maximum correlation between the descriptors.
Table 5. Observed and predicted pICs values of the training and validation sets of coumarin derivatives of the two MLR models.
Comp. MLR (HepG-2) Comp. MLR (MCF-7)
pICsp0bs PredpICso Resid pICsp0bs PredpICsg Resid
1 7,114 6.911 0.203 1 6.842 6.886 -0.044
2 6,879 6.800 0.079 2 7.301 7.446 -0.145
8 7,244 7.492 -0.248 3 6.754 7.040 -0.285
4 6,848 6.849 -0.001 4 6.585 6.921 -0.336
5 7,046 6.750 0.296 5 6.896 7.007 -0.111
7 6,693 6.991 -0.298 6 6.854 6.957 -0.103
8 7,602 7.389 0.214 7 6.721 6.839 -0.117
9 7,046 7.050 -0.004 8 6.807 6.925 -0.118
11 6,585 6.844 -0.259 9 7.000 6.887 0.113
12 6,796 6.755 0.041 10 7.222 6.845 0.377
13 6,770 6.802 -0.032 11 7.770 7.770 0.000
15 7,097 7.037 0.060 12 7.046 7.077 -0.032
17 6,708 6.788 -0.081 13 7.301 7.166 0.135
18 7,347 7.147 0.200 14 6.921 6.998 -0.077
20 6,824 6.888 -0.064 15 7.398 7.047 0.351
21 7,886 7.803 0.083 16 7.523 7.114 0.409
22 6,959 7.125 -0.166 17 7.097 7.088 0.009
23 6,721 6.742 -0.021 18 6.951 6.975 -0.024
6 7.398 7.082 0.316 19* 6.721 6.876 -0.155
10* 6.807 6.939 -0.132 20* 7.699 7.362 0.337
14+ 7.398 7.000 0.398 21* 7.222 6.849 0.373
16* 6.745 6.951 -0.206 22% 7.824 7.057 0.767
19+ 7.770 7.011 0.758 23* 6.987 7.184 -0.197
24* 7.523 7.059 0.464 24+ 7.699 7.131 0.568
" Indicate the test set compounds.
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Figure 3. The Williams graph of the model presented by Eq. (02).
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Figure 4. The Williams graph of the model presented by Eq. (03).

Table 6. Chemical structures, molecular descriptors and pICsq activity with leverage effects (h) of new derivatives.

Novel compounds MD DH pICso Leverage
derivatives of the skeleton (5h) M1R=H;R; =0OH; R, = H 7.598 1 7.024 0.252
M2 R = CHs; R; = H; R, = OH 3.665 1 7.795 0.187
M3R=H;R; =H;R, =H 4.268 0 7.078 0.083
M4 R = Br; R; = NOy; Ry = CN 3.328 0 7.263 0.132
derivatives of the skeleton (13a) M5 R = OCHj3; R; = OCH3 3.106 1 7.904 0.252
M6 R = OH; R; = OCH3 9.513 0 6.05 0.476
M7 R = H; R; = OCH3 6.541 0 6.633 0.132
M8 R = NOg; R; = NO, 1.822 0 7.558 0.214
derivatives of the skeleton (9a) M9 R = OCOCHjs; R; = CN; R, = C6H5 6.515 1 7.236 0.187
M10 R = COOH; R; = CN; Ry = C6H5 3.504 0 7.228 0.083

centered on the active site and its dimensions are proportional to the size
of the ligands studied.

After the generation of the protein and ligand files, the docking can be
started, using the Genetic Algorithm (GA) with its default settings, and
the results can then be viewed using the Discovery Studio 2016 Client
software.

The best docking result is the conformation with the lowest energy
-9.43 kcal/mole.

The visual analysis is an essential step to judge the performance of the
program, the (Figure 5) shows that the ligand model simulated by

Figure 5. Comparison of the geometry of the ligand obtained by crystallog-
raphy (colored in blue) with that obtained by AutoDock (colored in green).

AutoDock is correctly placed in the active site of 1KE9 and presents a
spatial conformation very close to or even superposable to the one
determined experimentally by crystallography that we find in the PDB.
The simulation performed by AutoDock allowed us to obtain a com-
plex formed between the most active coumarin compound and the active
site of 1KE9 which is stabilized by two hydrogen bonds between the
carbonyl of the inhibitor and the amine function of the LYS A:33 residue
with a distance equal to 2.778 A, the second formed between the NH; of
the ligand and the amine function of the LEU A:83 residue (d = 3.02
A).The compound is also stabilized by several hydrophobic interactions

1

Figure 6. Interaction between the compound and the active site of 1KE9.
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with the LYS A:89, LEU A:134, ALA A:31, VAL A:64, ALA A:144, ILE A:10,
and VAL A:18 residues (see Figures 6 and 7).

These promising molecular docking results prompted us to predict the
most favorable conformation and relative orientation of the M5 molecule
proposed in Table 6 and having better activity than those of the original
series into the active site of the 1KE9 protein with the same coordinates
and dimensions as those used for the most active molecule.

We give in Figure 8 below the illustration of how compound M5 binds
to the active site of the protein.

Analysis of the simulation result revealed that the compound M5
interacts with the residues of the active site, mainly through a hydrogen
bond established between the sulfanyl of the ligand and the amino res-
idue LEU A:83, as well as through hydrophobic interactions with the
residues ALA A:144, VAL A:64, ALA A:31, VAL A:18, ILE A:10, LEU
A:134, and PHE A:80.
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4. Discussion

The QSAR model linking the inhibitory activity of CDKs concerning
the cell line (HepG-2) and two 2D descriptors, provides the best statistical
parameters, which led us to treat a molecular docking to predict the
probable interactions between the ligand and the amino acids forming
the skeleton of the receptor.

The number of H-bond donors (DH) is one of the two parameters
which considerably influences activity according to the model equation,
which is in agreement with the docking results which show that the most
stable conformation of the coumarin derivative (N.21), as well as the
predicted compound M5, form a hydrogen bond in common with the
same residue LEU A:83, a second one appeared for the derivative (N.21)
with LYS A:33 at the active site of 1KE9. We know in advance that the
hydrogen bond connects molecules by involving a hydrogen atom, and
for this bond to be established, it is necessary to be in the presence of a
hydrogen bond donor and an acceptor. The rest of these 2 molecules
interact with the active site by hydrophobic interactions.

The results obtained in this work are encouraging and could help in
the design of new drugs against human hepatocellular carcinoma, it
would, therefore, be interesting to validate and confirm these results
experimentally by testing the inhibitory activity of the predicted
coumarin derivatives against the CDK protein.

5. Conclusion

In this work, we studied the anticancer activity of CDK in a series of
24 coumarin derivatives, we used electronic descriptors in combination
with Lipinski's parameters to relate them to biological activity. The QSAR
model for the cell line (HepG-2) was able to show stability and predictive
power, confirmed by internal and external validation.

The structural characteristics that can influence the inhibitory activity
of compounds have been mentioned, namely the importance of electro-
negative groups at position 4 of the phenyl ring of the oxadiazole moiety,
these functional groups that can form a hydrogen bond with water can
affect the hydrophobic behavior and consequently an increase of activity.
Which is proven by the strong correlation of the inhibitory activity of the
compounds in this series with the dipole moment and the number of
hydrogen bond donors. This allows this model to provide rational in-
formation for the design of potential new drugs and to complement this
2D-QSAR study with 3D-QSAR analysis as a perspective.

Figure 8. Mode of the interaction of the predicted compound M5 in the binding site of its receptor.
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Source DOL Sum of squares Square average F Pr>F
Model 2 1.420 0.710 15.126 0.000
Error 15 0.704 0.047
Corrected total 17 2.124
Table S2. Analysis of variance of the model of Eq. (3).
Source DOL Sum of squares Square average F Pr>F
Model 3 11.086 3.695 115.877 <0.0001
Error 14 0.446 0.032
Corrected total 17 11.532
Table S3. Table of coefficients of the first model.
Ind.Var Coef Std.Error tobs Pr>|t|
Intercept 0.792 0.232 3.409 0.004
MD 0.181 0.047 3.859 0.002
DH -0.634 0.117 -5.423 <0.0001
Table S4. Table of coefficients of the second model.
Ind.Var Coef Std.Error tobs Pr>|t|
Intercept 6.287 1.338 4.699 0.000
EHOMO 1.042 0.201 EHIC] 0.000
MD 0.360 0.048 7.562 <0.0001
DH -1.591 0.109 -14.544 <0.0001
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