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Abstract

Functional brain network studies using the Blood Oxygen-Level Dependent (BOLD) signal from functional Magnetic
Resonance Imaging (fMRI) are becoming increasingly prevalent in research on the neural basis of human cognition. An
important problem in functional brain network analysis is to understand directed functional interactions between brain
regions during cognitive performance. This problem has important implications for understanding top-down influences
from frontal and parietal control regions to visual occipital cortex in visuospatial attention, the goal motivating the present
study. A common approach to measuring directed functional interactions between two brain regions is to first create nodal
signals by averaging the BOLD signals of all the voxels in each region, and to then measure directed functional interactions
between the nodal signals. Another approach, that avoids averaging, is to measure directed functional interactions between
all pairwise combinations of voxels in the two regions. Here we employ an alternative approach that avoids the drawbacks
of both averaging and pairwise voxel measures. In this approach, we first use the Least Absolute Shrinkage Selection
Operator (LASSO) to pre-select voxels for analysis, then compute a Multivariate Vector AutoRegressive (MVAR) model from
the time series of the selected voxels, and finally compute summary Granger Causality (GC) statistics from the model to
represent directed interregional interactions. We demonstrate the effectiveness of this approach on both simulated and
empirical fMRI data. We also show that averaging regional BOLD activity to create a nodal signal may lead to biased GC
estimation of directed interregional interactions. The approach presented here makes it feasible to compute GC between
brain regions without the need for averaging. Our results suggest that in the analysis of functional brain networks, careful
consideration must be given to the way that network nodes and edges are defined because those definitions may have
important implications for the validity of the analysis.
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Introduction

The modern understanding of human cognition relies heavily

on the concept of large-scale functional brain networks, and large-

scale functional network analysis of Blood-Oxygenation-Level-

Dependent (BOLD) signals from functional Magnetic Resonance

Imaging (fMRI) is playing an increasingly important role in

cognitive neuroscience [1]. From this perspective, knowledge of

cognition may be obtained from BOLD signals by identification of

the nodes and edges of large-scale functional brain networks. An

important unresolved question remaining in the field, however, is

how best to define the nodes and edges of large-scale functional

brain networks.

A node is typically represented in brain network studies of fMRI

BOLD activity as a lumped Region Of Interest (ROI), formed by

averaging the BOLD signals of all the ROI’s voxels [2–6]. This

collapse of the ROI by averaging has the benefit of reducing the

dimensionality of analysis, but rests on the twin assumptions: (1)

that the BOLD activity of an ROI is homogeneous over all its

voxels; and (2) that the functional interactions (connectivity)

between the voxels of an ROI with those in other ROIs is also

homogeneous. If these homogeneity assumptions are not true,

edge measurements computed from ROI-averaged BOLD signals

may be erroneous since averaging may distort the time series

information.

Here we present a novel procedure for the analysis of directed

interregional functional interactions that is based on the BOLD

activity of the individual voxels of ROIs and the Granger Causality

(GC) measure of directed interaction between voxels. GC tests

whether the prediction of the present value of one time series by its

own past values can be significantly improved by including past

values of another time series in the prediction. If so, the second

time series is said to Granger cause the first, and the degree of

significance of the improvement may be taken as the strength of

GC [7]. The GC measure is typically implemented by Auto-

Regressive (AR) modeling [8] and has been shown to be a

powerful and flexible tool for measuring the predictability of one

neural time series from another [9–14]. It has advantages as an

edge measure over the typically utilized correlation: first, it

provides the strength of functional interaction between time series

in both directions, as opposed to a single non-directional strength;

second, its grounding in prediction allows stronger statements to
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be made about functional interactions than does simple correla-

tion. The use of GC to measure directed interactions in the brain

from fMRI BOLD data has received intense scrutiny in recent

years, with some arguing in its favor [15–18] and others opposed

to it [19–23]. In the present work, we focus on improving the

application of GC analysis to fMRI BOLD data in order to better

understand the role of top-down influences in visuospatial

attention.

Previous evidence from GC analysis of fMRI BOLD data

argues against the assumption of homogeneous interregional

functional interactions, and thus suggests that averaging BOLD

signals prior to edge measurement may not be appropriate.

Bressler et al. [24] found that GC between ROIs varies

considerably across voxel pairs, with the distribution of GC values

being highly skewed and only a small fraction of values in the tail

of the distribution being significantly different from zero. These

results indicate that GC is heterogeneous across voxel pairs,

suggesting that the investigation of functional interactions between

ROIs should take into account the interactions of all the voxels

within the ROIs.

An approach to the problem of heterogeneous functional

interaction between ROIs is to compute the distribution of GC

values using a bivariate AR model for each pairwise combination

of voxels in the ROIs. This pairwise-GC approach, followed by

Bressler et al. [24], not only avoids the possible pitfalls of

averaging, but also makes feasible the separate measurement of

GC density and strength between ROIs, two factors that are

conflated by averaging. Thus, deriving a summary GC statistic

between ROIs from the distribution of GC values across all voxel-

voxel pairs may be statistically more informative than simply

setting it to the GC between across-voxel averages. There is a

further problem, however, with the pairwise-GC measure: some

GC values may be identified as being significant when actually

they are not. This problem arises, for example, if one voxel (x)

‘drives’ a second voxel (y), while voxel y ‘drives’ a third voxel (z),

without there being a ‘drive’ from voxel x to voxel z (Figure 1A). In

this case, the GC from voxel x to voxel z may be spuriously

identified as being significant. As another example, the problem

also occurs if voxel x ‘drives’ both voxels y and z with different

delays, without there being a ‘drive’ from y to z (Figure 1B). In this

case, the GC from y to z may be spuriously identified as being

significant. Since x, y, and z may be in the same or different ROIs,

one point these examples make clear is that the GC within ROIs

should be taken into account in order to reduce the possibility of

spuriously identifying GCs as being significant. A second point is

that improvement in the GC computation may be possible by

using a method that can mitigate the problem of spurious GC

significance.

Our approach to the problem of spurious GC significance rests

on the concept of conditional GC [25–27]. Conditional GC

analysis tests for a significant GC from one time series to a second

with the effect of a third time series removed. By this procedure, it

is possible to determine whether a significant GC measured

between two time series is attributable to the third time series. In

this paper, we utilize the conditional GC concept for ROI-level

analysis in an approach that essentially measures the GC between

any pair of voxels in two ROIs conditional on all the other voxels

in the ROIs. This is accomplished by constructing a single

Multivariate Vector AutoRegressive (MVAR) model from the

voxel time series, as opposed to the pairwise-GC method, in which

a separate bivariate AR model is constructed for each voxel pair.

Use of the MVAR model offers the promise of reducing or

eliminating the problem of spurious significant GC identification

in the assessment of directed functional interactions from fMRI

BOLD signals.

To make use of the MVAR model for ROI-level GC analysis

necessitates overcoming one further problem that often occurs in

model estimation: the number of available observations (data

points) limits the number of parameters (model coefficients) that

can accurately be estimated. This problem commonly arises in

neurobehavioral studies where the number of data points that can

realistically be acquired limits the size of the MVAR model that

can be estimated. This limitation can be mitigated, however, if it

is assumed that the voxel-voxel functional interactions between

ROIs are sparse (i.e., have a low connectivity density) [28].

Under the assumption of sparseness (low connectivity density), the

Least Absolute Shrinkage and Selection Operator (LASSO)

algorithm [29] is used to pre-select variables for inclusion in

the MVAR model, and thus to overcome the problem of a limited

number of data points. The LASSO algorithm has previously

been tested on numerical experiments [30], gene-network data

[31] and simulated and experimental fMRI BOLD data [28],

[31–33].

This paper presents a novel application of the MVAR model to

study voxel-based region-to-region interactions in the brain,

particularly long-range, top-down interregional interactions in

visuospatial attention. We demonstrate that the LASSO algorithm

can be effectively used to pre-select model variables, thereby

enabling estimation of the coefficients of a voxel-based MVAR

model of two predefined ROIs. The originality of our methods

derives from: (1) estimation of the MVAR model for fMRI voxel-

Figure 1. Simple driving patterns that can lead to spurious
identification of significant Granger Causality. A) Sequential
driving pattern, where voxel x drives voxel y, which in turn drives voxel
z. GC from x to z may be spuriously identified as being significant. B)
Differentially delayed driving, where voxel x drives voxel y with shorter
delay and z with longer delay. GC from y to z may be spuriously
identified as being significant. Modified from [26].
doi:10.1371/journal.pcbi.1002513.g001

Author Summary

Modern cognitive neuroscience views cognition in terms
of brain network function. A network is a physical system
of nodes connected to each other by edges. From the
network perspective, cognitive function depends on
activity patterns involving the nodes and edges of
functional brain networks. It is important then, to
appropriately define the nodes and edges of functional
brain networks in order to understand cognition. In this
study we consider the nodes of functional brain networks
to be brain regions, and demonstrate a method that
effectively measures the edge pattern between regions
with a technique called Granger Causality. Our method is
made possible by the utilization of recent advances from
the field of statistics. Our approach is generally applicable
to functional brain network analysis and contributes to the
understanding of network properties of the brain.

Interregional Granger Causality Using LASSO
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level BOLD time series from two ROIs; (2) use of the LASSO

algorithm for variable pre-selection prior to MVAR model

estimation; (3) use of the General Cross-Validation criterion for

determining optimal predictors in the MVAR model from the

LASSO algorithm; and (4) creation of two types of summary

statistics at the ROI level that represent the separate measurement

of density and strength of GC between ROIs.

We report the results of both MVAR model simulations and the

application of MVAR model estimation to an empirical fMRI

BOLD dataset obtained during a visuospatial attention task [34].

The simulation results demonstrate that voxel-based approaches

can better capture the GC between two ROIs than the averaging

approach. When LASSO is used to pre-select variables for

inclusion in the MVAR model estimation, voxel-based GC

summary statistics are more sensitive to coefficient changes in

the model than GC values computed from averaged signals.

LASSO pre-selection allows MVAR model estimation to fit the

simulated data accurately as long as the GC functional connec-

tivity is sparse, i.e. has relatively low density. We also report that

construction of the voxel-based GC distribution by pairwise

bivariate AR model estimation, instead of by MVAR model

estimation with LASSO pre-selection, may yield spuriously

significant GC values. The empirical results show that the

assumption of sparse GC functional connectivity is realistic, and

that LASSO variable pre-selection followed by MVAR model

estimation is thus effective, for empirical fMRI BOLD data. Also,

the low GC connectivity density observed for this dataset suggests

that directed interregional functional interaction in the brain is

heterogeneous and that averaging the voxels of an ROI prior to

GC connectivity analysis is inappropriate. Furthermore, the

observed directional asymmetry, as measured by the GC strength

summary statistic, is consistent with current theory on top-down

modulation in visuospatial attention.

We conclude that LASSO variable pre-selection and MVAR

model estimation can be effectively used to measure Granger

Causality between cortical regions from voxelwise fMRI BOLD

signals. Through the MVAR model, it is beneficial to analyze all

the voxels in an ROI, instead of taking an average over the ROI.

In this way, directed interregional functional interactions are

captured with less distortion of the information carried in the

BOLD time series.

Results

Application to simulated data
Simulation MVAR models were created based on Equation 3

(see Methods), and iterated to generate simulated fMRI BOLD

time series data for pseudo-voxels in two pseudo-ROIs having

fixed sizes (30 pseudo-voxels in X and 50 pseudo-voxels in Y). The

innovation process for the simulation model was created by

iterative random sampling of a zero-mean normal distribution

with 0.1 standard deviation. The predictors were initialized with

random values also taken from a zero-mean normal distribution

with 0.1 standard deviation. The four coefficient submatrices (Bxx,

Byx, Bxy and Byy) were constructed separately. For each submatrix,

some coefficients (bij) were randomly set to zero and the rest were

randomly drawn from a normal distribution with zero-mean and a

specific standard deviation (0.08 for Bxx and Byy, 0.2 for Byx, and

0.1 for Bxy). For each simulation, 200-point-long time series for

each pseudo-voxel were created by model iteration. A total of 56

simulation models were created. The density of model connectivity

was systematically increased with increasing model identification

number by augmenting the number of voxel pairs connected by

non-zero b values (Table 1).

To verify model validity, we determined that the correlations of

the model residuals were low for all 56 models. A representative

residuals correlation matrix from one of the simulations is

displayed in the Figure S6, showing randomly distributed weak

correlation across simulated voxel pairs. We considered the models

to be valid based on these observations.

We then considered the effect of averaging the BOLD activity of

all voxels in an ROI on the measurement of interregional GC.

The GC between two ROIs, each of which is represented by an

averaged time series, was measured by a single t-score in each

direction (see Methods). For it to properly portray the connectivity

between ROIs, the t-score was expected to follow the change of

parameters across the simulation models shown in Table 1. We

tested this prediction by measuring the correlation of the t-scores

from the averaged time series with two summary statistics (the

fraction of significant connections, f, and the average connectivity

strength, W) (see Methods). These summary statistics were

computed directly from the simulation models, and thus followed

the change of parameters across the simulation models. The t-

scores derived from averaged time series were not significantly

correlated (p,0.05) with either summary statistic (Figure 2). That

the t-scores did not follow the change of parameters across

simulation models indicates that computing GC from averaged

voxel time series does not accurately capture inter-ROI connec-

tivity patterns.

We next examined how well voxel-based methods recovered the

actual GC patterns of the four submatrices across the simulation

models shown in Table 1. The analysis for each simulation model

consisted first of estimating the full B matrix from the simulated data

generated by that model using two methods: (1) pairwise-GC

estimation; and (2) LASSO-GC estimation, i.e. LASSO pre-

selection of variables for inclusion in an MVAR model, followed

by GC estimation from the model. Then, the results from each

method were compared with the actual values in the model. Each of

these two methods is voxel-based. The pairwise-GC method

constructs the B matrix by estimating a separate bivariate AR

model for each voxel pair, whereas the LASSO-GC method

computes the B matrix by estimating an MVAR model whose

variables are pre-selected by LASSO. Unlike the approach of

averaging across voxels, both methods compute a t-score for each b

coefficient in the B matrix, testing whether the value of that

coefficient significantly deviates from zero. A significant non-zero b

value is equivalent to a significant GC value when the model order is

one. Figure 3 illustrates the results from a simulation in which the

LASSO-GC method (Figure 3B) closely estimated the pattern of b

values of the model (Figure 3A), whereas the pairwise-GC method

(Figure 3C) yielded a large number of spurious non-zero values.

To determine how typical were the results seen in Figure 3

across all simulation models, summary statistics from pairwise-GC

and LASSO-GC estimations were compared with those computed

directly from the models. First to be used was the f summary

statistic, which measures the fraction of significant b values.

Figure 4 compares how well the pairwise-GC and LASSO-GC

methods recovered the actual f summary statistic computed

directly from the simulation models. It reveals that in most

simulations the f summary statistic from pairwise-GC estimation

was greater than the actual simulation model value, whereas that

from LASSO-GC estimation closely matched the actual simula-

tion model value. We defined the distance between estimated and

model f values by their absolute difference, and compared the

distances resulting from the LASSO-GC method with that from

the pairwise-GC method. Paired t-tests showed highly significantly

(p,0.01) smaller distances with the LASSO-GC method for all

four submatrices.

Interregional Granger Causality Using LASSO
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The W summary statistic, which reflects the average strength of

significant GC from voxels in one ROI to voxels in another, was

used next to compare the pairwise-GC and LASSO methods. As

with the f statistic, the W statistic from the LASSO method matched

the actual W statistic computed from the simulation model more

closely than that from the pairwise-GC method (Figure 5). Also as

with the f statistic, the distances between estimated and model W

values for the two methods were compared. Paired t-tests showed

highly significantly (p,0.01) smaller distances with the LASSO-GC

method for all four submatrices.

The comparison of LASSO-GC versus pairwise-GC across 56

runs can be considered as 56 repeated tests of the two methods for

their efficiency in estimating model parameters. The fact that

LASSO-GC yielded more accurate estimations than pairwise-GC

over a range of different parameter settings demonstrates LASSO-

GC’s robustness. To further validate this conclusion, we repeated

each 56-run test on 20 separate iterations, each iteration using an

independently generated dataset with the parameters from Table 1.

The resulting GC patterns across the 20 iterations are consistent

with those shown in Figures 2, 4 and 5 (as demonstrated in Figures

S1, S2 and S3). To summarize the results up to this point, the

LASSO-GC method was found to outperform the pairwise-GC

method and the average-signal based method in recovering

simulation model connectivity. We next applied the LASSO-GC

method to explore functional connectivity in an empirical fMRI

BOLD dataset.

Application to fMRI BOLD data from a visuospatial
attention task

An fMRI BOLD dataset from a slow event-related visuospatial

attention task paradigm was analyzed with the LASSO-GC

method. Details about the experimental design and the fMRI

recording are available in [24] and [34]. Within each of 6 subjects,

bilateral areas V1v, V2v, VP, V3A and V4 were in the Visual

Occipital Cortex (VOC), and bilateral areas Frontal Eye Field

(FEF) and anterior and posterior IntraParietal Sulcus (aIPS and

pIPS) were in the Dorsal Attention Network (DAN). MVAR

models of order-one were estimated from the time series of all

voxels from each pair of VOC and DAN ROIs by the LASSO-GC

method. The largest MVAR model contained approximately 150

voxels. Repeated trials (average number ,70) at each time point

were used as observations. For each ROI pair, a full B matrix was

first estimated, and the f and W statistics were then computed for

each of the four submatrices.

Table 1. The fraction of non-zero coefficients in each of the 4 submatrices for each of the 56 simulation models.

Sim. ID Bxx Byy Byx Bxy Sim. ID Bxx Byy Byx Bxy

1 0.0656 0.0592 0.0493 0.0420 29 0.1944 0.1768 0.1593 0.1580

2 0.0656 0.0592 0.0473 0.0373 30 0.1944 0.1768 0.1413 0.1473

3 0.0656 0.0592 0.0453 0.0427 31 0.1944 0.1768 0.1373 0.1627

4 0.0656 0.0592 0.0400 0.0433 32 0.1944 0.1768 0.1240 0.1647

5 0.0656 0.0592 0.0427 0.0453 33 0.1944 0.1964 0.1853 0.1500

6 0.0656 0.0592 0.0413 0.0520 34 0.1944 0.1964 0.1707 0.1460

7 0.0656 0.0592 0.0320 0.0580 35 0.2267 0.2160 0.1807 0.1620

8 0.0656 0.0592 0.0340 0.0507 36 0.2267 0.2160 0.2000 0.1920

9 0.0978 0.0984 0.0973 0.0553 37 0.2267 0.2160 0.1800 0.1767

10 0.0978 0.0984 0.0860 0.0727 38 0.2267 0.2160 0.1727 0.2193

11 0.0978 0.0984 0.0827 0.0760 39 0.1944 0.1964 0.1367 0.1860

12 0.0978 0.0984 0.0860 0.0607 40 0.2267 0.2160 0.1687 0.2160

13 0.0978 0.0984 0.0907 0.0680 41 0.2589 0.2552 0.2380 0.2200

14 0.0978 0.0984 0.0713 0.0847 42 0.2267 0.2356 0.2113 0.1947

15 0.0978 0.0984 0.0787 0.0800 43 0.2267 0.2356 0.2213 0.1927

16 0.0978 0.0984 0.0713 0.0907 44 0.2267 0.2356 0.2113 0.2180

17 0.1300 0.1376 0.1233 0.0933 45 0.2589 0.2552 0.2220 0.2360

18 0.1300 0.1376 0.1220 0.1073 46 0.2267 0.2356 0.2027 0.2113

19 0.1300 0.1376 0.1187 0.1107 47 0.2267 0.2356 0.1740 0.2013

20 0.1300 0.1376 0.1300 0.0993 48 0.2589 0.2552 0.1720 0.2613

21 0.1300 0.1376 0.1193 0.1147 49 0.2911 0.2944 0.2847 0.2467

22 0.1300 0.1376 0.0993 0.1213 50 0.2589 0.2552 0.2387 0.1773

23 0.1300 0.1376 0.0980 0.1313 51 0.2911 0.2944 0.2540 0.2680

24 0.1300 0.1376 0.0880 0.1327 52 0.2589 0.2552 0.2373 0.2120

25 0.1944 0.1768 0.1800 0.0920 53 0.2589 0.2552 0.1880 0.2280

26 0.1944 0.1768 0.1727 0.0933 54 0.2911 0.2944 0.2367 0.2947

27 0.1944 0.1768 0.1587 0.1473 55 0.2911 0.2944 0.2053 0.2680

28 0.1944 0.1768 0.1560 0.1500 56 0.2911 0.2944 0.1827 0.2907

The fraction changed over the models from values of approximately 0.05 to values of approximately 0.29, increasing by approximately 0.04 every 8 models.
doi:10.1371/journal.pcbi.1002513.t001
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As with the simulation results, the correlations of the MVAR

model residuals were found to be low, indicating that the models

were valid. Because of the large data dimension, not all ROI pairs

could be examined. Instead, 10 ROI pairs were randomly selected

from each subject for examination: the residuals correlation matrix

for one representative ROI pair is displayed in Figure S7. Since

most of the correlation scores were weak (near or below 0.5), the

MVAR models were considered to be valid representations of the

fMRI BOLD data, and we thus proceeded to explore the

connectivity patterns.

The results of functional connectivity analysis between the VOC

and DAN are presented in Figure 6 for a representative ROI pair

in one subject. GC connectivity diagrams are shown between the

right VP region (having 25 voxels) in VOC and the right FEF

region (having 56 voxels) in the DAN (Figure 6A). The four

diagrams represent GC connectivity within right VP (VP R VP),

from right FEF to right VP (FEF R VP), from right VP to

right FEF (VP R FEF), and within right FEF (FEF R FEF).

GC connectivity is sparse both within and between ROIs,

meaning that a low fraction of t-scores is significant at p,0.05

(fVP2.VP = 0.08, fFEF2.VP = 0.04, fVP2.FEF = 0.06, fFEF2.FEF =

0.03). Both significantly positive (orange arrows) and significantly

negative (blue arrows) GCs are present both within and between

ROIs. A positive GC indicates that increased activity of the

‘‘sending’’ voxel predicts increased activity of the ‘‘receiving’’

voxel, whereas a negative GC signifies that increased activity of the

‘‘sending’’ voxel predicts decreased activity of the ‘‘receiving’’

voxel.

Connectivity based on the correlation measure is also consid-

ered. For correlations measured directly on the fMRI BOLD time

series, a larger fraction of connections is significant at p,0.05

(fVP2VP = 0.67, fVP2FEF = 0.30, fFEF2FEF = 0.45) for the same ROI

pair and subject (Figure 6B), suggesting that a large portion of the

voxels are correlated. More sparse connectivity from LASSO-GC

than from correlations is clearly seen in the f and W summary

statistics (Figure 6C). This more sparse connectivity found with

LASSO-GC than with correlation might have been a simple effect

of LASSO pre-selection. However, this was found not to be the

case since the correlations still showed much more dense patterns

than the LASSO-GC results even when computed after LASSO

pre-selection (Figures S4, S5). That the average correlation

connectivity strength (W in Figure 6C) is greater than 2, both

within and between ROIs, indicates that each voxel receives, on

average, connections from more than 2 other voxels. This

observation of relatively high correlation density suggests that

the LASSO-GC method is needed to reduce correlation-induced

spurious GC estimates.

To extend the functional connectivity analysis to the full fMRI

BOLD dataset, we applied the LASSO-GC method to all 60

VOC-DAN ROI pairs in each of the 6 subjects. The f and W

summary statistics were then averaged across ROI pairs and

subjects, yielding mean f and W summary statistics for VOC-to-

VOC connectivity, DAN-to-DAN connectivity, DAN-to-VOC

connectivity, and VOC-to-DAN connectivity (Figure 7). These

four connectivity types correspond to the four coefficient

submatrices of the estimated B matrix in LASSO-GC analysis

Figure 2. Granger Causality patterns between simulated ROIs. GC was computed from averaged voxel time series as tyx and txy, and then
normalized to z-scores, for a range of simulation models (top row). GC was also computed as voxel-based W (middle row) and f (bottom row)
summary statistics computed directly from the parameters of the same simulation models (b values normalized to z-scores before computing W). The
horizontal axis labels the 56 simulation models in the order of Table 1, representing different connectivity parameter settings. The t-scores do not
significantly correlate with either W or f across simulation models, demonstrating that GC computed from averaged voxel time series is not sensitive
to true connectivity.
doi:10.1371/journal.pcbi.1002513.g002

Interregional Granger Causality Using LASSO
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Figure 3. Comparison of model estimation by LASSO-GC and pairwise-GC methods for one simulation model. The X voxels in A-C are
represented by green dots and Y voxels by red dots. All the t and b values are z-normalized. A) Simulated connectivity pattern of the model for the
four B matrices, with orange arrows representing positive b values and blue arrows negative b values. B) Estimated connectivity pattern with LASSO-
GC method. Significant t-scores are shown as arrows, with the thickness representing the absolute magnitude of the t-scores, and the color
representing the sign of the t-score (orange for positive, blue for negative). The pattern is similar to that in the model. C) Estimated connectivity
pattern with pairwise-GC method, shown in the same manner as for the LASSO-GC result. The connectivity is much denser than the model pattern. D)
Summary statistics f and W for the patterns shown in the previous three panels. LASSO-GC values match the model values more closely than do
pairwise-GC values.
doi:10.1371/journal.pcbi.1002513.g003
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(see Methods): VOC-to-VOC and DAN-to-DAN connectivity

refers to connectivity within a single region of VOC or DAN, not

to connectivity between different VOC or DAN regions. The

mean f summary statistic is below 0.1 for all submatrices,

indicating overall sparse within- and between-ROI GC connec-

tivity.

Paired-sample t-tests with subjects as repeated measures (df = 5

for all comparisons) were performed on both f and W to compare:

(1) top-down (DAN-to-VOC) with bottom-up (VOC-to-DAN)

connectivity; (2) within-VOC with within-DAN connectivity; (3)

top-down with within-VOC connectivity; and (4) bottom-up with

within-DAN connectivity. The comparison of top-down with

within-DAN connectivity and the comparison of bottom-up with

within-VOC connectivity were not performed because these

comparisons are ambiguous, i.e., they are based on GC to voxels

in a sending region, whereas the W summary statistic is based on

voxels in a receiving region (see Methods). The results show that

within-VOC (VOCRVOC) connectivity was significantly greater

than top-down (DANRVOC) connectivity for both the f (t = 4.60,

p,0.05) and W (t = 2.85, p,0.05) summary statistics, indicating

that the local GC between voxels within VOC is both more dense

and stronger than the long-range, top-down GC from the DAN.

Connectivity within DAN (DANRDAN) was also significantly

greater than that in the bottom-up direction (VOC-to-DAN) for

the W summary statistic (t = 4.07, p,0.05), but not for the f

summary statistic, indicating that the local GC between voxels

within DAN is stronger, but not more dense, than the long-range

GC from VOC. Finally, connectivity in the top-down direction

(DANRVOC) was significantly greater than that in the bottom-up

direction (VOCRDAN) for the W summary statistic (t = 3.93,

p,0.05) but not for the f summary statistic, indicating a long-range

directional strength asymmetry between DAN and VOC, with

stronger top-down connectivity.

Discussion

We have shown that Granger Causality (GC) computed from

voxel-level BOLD signals better reflects the pattern of directed

functional interaction between ROIs than that computed from

voxel-averaged signals. We conclude that brain regions are not

unitary elements, that network structure exists at the voxel level,

and that ROI-level GC connectivity is best measured by summary

scores computed over voxel-level connectivity patterns.

We emphasize that our conclusions apply specifically to GC

between pre-defined ROIs, and do not necessarily extend to the

computation of maps showing GC between a ‘‘seed’’ signal,

averaged over the voxels in one cortical region, and voxels

throughout the rest of the cortex [35]. In fact, an interesting

extension to the mapping approach has recently been proposed by

Garg et al. [33]. Their technique, called Full-brain AutoRegressive

Modeling (FARM), also adopts LASSO for voxel-level analysis.

Although their use of LASSO to make MVAR modeling feasible

for large numbers of voxels is similar to ours, their problem of GC

mapping for the entire brain is different from the interregional

interaction question that we have investigated. It is possible that

full-brain mapping and interregional analysis will prove comple-

mentary to each other. To explore the relationship of a particular

region to the remainder of the cortex, the mapping method would

Figure 4. Comparison of LASSO-GC and pairwise-GC methods in recovering the f summary statistic. The fraction of significant b
coefficients (f summary statistic) in each submatrix, computed directly from the simulation model, is compared with the f statistic estimated by the
LASSO-GC and pairwise-GC methods. The estimated LASSO-GC f statistic more closely matches the f statistic of the model across simulation models
than does the estimated pairwise-GC f statistic. The horizontal axis is arranged the same way as in Figure 2. The example shown in Figure 3 is from the
28th model.
doi:10.1371/journal.pcbi.1002513.g004
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appear to be more appropriate since it yields a global functional

interaction pattern. However, to test specific theories in cognitive

neuroscience that involve particular cortical networks, might

require the use of regions that are pre-defined from previous

clinical or experimental evidence. In that case, one would be

interested in examining the details of functional interaction

between regions, and a full-brain LASSO algorithm could be

insufficient because its tuning parameter might be too severe,

making the model overly sparse: even if the global connectivity

pattern were preserved, the details of interregional connectivity

might still be lost. With these concerns in mind, one might use full-

brain mapping as a first step to establish global functional

interaction patterns, and then a more detailed exploration could

be performed using voxel-based interregional analysis.

In addition to mapping, another common analytic method in

the literature examines region-to-region correlations based on

averaged signals and identifies topological properties from large-

scale networks that involve hundreds of ROIs [36]. Our findings

do not necessarily negate this approach: since GC and correlation

are different measures, inhomogeneity in GC does not imply

inhomogeneity in correlation. It is possible that correlation-based

connectivity with averaged signals may be effective even though

GC analysis requires a voxel-based approach.

We have demonstrated that the LASSO-GC method can better

identify GC connectivity between ROIs in simulated fMRI BOLD

data than the pairwise-GC method by more accurately estimating

the connectivity density and strength. The pairwise-GC method

can yield spuriously significant coefficients if correlated predictors

are present in the MVAR model. The close fit of the LASSO-GC

results to the actual results from the simulation models demon-

strates that the LASSO-GC method is better able to avoid false

positives, and also shows the sensitivity of this method in detecting

model changes. By contrast, GC values computed from averaged

data do not systematically follow changes in simulated ROI

models, suggesting that summary statistics computed from voxel-

to-voxel GCs are better able to represent ROI-level connectivity

than single region-to-region GCs computed after averaging over

ROI voxels.

The estimated f summary statistics from the LASSO-GC

method matched the actual f statistics from the simulation models

better when the B matrices were more sparse. Although the

LASSO algorithm could potentially fail for high connectivity

densities, we were not able to observe such a failure because the

simulated voxel activity at high connectivity density becomes

unstable. Nonetheless, it is unlikely that the low f values observed

for the empirical BOLD data are artifactual because if the B

matrices were ill-estimated, then the directional asymmetry found

with the W statistic would not display the high degree of

consistency across subjects that was observed. The fact that the

range of f found for the empirical BOLD data fell within the range

of f in the simulations further suggests the suitability of the

LASSO-GC technique for application to BOLD data. Moreover,

the low values of the f summary statistic from the empirical BOLD

data indicate that GC connectivity between cortical ROIs is

sparse. Given evidence from anatomical studies that axonal

connectivity of the cortex is generally sparse [37], [38], it is more

likely that the sparse GC connectivity reflects actual functional

interaction patterns than that it is a mere statistical byproduct.

Figure 5. Comparison of LASSO-GC and pairwise-GC methods in recovering the W summary statistic. The GC strength (W summary
statistic) in each submatrix, computed directly from the simulation model, is compared with the W statistic estimated by the LASSO-GC and pairwise-
GC methods. The estimated LASSO-GC W statistic more closely matches the W statistic of the model across simulation models than does the
estimated pairwise-GC W statistic. Since the estimated W statistic is based on t-scores and the W statistic computed directly from the simulation
model is based on b coefficient values, both b and t-scores were normalized to standard z-scores before calculating W. The horizontal axis is arranged
the same way as in Figure 2.
doi:10.1371/journal.pcbi.1002513.g005
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Directional asymmetry in GC connectivity between the Dorsal

Attention Network (DAN) and Visual Occipital Cortex (VOC) was

reported in our previous work [24] using the pairwise-GC method

for computing GC and f as the summary statistic. Using the

LASSO-GC method, we report here that the directional

asymmetry is found in the W, but not the f, summary statistic

(Figure 5). The difference in results from the pairwise-GC and

LASSO-GC methods may be understood by examining the

properties of the W summary statistic. The finding that W values

in the top-down DAN-to-VOC direction are significantly greater

than in the bottom-up VOC-to-DAN direction suggests that VOC

voxels are modulated more strongly by DAN voxels than DAN

voxels are by VOC voxels, despite there being similar fractions of

voxels being modulated in both directions. The greater top-down

modulation strength may have introduced a bias in the pairwise-

GC results from our previous work, yielding an apparently greater

fraction of significant top-down GC values. Relatively high

correlation density (Figure 6) may have contributed to such a bias.

The problem of bias actually has multiple facets. It is known

from theory that the LASSO method may be biased if predictors

are highly correlated. There are two main problems caused by

correlated predictors. First, some predictors in a system may not

be included in the model of the system. This is the case when

estimation of multiple bivariate AR models is employed in place of

MVAR model estimation: the estimation may be biased by

undetected influences from the excluded predictors. The use of

LASSO helps to mitigate this problem by allowing estimation of a

full MVAR model. Second, even when all the predictors are taken

into account, correlation among predictors may still bias model

estimation, a situation often referred to as the collinearity problem

for multiple regressions. An example of such bias would be the

case of a group of strongly correlated predictors, where LASSO

tended to select only one predictor from the group. Extensions of

LASSO have been proposed to mitigate this problem by selecting

the entire group instead of a single predictor. Such extensions

include fused LASSO [39], the elastic net [40] and the group

LASSO [41]. A thorough review of this issue is available in [42].

Whether such selection bias becomes a problem in brain network

analysis depends on the specific research question being consid-

ered. On the one hand, if the exact relationship among predictors

is of central interest, as when large-scale cortical network structure

is explored using ROIs as predictors [28], one may consider the

use of extended LASSO algorithms to avoid losing important

correlated ROIs. On the other hand, in our voxel-based

investigation of pre-selected ROIs, the voxels are used as multiple

representations of the corresponding ROIs, and omitting some of

the correlated voxels in a group is not expected to radically change

the collective functional connectivity at the ROI level. In the

present study, we are more interested in the summary statistics

over the entire connectivity matrix than in the details of the

connectivity patterns within the matrix. Thus, in our study,

although the collinearity problem may exist, and a complete

solution is not currently available from theory, our results are

nonetheless not invalidated. We found that the f and W summary

Figure 6. Comparison of connectivity patterns with LASSO-GC and correlation measures. Patterns are shown for one exemplary ROI pair
from one subject. The t-scores from LASSO-GC analysis were z-normalized. Green dots represent voxels from right VP and red dots represent voxels
from right FEF. A) Estimated connectivity patterns with the LASSO-GC measure. Significant t-scores are shown as arrows, with the thickness
representing the absolute magnitude of the t-scores, and the color representing the sign of the t-score (orange for positive, blue for negative). B)
Estimated connectivity patterns with the correlation measure. Significant cross-correlation coefficients are shown as lines, with the thickness
representing the absolute magnitude and the color representing the sign (orange for positive, blue for negative). C) Summary statistics for the
patterns shown in the previous two panels. For the correlation measure, FEFRVP and VPRFEF have the same summary scores since the measure is
non-directional.
doi:10.1371/journal.pcbi.1002513.g006
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statistics effectively recovered the modeled connectivity values

from simulated data, even though those data had significant

correlations between most voxel pairs. Furthermore, in empirical

BOLD data analysis, it is often desirable to compare summary

statistics across different conditions rather than to precisely identify

their values. For such comparison, any possible bias introduced by

voxel-voxel correlations would exist in both conditions and thus

would not alter the comparison.

Although the MVAR models used in this paper were

implemented with order one, models having higher order (p.1

in Equation 3) can be implemented within the same framework.

For model orders greater than one, multiple b coefficients at

different time lags (t-k) contribute to the GC from one voxel to

another, and it is not sufficient simply to test the significance of a

single b coefficient. In that case, testing for significant between-

voxel GC would need to be performed differently, and the

summary statistics would accordingly be defined differently. For

example, a criterion for between-voxel GC to be significant

might be that at least one of the b coefficients from different lags

must be significant. A summary statistic equivalent to f might

then be defined as the fraction of significant between-voxel GCs

rather than the fraction of significant b values. Similarly, a

summary statistic equivalent to W could base the average

strength of significant GC on all significant b values for a voxel

pair instead of a single b value. A straightforward way to do this

would be to sum the significant b values from different lags over

all inputs to receiving voxels. In this way the W statistic would be

sensitive to three factors: the magnitude of all significant b values,

their corresponding time lags, and the total number of

converging significant inputs to receiving voxels. However, to

compare the W statistic between models of different order, the

time-lag factor would need to be removed, possibly by averaging

b values over time lags, to avoid bias due to different total

numbers of b values.

In conclusion, our work suggests that the LASSO algorithm can

be effectively employed for pre-selection of voxels that are then

used in an MVAR model to measure functional connectivity

between ROIs, using voxel-based fMRI BOLD signals. It indicates

that the f and W summary statistics reveal different aspects of

directed influence between ROIs. Used in tandem, these statistics

may provide consistent information about influences between

brain regions that is richer than that from either one alone.

Additional summary statistics will likely be found in the future that

will further our understanding of directed influences between

brain regions.

Methods

The MultiVariate AutoRegressive (MVAR) model
We first consider an fMRI BOLD dataset from m voxels in ROI

X and n voxels in ROI Y. The dataset consists of time series of t

points recorded from every voxel in X and Y, and can be written

in matrix form as:

X~

x11 x12 � � � x1t

x21 x22 � � � x2t

..

. ..
.

P
..
.

xm1 xm2 � � � xmt
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ð1Þ
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Figure 7. Functional connectivity analysis of Dorsal Attention Network and Visual Occipital Cortex in visual spatial attention. The f
and W summary statistics were computed from LASSO-GC for each of 60 ROI pairs and 6 subjects, and then averaged over pairs and subjects. For
each ROI pair, one ROI was in the Dorsal Attention Network (DAN) and the other was in Visual Occipital Cortex (VOC). The bars represent mean f and
W summary statistics for VOC-to-VOC connectivity, DAN-to-DAN connectivity, DAN-to-VOC connectivity, and VOC-to-DAN connectivity. Error bars
represent the standard error of the mean. Significant differences from paired-sample t-tests are marked (*: p,0.05).
doi:10.1371/journal.pcbi.1002513.g007
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The relationship between X and Y can be expressed in the form

of a Multivariate Vector AutoRegressive (MVAR) model. A

general matrix representation of the model is:

Ft~
Xp

k~1

BkFt{kzEt ð3Þ

where Zt is the dependent variable in vector form, representing the

BOLD data values at arbitrary time t of all voxels in X and Y; Zt-k

represents the values of the Z vector at arbitrary earlier time point

t-k; lag k ranges from 1 to p, the model order; Bk is the

corresponding coefficient matrix at lag k; and Et is the residual

vector.

When expanded, the product term in Equation 3 becomes:
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bk
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Each element of the Zt-kth vector is a predictor, and each

element (bk
ij) of the Bk matrix is a coefficient representing the

degree of prediction of the ith element of Zt by the jth predictor. If

a value of bk
ij significantly differs from zero, then a significant GC

is said to exist from voxel j to voxel i. The magnitude (strength) of

that GC may be assessed by the magnitude of the statistic (e.g. t-

statistic) used to measure the difference of the b value from zero.

The sum of product terms over all lags is the total prediction of Zt

by the model.

The model order (p) was set to one in this paper, based on our

prior experience with the analysis of fMRI BOLD data [24]. The

MVAR model in Equation 3, with model order one, was used here

for both simulation and GC analysis. For simulation, the residual

vector represented an innovation process that generates random

values, the B matrix was known, and the X and Y time series data

were simulated. For GC analysis, the X and Y time series data

were known, the B matrix was estimated in order to determine

GC, and the residual vector represented prediction errors.

We also employed pairwise-GC analysis for comparison with

MVAR analysis. In the pairwise-GC approach, coefficients are

estimated (and the significance of GC determined) by constructing a

separate bivariate model for each pair of voxels, one in X and one in Y:

xit~
Pp

k~1

bk
iixi(t{k)z

Pp
k~1
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ijyj(t{k)zeit

yjt~
Pp

k~1
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Pp
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jjyj(t{k)zejt

8>>><
>>>:
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In pairwise-GC analysis, the assumption is made that the

predictors are independent of one another. Under this assumption,

the GC between X and Y can be assessed solely from the bivariate

models in Equation 5, and it is not necessary to estimate the

coefficients representing GC within X or Y. In fact, however, the

predictors may be correlated for BOLD time series, making the

pairwise-GC approach problematic. If the predictors are corre-

lated, estimation by separate bivariate (or partial) models may be

biased, and all of the coefficients in the B matrix should be

estimated simultaneously [43]. Nonetheless, simultaneous estima-

tion may be impossible in the analysis of data from neurobehav-

ioral studies, in which the number of observations is often limited.

The Least Absolute Shrinkage and Selection Operator
(LASSO)

The Least Absolute Shrinkage and Selection Operator (LASSO)

technique is a method that makes model estimation feasible when

only a limited number of observations is available. Under the

assumption that the B matrix is sparse (i.e., many coefficients are

zero), the LASSO algorithm effectively determines which b values

are actually zero. Our goal in using LASSO is to identify non-zero

coefficients and then estimate them simultaneously, thus avoiding

bias due to partial regression with correlated predictors. The pre-

selection process in LASSO involves determining an optimal set of

predictors.

In the MVAR model, pre-selection is carried out in a row-wise

manner. LASSO adds a constraint on each row equation of

Equation 3 that restricts the total absolute values of the

coefficients. The constraint is expressed as:

X
k

X
j

bk
ij

���
���ƒc ð6Þ

where c is a tuning parameter.

Regression of the ith row of Equation 3 under the constraint

provided by Equation 6 is equivalent to the regression of:
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Finding a least-squares solution of Equation 7 requires a subset

of the b values to be set to zero. To achieve this goal we use the

Least Angle RegreSsion (LARS) algorithm developed by Efron et

al. [44], which starts with all b’s equal to zero and then iteratively

adjusts their values to fit the model. Some of the b’s remain zero

after the adjustment, resulting in the identification of an optimal

set of non-zero b values for a particular c value (corresponding to l
in Equation 7).

The General Cross-Validation (GCV) criterion for
determining optimal predictors

The next step in model estimation is to tune the parameter c to

achieve a best fit of Equation 7. The minimum value that c can

take is zero, corresponding to the extreme case where all b’s are

zero. The upper boundary is reached when LARS does not

penalize any b to zero, making c equal to the sum of the absolute

values of all b’s. Within this interval, a number (approximately 100

in our case) of c values is chosen to compute the subsets of b’s. For

each c value, after an optimal subset has been found, the

corresponding Residual Sum of Squares (RSS) is used to calculate

a General Cross-Validation (GCV) statistic [28]:

GCV~RSS
�

(n{df )2 ð8Þ

where n is the number of independent observations and df is the

estimated degrees of freedom from the LARS algorithm. From all

ð4Þ
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the solutions, a GCV curve is plotted. The minimum GCV value

determines the single most optimal set of predictors over all c

values.

A subsequent Ordinary Least Squares (OLS) procedure is then

applied to the new row equation with the selected predictors. To

avoid using the same data to estimate the LASSO and OLS

models, we randomly sort the data trials into two sets. One set is

used to estimate the LASSO coefficients for model selection, and

the other is then used to estimate OLS coefficients for the new row

equation. In the second step, if the model order is one, as in our

application, there is only one coefficient for each predictor. Either

an F-test or a t-test is performed for each coefficient to determine

whether its value is significantly different from zero. The resulting

F-score or t-score characterizes the prediction by a predictor on

the RHS of Equation 3 of the dependent variable on the LHS, and

corresponds to the GC strength from that predictor to the

dependent variable. Here we used the t-score to measure GC

because it has a signed value, and thus indicates whether the GC is

enhancing or reducing, in addition to indicating GC strength.

Summary statistics of GC between two ROIs
The full B matrix may be estimated by following the above

procedures for every row equation in Equation 3. It consists of four

submatrices (Bxy, Byx, Bxx, and Byy), where the first subscripted

index represents the predictor and the second represents the

dependent variable. Thus, Bxy represents connectivity from X to

Y, Byx represents connectivity from Y to X, and Bxx and Byy

represent connectivity within X and within Y, respectively. In

order to measure GC from one ROI to another (i.e., XRY or

YRX), one or more statistics are needed to summarize the voxel-

to-voxel GCs represented by significant coefficients in Bxy or Byx.

The first summary statistic that we used was the fraction (f) of

significant b values in the B matrix or one of its submatrices

(representing the fraction of significant GCs) (Figure 8). The

fraction of b values found to be significantly different from zero at

p,0.05 was corrected for multiple-comparisons by the False

Discovery Rate (FDR). This summary statistic is a measure of

density of the ROI-level connectivity. Because each b value

represents a potential functional ‘‘connection’’, the f summary

statistic summarizes the fraction of all possible voxel-to-voxel

connections from one ROI to another by which the two ROIs are

actually connected.

The second summary statistic used was the average strength of

significant GC from voxels in one ROI to voxels in another

(Figure 8). Consider, for example, the GC from (‘‘sending’’) ROI Y

to (‘‘receiving’’) ROI X. Significant voxel-to-voxel GCs are

represented by significant coefficients in Byx. For any given voxel

x in ROI X having at least one significant (p,0.05) t-score

(indicating a significant GC) from ROI Y, we first summed the t-

scores of all the GCs to x. This sum represents the total significant

‘‘input’’ to the ‘‘receiving’’ voxel x from all ‘‘sending’’ voxels in Y.

Because the t-scores can be positive or negative, signifying that

changes of activity in the ‘‘sending’’ voxel contribute to a change

of activity in the ‘‘receiving’’ voxel either in the same or opposite

direction, the sum of t-scores takes into account the balancing

effect of positive and negative inputs to the same receiving voxel.

We then computed the average strength of significant input over

all receiving voxels in ROI X as the W summary statistic. The

significance threshold for determining the number of significant

inputs was corrected for multiple-comparisons by the FDR. The

same procedure was also followed to assess the average strength of

significant GC in the other direction, i.e. from ROI X to ROI Y

using Bxy. Although not the focus of this paper, W could also be

computed to assess the average strength of significant GC within

ROI X using Bxx, or within ROI Y using Byy. W measures the

average strength of GC from ROI Y to ROI X, but is not simply a

weighted version of the f summary statistic. For example, a high W

value from Y to X depends on a combination of the following: 1)

many voxels in Y have high GC values to voxels in X; and 2) single

voxels in X have significant GC values from multiple voxels in Y.

Simulation models were constructed using the R statistical

computing package. For the purpose of comparing the GC

Figure 8. Schematic illustration of the computation of summary statistics f and W for hypothetical submatrix Byx. Red dots represent
the voxels of ROI Y, green dots the voxels of ROI X, and arrows the significant t-scores between interregional voxel pairs. Positive values are colored
orange and negative values are colored blue.
doi:10.1371/journal.pcbi.1002513.g008
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strength of a simulation model with its estimated values, we

computed the simulation W statistic directly from the b values of

the simulation model. To make the estimated and simulation W

measures comparable, we normalized the t and b values to z-scores

(i.e. subtracted the mean and then divided by the standard

deviation). Computer code used in this study will be freely

provided for legitimate research purposes upon request from the

first author.

Supporting Information

Figure S1 Granger Causality patterns between simulat-
ed ROIs with multiple iterations. Comparison of t-scores

from the averaging approach and the voxel-based f and W

summary statistics computed directly from the model parameters,

as in Figure 2 but with multiple iterations of each parameter set.

Each parameter set was repeatedly simulated with 20 iterations.

Vertical bars show the standard error across runs.

(TIF)

Figure S2 Comparison of LASSO-GC and pairwise-GC
methods in recovering the f summary statistic. Same

comparison as in Figure 4, but with multiple iterations of each

parameter set. Each parameter set was repeatedly simulated with

20 iterations. Vertical bars show the standard error across runs.

(TIF)

Figure S3 Comparison of LASSO-GC and pairwise-GC
methods in recovering the W summary statistic. Same

comparison as in Figure 5, but with multiple iterations of each

parameter set. Each parameter set was repeatedly simulated with

20 iterations. Vertical bars show the standard error across runs.

(TIF)

Figure S4 Estimated connectivity patterns with the
correlation measure. After the LASSO procedure, some of

the coefficients in the connectivity matrix of the MVAR model

were set to zero. The correlation scores were then computed for

the voxel pairs having non-zero coefficients. Since both GC and

correlation measures were computed after the LASSO procedure,

they could be compared without the possibility of a connectivity

bias due to LASSO. The display scheme is the same as in

Figure 6B.

(TIF)

Figure S5 Comparison of the f summary scores. The f

summary score is compared for measures of correlation without

LASSO (blue), correlation with LASSO (red), and LASSO-GC

(yellow). Supplementary to Figure 6C.

(TIF)

Figure S6 The model residuals correlation matrix for
one simulation run. Each cell represents a color-coded

correlation score between model residuals from two simulated

voxels in the MVAR model. The diagonal cells represent the

correlation of the voxel with itself, which always equals 1.

(TIF)

Figure S7 The model residuals correlation matrix for a
representative ROI pair. Each cell represents a color-coded

correlation score between model residuals from two voxels in the

MVAR model estimated from the fMRI BOLD data. The

diagonal cells represent correlation of the voxel with itself, which

always equals 1.

(TIF)
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