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During 2020, like everything else, cancer research has been
challenged by the global Covid-19 pandemic [1, 2].
Although most of the laboratories worldwide had a period
of forced stop, still scientists have found ways to cope and
adapt to the rapidly changing circumstances and remain
focused and productive during these challenging times.
Being perfectly aware of the difficulties that investigators
have been facing, Cancer Gene Therapy (CGT) has adjus-
ted the peer review process accordingly (i) by extending the
revision timelines, (ii) by being realistic in the requests for
technically challenging and time-consuming additional
experiments and (iii) by demanding to tone down conclu-
sions where definite supporting data were not available.
Despite these conditions, the journal’s priorities to safe-
guard the quality and sustain the integrity of the published
scientific work were not affected.

The researchers’ resilience is embodied in the fascinating
research that has been published in CGT over the last year
and that has captured the interest of the scientific commu-
nity. Here, we highlight some of the articles that cover
different aspects of current cutting-edge research including
the development of organoids as cancer models, novel
methods like new drug delivery systems as well as inno-
vative applications of the zebrafish model.

Identification of new therapeutic targets for
AML

One of the goals in cancer research is discovering onco-
genic drivers, which often include cancer’s mutational sta-
tus. However, it is now well established that the
mechanisms that lead to genetic mutations should be con-
sidered pivotal factors in neoplastic transformation. A per-
fect example of this approach is the work published by
Ruckert et al. Acute myeloid leukemia (AML) is a hema-
topoietic malignancy with poor prognosis, particularly in
the elderly population [3]. HUWE1, an E3 ubiquitin ligase
involved in several cellular processes, was identified to be
the second most expressed gene in AML, according to a
TCGA-based analysis. Using leukemia cells constitutively
expressing mutated RAS (KRASG12V), the authors identi-
fied a mechanism by which HUWE1 cooperates with
mutated RAS activation and controls the proliferation of
cancer cells. In addition, in silico analysis highlighted that
expression of HUWE1 correlates with myeloid
differentiation-related genes. Their findings suggest that
HUWE1 is not only involved in controlling RAS mutated
AML cell proliferation but could also be implicated in
myeloid differentiation [4].

Signature of AML stem cells

Another challenge in AML research is to identify new
genetic signatures able to detect AML-specific stem cells
that are responsible for tumor relapse and therapy resistance
[5]. An alternative bioinformatic approach has been
employed by Li et al. In their manuscript, using Monte
Carlo feature selection combined with machine learning
algorithms, the authors developed a method to identify gene
expression features that are specific for stem cells. The
identified genes (n= 17) can be considered as specific
biomarkers of leukemia stem cells and may have a funda-
mental impact on future research and therapy design [6].
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Ferroptosis, a new pathway of cell death

Cell signaling that regulates cell death has been the central
core of cancer drug discovery for decades. Along with
necrosis and apoptosis, it is currently known that cells can
use several alternative routes to trigger cell death [7]. In
recent years, another type of programmed cell death,
namely ferroptosis, has been described, which is accom-
panied by a large amount of iron accumulation and lipid
peroxidation [8].
The review by Dai et al. [9], describes in a thorough and
comprehensive way the transcription factors involved in fer-
roptosis that can be targeted in different cancer types. The
same group has also studied autophagy-dependent ferroptosis.
Inhibition of the mammalian target of rapamycin kinase
(mTOR) with rapamycin is used to trigger autophagy [10].
The authors identified a role glutathione peroxidase 4, an
antioxidant enzyme, in modulating autophagy-dependent
ferroptosis in pancreatic cancer cells. The results demon-
strated that treatment with rapamycin induces GPX4 degra-
dation and consequently ferroptosis. In addition, researchers
found that genetic silencing of GPX4 was sufficient to trigger
autophagy-dependent ferroptosis [11]. These findings shed
light on the mechanisms of stress response during cell death
and suggest possible targets for cancer therapy.

A central role for PI3K in cancer research

The critical role of the PI3K/AKT/mTOR pathway in cancer
has been demonstrated by several studies [12]. However,
the role of PIK3 as a prognostic tool in advanced malig-
nancies has not been fully demonstrated. In the review by
Willis et al. [13], the authors analyzed the role of PIK3CA
mutations in cancer and patient management and conclude
that future PIK3CA-targeted therapy will rely on a better
understanding of the PI3K/AKT/mTOR signaling pathway,
and on the development of target-specific inhibitors.

Oncolytic viruses, new frontiers for cancer
treatment

Oncolytic viruses (OVs) are the object of intense research in
both basic science and clinical trials. OVs should infect
malignant cells, albeit not all the mechanisms and strategies
that can drive this selectivity have been elucidated. Hulin-
Curtis and co-authors identified several peptides that bind to
Folate receptor α (FRα) as a potential way to target the
delivery of human adenoviral oncolytic virotherapies. FRα
is a membrane protein involved in folate metabolism, with
relatively low expression in normal cells, which is however
upregulated in cancer cells [14]. The identified FRα-binding

peptides were genetically introduced in human adenoviruses
and showed specificity for cancer cells in vivo. This study
represents a promising starting point for improving targeted
OVs, however, the study did not improve the delivery of
OVs carrying the peptides sequences to cancer cells, com-
pared to wild-type OVs [15].

Adapting Zebrafish to create a flexible
model for cancer research

On the same topic, Mealiea et al., set up an interesting
experimental system to monitor the effects of OVs by
adapting a zebrafish tumor xenograft model. By exploiting
the transparency of zebrafish during the embryonic stage
and by combining different zebrafish strains harboring
fluorescent immune and endothelial cells, the authors were
able to investigate in real-time important events, such as
angiogenesis and tumor formation, related to tumor for-
mation and also associated with how tumors respond to
OVs treatment [16]. This system may represent a useful
model for future OVs research and therapy design.

Organoids, tumor in a dish

Using adequate models to identify new therapeutic mole-
cules that can control tumor growth is of fundamental
importance. Tumor organoids can be used to recapitulate
in vitro the pathological features of a disease, including its
response to treatment. With this in mind, Chen et al., set up
an organoid-based drug screening assay to identify inhibitors
for the treatment of endometrial cancer. The authors
screened a small library of molecules targeting epigenetic
factors. They identified menin-MLL inhibitors that were able
to reduce the growth of mouse organoids. MEN1 gene was
found to be upregulated in endometrial cancer and MEN1
levels correlated with poor prognosis [17], suggesting it as a
potential new target for endometrial cancer treatment.

Manipulating immune cells to improve
cancer therapy

Another useful tool for targeting cancer cells is the chimeric
antigen receptors (CARs) that make T lymphocytes tumor-
specific. CAR-T cells have shown promising results and
have been recently approved by FDA and EMA for lym-
phoma and leukemia treatment [18]. However, there are still
several issues that need to be addressed before this approach
could see a wider application. In the work by Papathanasiou
et al., the authors described the challenges and opportunities
behind this therapeutic approach [19].
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Methods to overcome drug resistance

Despite the overall progress, there are still cancer types for
which medical therapy remains extremely challenging, due
to the lack of appropriate targeting molecules and/or
intrinsic and acquired resistance processes. A perfect
example of such malignancies is neuroendocrine tumors
(NETs), a relatively rare disease arising from the neu-
roendocrine cells spread in the normal epithelium [20]. Si
et al., aimed to develop an antibody-drug conjugated (ADC)
to treat NETs. As a result, they produced an antibody
conjugated with antimitotic auristatin E that was able to
target the two extracellular domains of the somatostatin
receptor 2 (SSTR2), which has strong specificity for
NET cells, promoting their death. Ultimately, this new
approach might be used to improve the therapeutic man-
agement of NETs in the clinic [21].

Summary

Overall, despite the unprecedented difficulties that have
shaped 2020, it is remarkable and encouraging to witness
the continuous and fruitful efforts of cancer researchers and
scientists around the world who remain committed to sci-
entific excellence.
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