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Abstract 

Introduction 

Lung adenocarcinoma is the most common type of lung cancer and typically carries a high number of mutations. However, the 
genetic background of the tumors varies according to patients’ ethnic background and smoking status. Little data is available on the 
mutational landscape and the frequency of actionable genomic alterations in lung adenocarcinoma in the Finnish population. 

Materials and methods 

We evaluated the gene alteration frequencies of 135 stage I–IV lung adenocarcinomas operated at Turku University Hospital between 

2004 and 2017 with a large commercial comprehensive genomic profiling panel. Additionally, we correlated the alterations in selected 

genes with disease outcomes in 115 stage I–III patients with comprehensive follow-up data. The genomic alterations in a sub-cohort 
of 30 never-smokers were assessed separately. 

Results 

Seventy percent of patients in the overall cohort and 77% in the never-smoker sub-cohort harbored an alteration or a genomic signature 
targetable by FDA and/or EMA approved drug for non-small cell carcinoma, respectively. In multivariable analysis for disease-specific 
survival, any alteration in SMARCA4 (DSS; HR 3.911, 95%CI 1.561–9.795, P = 0.004) exhibited independent prognostic significance 
along with stage, tumor mutation burden, and predominant histological subtypes. 

Conclusions 

Over two thirds of our overall cohort, and especially never-smokers had an actionable genomic alteration or signature. SMARCA4 

alterations, detected in 7.4% of the tumors, independently predicted a shortened overall and disease-specific survival regardless of 
the alteration type. Most SMARCA4 alterations in our cohort were missense mutations associated with differentiated predominant 
histological subtypes and immunohistochemical SMARCA4/BRG1 and TTF-1 positive status. 
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Introduction 

Lung cancer is the leading cause of cancer-related mortality worldwide
[1] . Most lung cancers are non-small cell lung cancers (NSCLC), and
adenocarcinoma is the most common subtype with an increasing trend
in relative incidence [2] . Adenocarcinomas harbor targetable genomic
alterations in ALK, BRAF, EGFR, and ROS1 genes, and novel treatment
options such as KRAS Gly12Cys , MET, NTRK, and RET inhibitors, and
possibly ERBB2 guided therapies are broadening the clinical repertoire
[3–5] . In addition to guiding the treatment of individual cancers,
genomic alterations may indicate resistance to targeted therapies [6] and
immunotherapy [7] , as well as conventional chemotherapy [8] . As the
mutational landscape varies by ethnic background, knowledge of the local
mutational frequencies will help allocate resources to detect clinically
significant alterations in cases where broad genomic profiling is not
routinely used. Finns differ genetically from other European populations,
and there is little previous data on the mutational landscape of Finnish lung
adenocarcinoma patients [9] . 

Most of the lung adenocarcinoma patients in the Western population
are current or ex-smokers, but the proportion of never-smokers is expected
to increase as smoking declines. Adenocarcinomas in never-smokers are
genetically different from those detected among smokers as the latter group
has a significantly higher number of individual mutations and different
mutation types [10–12] . Tumors with EGFR mutations are common in
never-smokers, occurring in 27.4–66.7% of European [13–18] and 60–78%
of East Asian [19] patients without a smoking history. Besides EGFR , never-
smoking status is associated with oncogenic gene fusions involving ALK1,
ROS1 , and RET . The genomic data on European never-smokers is still
relatively scarce, and to our knowledge, there is no published genomic data
about adenocarcinomas among never-smokers in the Finnish population. 

Here we mapped the mutational landscape of lung adenocarcinomas in a
single-center patient cohort via a large commercial comprehensive genomic
profiling panel, emphasizing currently recognized actionable alterations and
alterations in never-smokers. 

Materials and methods 

Our retrospective cohort consisted of 135 patients with stage I–
IV primary invasive lung adenocarcinoma operated in Turku University
Hospital in 2004–2017 with curative intent. Two patients had received
neoadjuvant chemotherapy, while none had received radiotherapy. Three
patients underwent immunotherapy in 2017–2018. We traced the smoking
status and other clinicopathological characteristics from the electronic patient
records. A never-smoker was defined as a person who self-reportedly had
consumed less than 100 cigarettes in their lifetime. We acquired the day
and cause of death through Statistics Finland, with the last follow-up
day on 31.12.2018. We excluded patients from survival analysis based on
the following criteria: incomplete clinical follow-up data, death within 30
postoperative days, macroscopic (R2) residual disease, and immunotherapy
during the follow-up period. The collection of clinical patient data was
approved by the administration of the Hospital District of Southwest Finland
(T150/16), and the use of tissue material was approved by the Scientific
Steering Committee of Auria Biobank (AB14-8689 and AB20-9755). We
conducted the study in collaboration with Auria Biobank and Roche Oy
(Espoo, Finland). 

Genomic characterization 

FoundationOne (Foundation Medicine, Inc., Cambridge, MA, USA)
comprehensive genomic profiling, described and validated by Frampton et al.
[20] , was performed on ten 5 μm thick formalin-fixed paraffin-embedded
tissue sections on charged and unbaked slides. We omitted tumors with
n insufficient number of non-necrotic tumor cells and those limited to 
 single tumor block per patient. FoundationOne provided the genomic 
ata classified as short variant mutations (single nucleotide variants (SNVs) 
nd indels of 1–40 base pairs), copy number alterations (amplifications and 
osses), and rearrangements. These were further categorized as either known 
athogenic, likely pathogenic, or variants of uncertain significance (VUS). 
he FoundationOne panel version used in our study covered the exons of 
15 genes and selected intronic regions [20] . 

mmunohistochemical staining 

Immunohistochemical SMARCA4/BRG1 stainings were performed at 
imlab Laboratories (Tampere, Finland) using an in-house validated protocol. 
n brief, tissue sections of 4 μm thickness were cut from the same paraffin
locks used for sequencing, deparaffinized with xylene, and rehydrated in a 
eries of ethanol. Antigen retrieval was performed with Cell Conditioning 
 (CC1) solution and heat-induced epitope retrieval (HIER). Staining was 
erformed on Ventana BenchMark ULTRA staining instrument using rabbit 
onoclonal SMARCA4/BRG1 antibody (1:100, clone EPNCIR111A, 
bcam, Cambridge, UK), and the sections were counterstained with 
ematoxylin. Lymphatic tissue on the same slide was used as a positive 
xternal control, and intratumoral lymphocytes were used as internal positive 
ontrols. 

tatistical analyses 

The clinicopathological and genomic data were correlated with the χ2 
est and Fischer ś exact test. Overall survival (OS) and disease-specific (DSS) 
urvival were estimated using the Kaplan-Meier method and the log-rank test. 
he genomic data were adjusted for clinical parameters with multivariable 
ox regression analysis. P-values less than 0.05 were considered statistically 

ignificant. Statistical analyses were performed with SPSS (IBM, version 28, 
021). The waterfall plots were created with R (R Project, version 3.6.1, 
020) GenVisR package and modified with GIMP. 

esults 

atient characteristics 

A total of 135 patients with surgically treated primary lung 
denocarcinoma and available FoundationOne genomic data were included 
n the study. All the patients were of Finnish European descent. After applying 
he exclusion criteria, 115 patients remained in the survival analyses. The 
ever-smoker sub-cohort consisted of 30 patients (70% women). The mean 
ollow-up period was 56.1 months (range 7.0–173.5 months). The clinical 
haracteristics of the cohort are summarized in Table 1 . 

utational landscape of tumors 

The tumors harbored 2682 individual non-synonymous genomic 
lterations (2366 SNVs and small indels, 281 copy number alterations, and 
5 rearrangements), ranging from four to 99 alterations per tumor. The 
verage median exon coverage was 571. Median tumor mutational burden 
TMB) was 7.02 (range 0.0–88.6), and 49 patients had TMB of at least
en mutations/MB. Microsatellite instability was present in one tumor, co- 
ccurring with high TMB (35.1 mutations/MB). 

Overall, TP53 was the most commonly altered gene, with 54.8% of 
umors having TP53 alterations of any kind. One or more alterations in 
RAS were detected in 37.8% of the tumors, followed by LRP1B, SPTA1 ,
nd PRKDC (28.1% each), EGFR (23.7%), and STK11 (20.0%). KEAP1 
as mutated in 14.1% and NFE2L2 in 5.9% of the tumors. The genes with
utations in at least 10% of patients in the overall cohort are presented
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Table 1 

Clinical characteristics of the cohort. 

No. of patients (%) ( n = 135) No. of patients in survival 

analyses (%) ( n = 115) 

Mean age at operation 66 66 

Sex 

Female 65 (48.1) 55 (47.8) 

Male 70 (51.9) 60 (52.2) 

Smoking 

No 30 (22.2) 29 (25.2) 

Yes 104 (77.0) 86 (74.8) 

Unknown 1 (0.7) 0 

Type of surgery 

Sublobar resection 7 (5.2) 4 (3.5) 

Lobectomy 89 (65.9) 78 (67.8) 

Bilobectomy 34 (25.2) 31 (27.0) 

Pneumonectomy 4 (3.0) 2 (1.7) 

Unknown 1 (0.7) 0 

Stage (TNM8) 

I 71 (52.6) 68 (59.1) 

II 27 (20.0) 24 (20.9) 

III 31 (23.0) 23 (20.0) 

IV 5 (3.7) 0 

Unknown 1 (0.7) 0 

Residual disease 

No 112 (83.0) 108 (93.9) 

Microscopic 7 (5.2) 7 (6.1) 

Macroscopic 14 (10.4) 0 

Unknown 2 (1.5) 0 
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in Fig. 1 A. The frequencies of individual genomic alterations of all the
genes included in the panel are reported in Supplementary Table S1 and
all the alterations in selected genes relevant to lung adenocarcinoma in
Supplementary Table S2. 

All tumors in the cohort harbored at least one known or likely pathogenic
alteration. TP53 had the highest number of pathogenic or likely pathogenic
variants, with 82 alterations in 73 individual tumors. The subsequently most
affected genes were KRAS (54 pathogenic or likely pathogenic alterations in
51 tumors), EGFR (36 alterations in 29 tumors), STK11 (23 alterations in
22 tumors), and RBM10 (14 alterations in 14 tumors). 

Established genomic biomarkers per European Society for Medical 
Oncology guidelines 

At the time of writing this article, the European Society for Medical
Oncology (ESMO) guidelines recommended the molecular subtyping of
EGFR, ALK, ROS1, BRAF , and NTRK as predictive biomarkers for first-line
targeted therapies in metastatic non-small cell carcinoma [21] . Over a third
of our patients (31.9%) harbored a pathogenic or likely pathogenic alteration
in these genes, mutually exclusively. A total of twenty-nine patients (21.5%)
had one or more alterations in EGFR , nine patients (6.7%) in BRAF , three
patients (2.2%) in RET , and one patient each (0.7%) in ALK and ROS1.
There were no NTRK fusions. 

EGFR exon 19 deletions were identified in 13 patients (44.8% of patients
with pathological or likely pathological EGFR alterations) and Leu858Arg
EGFR mutation in eight patients (27.6%). Two patients had tumors with
compound Gly719Ala and Ser768Ile EGFR mutations. 

As our patients were treatment naïve at the time of their surgery, no
acquired EGFR tyrosine kinase inhibitor (TKI) resistance mutations were
present, and neither were primary resistance mutations observed. EGFR -
TP53 co-alterations, shown to associate with shorter progression-free survival
ollowing 1 st or 2 nd generation EGFR TKI treatment [22] , were seen in
6 tumors. Four patients harbored EGFR exon 20 in-frame insertion,
onferring resistance to EGFR TKIs but sensitizing to amivantamab. EGFR
as amplified in four tumors, with three having a concurrent activating EGFR
utation and one having an exon 20 insertion, potentially modifying EGFR
KI treatment response. 

Five patients had a BRAF Gly469Val mutation, while four patients had
ther non-Val600 mutations, and one patient had a compound Gly469Val 
nd Ser605Cys mutation. There were no Val600Glu mutations. A previously
eported RET fusion was present in three patients, with two having
ET / KIF5B fusions and one having a RET / CCDC6 fusion. One patient had a
reviously unreported RET/PTPLA fusion with a concurrent KRAS Gly12Val 
utation. There was one case of ALK/EML4 and ROS1/CD74 fusion each

0.7%). 
In conclusion, 24 patients had an EGFR mutation with an indication

or EGFR TKIs (exon 19 deletions, Leu858Arg mutation, and Gly719X
utations), four patients had an exon 20 insertion for which amivantamab

s recommended, and eight patients had EGFR alterations predicting 
 decreased response to EGFR TKIs ( EGFR exon 20 insertion, EGFR
mplification). Five tumors harbored fusion genes with available targeted 
reatment ( ALK, ROS1, RET ) ( Table 2 ). 

merging genomic biomarkers 

The genomic biomarkers not yet recommended by ESMO in routine
ractice but already present in the NCCN, CAP/IASCL/AMP, and ASCO
uidelines include KRAS, ERBB2 , and MET [23] . Additionally, FDA has
ccepted tumor mutation burden (TMB) as a biomarker for immunotherapy
ith pembrolizumab. 

In KRAS , the most common genomic alteration was Gly12Cys (20
atients, 35.1% of patients with any KRAS alterations). Other pathogenic and
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Fig. 1. A waterfall plot of short variant mutation frequencies in genes with mutations in at least 10% of patients. Mutations in A) the whole cohort and B) 
the never-smoking sub-cohort are shown. 
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likely pathogenic KRAS alterations, to which presently no targeted treatment
is available, were present in 37 patients (Supplementary Table S2). 

The most common ERBB2 alteration was an exon 20 insertion, present
in four patients. Two patients had an ERBB2 amplification. One patient
had an activating exon 8 mutation Ser310Phe, and one patient had an
activating exon 19 Asp769His mutation. In MET , six exon 14 alterations
were identified, including three exon 14 skipping splice site mutations, two
Tyr1003X mutations, and one Asp1010His mutation. MET amplification,
indicating resistance to EGFR TKIs and sensitivity to small molecule MET
inhibitors, was present in three tumors. 

In conclusion, 26 patients had a variant (20 KRAS Gly12Cys and six
MET exon 14 alterations) targetable with drugs already accepted by the U.S.
Food and Drug Administration (FDA) and the European Medicines Agency
(EMA). Additionally, four ERBB2 exon 20 insertions and one exon 19 SNV,
recommended to be treated with trastuzumab-drug conjugates in the NCCN
uidelines, were present. Furthermore, three cases of MET amplification were 
ound. 

dditional alterations in homologous recombination repair genes, and 
o-alterations in key genes relevant to cancer 

Defects in genes involved in homologous recombination repair (HRR) are 
eing trialed as histology-agnostic biomarkers for PARP inhibitors in various 
olid malignancies, either alone or in combination with chemotherapy, 
argeted therapy, or immunotherapy. In non-small cell lung cancer, the 
revalence of HRR gene deficiencies has been reported to be approximately 
5% [24] . In our cohort, 18 individual tumors (13.3%) had known or likely
athogenic alterations in the following HRR associated genes: ATM in eleven 
atients, BRCA1/2 in four patients, BRIP1 in one patient, CHEK2 in three 
atients, RAD50 and RAD54L in two patients each, and one alteration each in
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Table 2 

Actionable and potentially actionable mutations and genomic signatures across the cohort (n = 135). TKI = Tyrosine kinase inhibitor, FDA = U.S. 

Food and Drug Administration, EMA = European Medicines Agency, MSI-H = microsatellite instability. 

Biomarker Alteration N:o ofpatients 

(%) 

Never 

smokers 

Therapy Approval or evidence 

EGFR Exon 19 deletion 13 (9.6) 7 1-3. generation EGFR TKI:s EMA, FDA 

Leu858Arg 8 (5.9) 5 

Gly719Ala + Ser768Ile 2 (1.5) 0 Osimertinib 

∗
∗ Cai Y, Wang Y, Sun J, et al. 

J Int Med Res . 2020 

Gly719Cys 1 (0.7) 0 

Exon 20 insertion 4 (3.0) 3 Amivantamab-vmjw 

Amplification 4 (3.0) 2 

ERBB2 Exon 20 insertions 4 (3.0) 2 Ado-trastuzumab 

emtansine, 

fam-trastuzumab 

deruxtecan-nxki 

NCCN 

guidelines,evidence level 

2A 

Amplification 2 (1.5) 0 Trastuzumab + paclitaxel? 

MET Exon 14 splice site 

mutations 

3 (2.2) 0 Crizotinib, capmatinib, 

tepotinib 

FDA 

D1010H 1 (0.7) 1 

Y1003X 2 (1.5) 1 

KRAS Gly12Cys 20 (14.8) 0 Sotorasib, adagrasib 

∗∗ EMA, FDA 

∗∗
ROS1 Fusion 1 (0.7) 1 Crizotinib, entrectinib EMA, FDA 

RET Fusion 3 (2.2) 3 Pralsetinib, selpercatinib EMA, FDA 

ALK Fusion 1 (0.7) 1 1-2. generation ALK 

inhibitors 

EMA, FDA 

BRCA1/2 4 (3.0) 0 PARP inhibitors Approved in other solid 

tumor types 

MSI-H 1 (0.7) 0 Pembrolizumab FDA 

TMB ≥ 10 49 1 Pembrolizumab FDA 
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FANCM, BARD1, BRIP1 , and MRE11A . We were unable to confirm whether
these variants were germline or somatic in origin. 

Co-alterations involving KRAS, TP53, STK11 , and CDKN2A/B were
present in 33% of the whole cohort: KRAS - TP53 in 16.3%, KRAS - STK11 in
8%, TP53 - STK11 in 9%, and KRAS - CDKN2A/B loss in 4% of the tumors.
KRAS - STK11 -alterations have been associated with a poor response to
immune checkpoint inhibitor therapy [7] . MDM2 amplification, suggested
being linked with hyperprogression during immunotherapy in a small series
of various malignancies [25 , 26] , was present in 7% of the patients. Two
patients with a co-occurring EGFR - TP53 - RB1 alteration, predisposing to
transformation to small cell carcinoma or squamous cell carcinoma following
EGFR TKI treatment [27 , 28] , were observed. 

Clinical actionability in the cohort 

In the overall cohort, 59 patients (27 never-smokers) had a genomic
alteration, and 49 patients a genomic signature (TMB ≥ 10, MSI-H or
both, one never-smoker) for which an FDA and/or EMA approved NSCLC-
indicated targeted treatment is currently available ( Table 2 , March 2022). Of
these patients with targetable genomic alterations, 13 (22%) also had a TMB
≥ 10. Thus, overall 95 of our patients (70.4%) had alteration(s) or a genomic
signature with an approved targeted drug available. Furthermore, additional
alterations with a treatment option in other solid malignancies were detected
in nine tumors (four ERBB2 exon 20 insertions, one ERBB2 Ser310Phe SNV,
and four BRCA1/2 alterations). All the targetable or potentially targetable
alterations were mutually exclusive except for one patient with a KRAS
Gly12Cys and a concurrent BRCA2 variant. 
he effect of smoking on genomic alterations 

The mean age at the time of diagnosis was 71.5 years for smokers, and
4.6 years for never-smokers. Never-smokers had 332 individual genomic 
lterations (260 short-variants, 63 copy number alterations, and nine 
earrangements; 5–19 alterations per patient). 

The most frequently altered genes in never-smokers were EGFR (50.0%
f patients harboring one or more alterations), TP53 (30.0%), FRS2 and
DM2 (26.7% each), CDKN2A and CDKN2B (7.9% each), BRCA2, 

RBB2, PRKDC, PIK3CA, PTEN, SPEN and SPTA (16.7% each), while
lterations in other genes were found in four patients (13.3%) or less. The
athogenic ERBB2 variant Ala775_Gly776insYVMA (four patients) and 
TEN variant of unknown significance Asp268Glu (three patients) were 

ound exclusively in never-smokers. Other variants detected only in never-
mokers presented in only one or two patients. The never-smoking patients
arbored all the gene fusions in the cohort. The frequencies of genes mutated

n 10% or more of never-smokers are visualized in Fig. 1 B. Fig. 2 introduces
he alteration frequencies in clinically important genes and illustrates the
ifferences of genomic alterations between never-smokers and smokers. 

A history of cigarette smoking was associated with more alterations of any
ype in genes including TP53, KRAS, SPTA1, LRP1B , and STK11. Never-
mokers, in contrast, harbored more alterations in EGFR, FRS2, MDM2 , and
DKN2B . ( P < 0.05, data not shown). Eleven patients with a smoking history
ad RUNX1T1 amplification, a finding of unknown clinical significance. 
our of our tumors with the RUNX1T1 amplification were predominantly
olid in histology, five were predominantly acinar (with two cribriform
umors), one was micropapillary, and one was lepidic. The impact of smoking
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Fig. 2. The genomic alterations with current clinical relevance in lung adenocarcinoma. Frequencies of alterations in A) never-smoking patients and B) in 
patients with a smoking history. 
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on the frequency of selected alterations is presented in Supplementary Table
S3. 

Significantly, 23 (77%) out of 30 tumors found among never-smokers
had an alteration for which an FDA- or EMA-approved NSCLC-indicated
targeted treatment is currently available. Additional four never-smokers had
an alteration potentially targetable in the near future ( Table 2 ). 

Association of genomic alterations with clinicopathological 
characteristics and survival 

The tumors were histologically classified as described in our earlier
manuscript [29] . All tumors with any EGFR alterations except one case
had predominant histological subtypes associated with favorable survival
(lepidic, acinar, papillary). Pathogenic or likely pathogenic EGFR mutations
occurred in 27.7% of tumors with favorable predominant histologic subtypes,
but only in 2.9% of tumors with histologic subtypes associated with poor
survival (solid, micropapillary, cribriform, fetal) ( P = 0.002). In contrast,
known and likely pathogenic alterations in KRAS were associated with
predominant histological subtypes conferring poor prognosis ( P = 0.035).
The majority (72%, 8/11) of the tumors with MDM2 - FRS2 co-amplification
were predominantly acinar in histology. 

After applying the exclusion criteria, 115 stage I–III patients remained
in survival analyses. There was no survival difference between genders or
between smokers and never-smokers ( P > 0.05, data not shown). Patients
with predominant subtype conferring poor prognosis fared worse in OS
(HR 2.345, 95%CI 1.1.335–4.120, P = 0.003) and DSS analyses (HR 2.930,
95%CI 1.535–5.594, P = 0.001), as expected. 

Out of genes relevant to lung adenocarcinoma, any alterations in
SMARCA4 were associated with shortened OS (HR 2.732, 95%CI 1.291-
5.782, P = 0.009) and DSS (HR 2.901, 95%CI 1.213-6.939, P = 0.017)
in univariable analysis. The effect of SMARCA4 alterations on survival is
presented in Fig. 3 A–B. Alterations of TP53, KRAS , or STK11 were not
associated with differences in OS or DSS, either alone or in combination with
each other ( P > 0.05). Similarly, the MDM2-FRS2 co-amplification status was
not associated with either OS or DSS (p > 0.05). 

In multivariable analysis for OS, any alteration in SMARCA4 (HR 3.522,
95%CI 1.615–7.679, P = 0.002) was an independent poor prognostic factor
together with TMB lower than 14 mutations/MB, and aggressive histologic
subgroups. In multivariable analysis for DSS, any alteration in SMARCA4
(HR 3.911, 95%CI 1.561–9.795, P = 0.004) was associated with unfavorable
utcome along with high stage, TMB lower than 14 mutations/MB, and 
ggressive histologic subgroups. ( Table 3 ). 

SMARCA4 alterations were present in ten individual tumors. Seven 
f these tumors had a differentiated predominant histological subtype 
acinar in six and papillary in one, Fig. 3 Ca–Cg), whereas the three
emaining tumors were predominantly solid ( Fig. 3 Ch–Cj). The tumors 
ith SMARCA4 alterations were composed of more than one histological 

ubtype, except for one uniformly solid tumor ( Fig. 3 , patient Ch). Seven
umors harbored SMARCA4 missense variants, two of which had a concurrent 
runcating SMARCA4 mutation. Two tumors had a truncating SMARCA4 
ariant without missense variants, and one tumor had a partial SMARCA4 
eletion. The clinicopathological characteristics of the individual tumors with 
MARCA4 alterations are presented in Supplementary Table S4. 

All the tumors with SMARCA4 alterations were further 
mmunohistochemically stained for SMARCA4/BRG1 ( Fig. 3 Ca–Cj). The 
umors with acinar or papillary predominant histology demonstrated either 
iffusely positive BRG1 staining (patients Ca-c, Cf–g) or heterogeneous 
taining including both positive and negative tumor cells (patients Cd–e). 
he solid predominant tumors (patients Ch–j), all harboring truncating 
MARCA4 variants, had solid (patients Ch–j) and acinar (patient Ci) 
umor areas that were BRG1 negative. Adjacent to these negative areas, the 
umors exhibited either patchy positive solid areas (patient i) or diffusely 
ositive lepidic growth (patient Cj) suggesting intratumoral heterogeneity in 
MARCA4 mutation status. 

Immunohistochemical TTF-1 staining was available from nine 
MARCA4 altered tumors. One tumor with acinar predominant histology 
nd a missense SMARCA4 variant (patient Cd) and one with solid 
redominant histology and a combination of truncating and missense 
MARCA4 variants (patient Ci) were TTF-1 negative, while the remaining 
umors were TTF-1 positive (Supplementary Table S4). 

iscussion 

In estimating the actionability of genome profiling results with the 315 
ene panel, we primarily focused on alterations or genomic signatures for 
hich a drug is currently (March 2022) approved for NSCLC by the 
DA and/or EMA as they reflect the true actionability in the routine 
linical setting. In the overall cohort, the majority (70%) of patients 
ad such an alteration or signature dominated by EGFR alterations and 
MB ≥ 10. The fraction of patients with actionable alterations remained 
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Fig. 3. The effect of SMARCA4 alterations on survival and tumor histology. A) Overall survival (OS) and B) disease specific survival (DSS) demonstrated 
by Kaplan-Meier analysis. C) Predominant histological subtypes of the SMARCA4 mutated tumors and the expression of SMARCA4/BRG1 by 
immunohistochemistry (n = 10). Ca–Cf: predominantly acinar tumors, Cg: predominantly papillary tumor, Ch–Cj: predominantly solid tumors. Scale bar 
200 μm. 



8 Comprehensive genomic profiling of Finnish lung adenocarcinoma cohort reveals high E.-M. Talvitie et al. Neoplasia Vol. 32, No. C, 2022 

Table 3 

Survival analyses. A. Overall survival and B. disease specific survival analyzed by multivariable Cox analysis. HR = hazard ratio, CI = confidence 

interval, REF = reference, TMB = tumor mutation burden. 

A. Overall survival 

HR 95%CI P- value 

Stage I REF REF REF 

Stage II 1.767 0.927–3.366 0.084 

Stage III 1.934 1.027–3.644 0.041 

Histology: good prognosis REF REF REF 

Histology: poor prognosis 2.783 1.485–5.212 0.001 

TMB > 14 REF REF REF 

TMB < 14 2.240 1.210–4.148 0.01 

No SMARCA4 alterations REF REF REF 

Any SMARCA4 alteration 3.522 1.615–7.679 0.002 

B. Disease specific survival 

HR 95%CI P- value 

Stage I REF REF REF 

Stage II 2.375 1.087–5.189 0.03 

Stage III 2.882 1.355–6.132 0.006 

Histology: good prognosis REF REF REF 

Histology: poor prognosis 3.322 1.607–6.866 0.001 

TMB > 14 REF REF REF 

TMB < 14 3.176 1.409–7.158 0.005 

No SMARCA4 alterations REF REF REF 

Any SMARCA4 alteration 3.911 1.561–9.795 0.004 
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substantially high (42%) even when excluding TMB. In our cohort, the
majority of samples (73%) were from early stage (stages I and II) disease,
complicating comparisons to other cohorts with more advanced disease.
However, the overall frequencies of actionable alterations were comparable
to those reported by Skoulidis and Heymach [30] for metastatic rather than
early-stage disease with the exceptions of ALK alterations that were close to
those reported for early-stage disease, and EGFR that falls between those
reported for early and metastatic disease. Understanding the mutational
landscape in the early-stage setting is becoming increasingly important given
that several ongoing trials are investigating targeted drugs in the early-stage
setting, and osimertinib has already been approved in the adjuvant setting by
the FDA. 

In the never-smoker sub-cohort, 77% of patients had a targetable
alteration, dominated by alterations in EGFR . There were no KRAS Gly12Cys
mutations among never-smokers, whereas all ALK, ROS1 , and RET fusions
were detected exclusively among never-smokers. If the potentially targetable
ERBB2 exon 20 insertions [4 , 5] are included, the fraction of never-smokers
with a targetable alteration in the cohort was 90%. This is in line with a
recent study reporting 80% of the never-smokers harboring an actionable
alteration [17] . These findings suggest that it is highly likely to find tailored
targeted therapy for most, if not all never-smokers with newly diagnosed lung
adenocarcinoma. 

In survival analyses, we previously identified high TMB (defined in our
study as equal to or more than 14 mutations/MB of coding DNA) as a
stage- and histology-independent favorable prognostic factor with follow-up
data until the end of 2016 [29] . The significance of these parameters in this
model persisted with updated survival data extending until the end of 2018.
Additionally, any alterations in SMARCA4 , a gene participating in chromatin
remodeling, conferred an independent poor prognostic effect in multivariable
analysis. Although the number of patients with SMARCA4 alterations in our
cohort is small, our results support the earlier observations that SMARCA4
alterations are indicators of poor survival in NSCLC [31–34] . 

The SMARCA4 gene codes SMARCA4/BRG1, an ATP-dependent
catalytic subunit of the SWI/SFN chromatin remodeling complex. Most
SMARCA4 alterations in NSCLC are missense variants [33 , 35] . Truncating
utations, reportedly present in more than one-third of SMARCA4 mutated 
umors, are linked to loss of BRG1 expression indicating BRG1 deficiency, 
hereas missense mutations mostly leave BRG1 expression intact [36] . Both 

lteration types are associated with poor clinical outcomes [33] , and missense 
ariants seem to affect chromatin remodeling activity [35] in ways other than 
oss of BRG1 expression. 

The majority of the reports evaluating the histopathology of SMARCA4 
ltered lung adenocarcinomas have concentrated in tumors with loss 
f immunohistochemical BRG1 expression [37–40] and, presumably 
runcating SMARCA4 variants. These tumors are poorly differentiated, have 
 TTF-1 negative status, and behave aggressively. In contrast, the majority 
f our SMARCA4 altered tumors exhibited a differentiated predominant 
ubtype, diffuse BRG1 expression, and diffuse positivity for TTF-1. In 
onclusion, all SMARCA4 variant types were associated with poor prognosis 
hile tumors with SMARCA4 missense variants were mostly associated with 
ifferentiated predominant histological subtypes, retained BRG1 expression, 
nd a positive TTF-1 status. 

The SMARCA4 alteration prevalence in NSCLC is approximately 10% 

33 , 36] . Our patients had a comparable prevalence of 7.4%. In addition
o SMARCA4 alterations providing prognostic information, immunotherapy 
as yielded some promising results in SMARCA4 deficient tumors with loss of 
RG1 [33 , 39 , 41 , 42] . In contrast, tumors with SMARCA4 missense variants
id not exhibit a survival benefit on immunotherapy [33] . Furthermore, 
MARCA4 deficient tumors have demonstrated sensitivity to cisplatin- 
ased regimes [31] and, in preclinical studies, to an ATR inhibitor [43] , a
DM6 inhibitor [44] , and a CDK4/6 inhibitor palbociclib [45] . After more
alidation, SMARCA4 may be informative in clinical practice as a prognostic 
nd predictive biomarker. More data are required on whether SMARCA4 
issense variants are clinically actionable. 

The Finnish population is genetically unique among Europeans due to 
istorical population bottlenecks, and thus population databases such as 
he Exome Aggregation Consortium (ExAC) and the Genome Aggregation 
atabase (GNOMad) divide Europeans into Finns or non-Finns. To our 

nowledge, no comprehensive genomic profiling data is available on Finnish 
ung adenocarcinoma patients. While most of the genes relevant to lung 
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cancer exhibited similar mutational frequencies compared to non-Finn
European populations, the frequency of certain alterations was higher in
our cohort than in referenced cohorts. These included EGFR (30% vs 7.5–
19.0%), ERBB2 (11.9% vs 1.0–5.0%), PIK3CA (10.4% vs 3.8–6.4%), and
BRAF (8.4% vs 2.9–8.3%) [32 , 46–48] . When comparing the never-smoking
sub-cohort with never-smoking non-Finn Europeans, alterations in TP53
(30% vs 5.8–26.7% [12 , 15 , 16] ) and ERBB2 (16.7% vs. 3.0-6.7% [14–17] )
were more frequent in our study. An alteration of uncertain significance,
RUNX1T1 amplification, was present in eleven patients, all with a smoking
history. One group has previously reported RUNX1T1 amplification in
combined small cell and non-small cell lung cancer [49] . Interestingly, none
of our tumors had a neuroendocrine component previously reported for
RUNX1T1 amplified tumors [49] . Further research may elucidate the clinical
meaning of the amplification. 

Remarkably, only one of our patients had an ALK fusion (0.7%), a
considerably low number compared to the reported prevalence of 2–7%
in other European populations [50] . Furthermore, the pathogenic non-
Val600 BRAF mutations seem to be more common in Finnish patients than
in comparable non-Finn European populations, a finding supported by a
previous report [9] . However, as the number of patients in our cohort is small,
these findings require further validation with a larger cohort. 

Conclusions 

This study broadens the information on genomic alterations in European
and Finnish lung adenocarcinoma patients. The most clinically relevant
finding was the large number of actionable alterations found among never-
smoking patients, supporting using broad genomic profiling, especially if
standard tests are negative. SMARCA4 alterations were stage-, histology-
and TMB-independent markers of poor prognosis and were associated
with differentiated phenotypes and TTF-1 positivity. BRAF non-Val600
mutations and RUNX1T1 amplifications seem to be unusually prevalent and
ALK fusions rare in Finnish lung adenocarcinoma patients. 

The strengths of the study include the use of the same analysis method
on all the tumors and comprehensive follow-up data with up-to-date staging
and histological classification. The main limitations are a retrospective cohort
and a small number of patients. 
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