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Abstract: Angular X-ray cross-correlation analysis (AXCCA) is a technique which allows quantitative
measurement of the angular anisotropy of X-ray diffraction patterns and provides insights into the
orientational order in the system under investigation. This method is based on the evaluation of the
angular cross-correlation function of the scattered intensity distribution on a two-dimensional (2D)
detector and further averaging over many diffraction patterns for enhancement of the anisotropic
signal. Over the last decade, AXCCA was successfully used to study the anisotropy in various
soft matter systems, such as solutions of anisotropic particles, liquid crystals, colloidal crystals,
superlattices composed by nanoparticles, etc. This review provides an introduction to the technique
and gives a survey of the recent experimental work in which AXCCA in combination with micro- or
nanofocused X-ray microscopy was used to study the orientational order in various soft matter systems.

Keywords: angular X-ray cross-correlation analysis; orientational order; soft matter; hexactic phase
in liquid crystals; colloidal crystals; organic-inorganic mesocrystals

1. Introduction

Soft matter, which includes polymers, liquid crystals, colloidal systems, membranes, foams,
and granular materials, covers a broad range of possible condensed matter structures between periodic
crystals and completely disordered liquids. Usually these systems are characterized by relevant length
scales above interatomic distances and weak interparticle interactions, which are typically of the order
of thermal energies at room temperature [1,2]. As the result, soft matter is very sensitive even to small
changes of external conditions, such as pressure, temperature, and electromagnetic fields [3].
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The strong response to external stimuli and rich phase diagrams has given rise to numerous
applications of soft matter materials in electronics, display devices, photonics, photovoltaics, coatings,
and adhesives, to name a few. Another important property of many, but not all, soft matter systems
is their ability to self-assemble, i.e., form complex ordered structures from basic units, such as nano-
or colloidal particles [4]. Self-assembly allows one to fabricate new artificial materials by controlling
macroscopic parameters, such as concentration and temperature, instead of manipulating each basic
unit on a microscopic level. On the other hand, such self-assembled structures are prone to defects,
which obviously have influence on the resulting functional properties of these materials.

Understanding the structure of various soft matter systems is an important yet challenging
problem of modern condensed matter physics. First of all, soft matter typically exhibits more degrees
of freedom compared to conventional inorganic crystals. This is related to the fact that the basic units
of soft matter, for example, organic molecules or nanoparticles, are much larger than atoms, and exhibit
angular degrees of freedom, so not only their position, but also orientation in space become important
for describing the structure of these systems. It is interesting to note that these orientational degrees of
freedom were speculated to be the reason for fundamental differences in the non-equilibrium structure
formation between molecular and atomic systems [5]. Moreover, they are the reason for the very
existence of liquid crystals (LCs) and a broader range of structures for multi-component molecular
systems [6]. Second, many soft matter systems are known to display a structural hierarchy, for example,
amphiphilic LC molecules may form bilayers or micelles, which in turn are organized in complex
superstructures. Finally, due to the weak interaction between structural elements of soft matter systems
and long relaxation times, different thermodynamically distinct structures may replace each other
before the crystallization occurs.

X-ray scattering is a well-established tool used to investigate the structure of complex materials.
One of the main advantages of X-rays compared to other probes is high penetration length, which allows
to study the bulk structure of the materials, in contrast to surface electron scattering, for example.
For decades, the use of X-ray beams provided the means to obtain information on the average structure
of soft matter and other forms of condensed matter. Nowadays, X-ray beams from modern coherent
synchrotron sources can be focused below one hundred nanometers, which allows one to study the
local structure by measuring the X-ray diffraction from a very small illuminated sample volume.
It opens a unique opportunity to study the local arrangement of the structural elements in soft matter
systems. However, many challenges, such as low signal-to-noise ratio and radiation damage, require
further development of techniques for experimental data analysis, which would allow one to extract as
much information from the experimental data as possible.

In this review, we report on basic concepts and recent applications of angular X-ray cross-correlation
analysis (AXCCA) [7], a novel method which is capable to provide insights into orientational order
in the system and characterize it quantitatively. Initially, this method was proposed by Z. Kam [8,9]
to determine the structure of bioparticles by analyzing angular correlations of the scattered intensity
from a dilute solution of identical particles. In parallel, the first measurements of angular correlations
in structural studies of colloidal systems were reported using light scattering in optical range [10,11].
In the last decade, it was realized that the analysis of X-ray angular correlations can provide otherwise
hidden information on the structure of a dense systems, such as colloids [12,13], organic films [14,15],
LCs [16,17], and mesocrystals [18,19].

The present paper elucidates recent progress of AXCCA applied to soft condensed matter systems
and is organized as follows. In the second section, a brief description of different types of structural
order is given with the focus on the bond-orientational order. The third section provides basic
theoretical description of the quantities used in AXCCA. The fourth section covers the application of the
AXCCA to selected systems, such as LCs in the vicinity of the smectic-hexatic phase transition, colloidal
systems, organic-inorganic mesocrystals, and solvated metal complex molecules. The fifth section
completes the paper with a summary and outlook of the possible further applications of AXCCA.
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2. Systems with Angular Anisotropy

2.1. Classification of Structural Order

Let us consider a homogeneous system consisting of identical particles, such as atoms, molecules
or colloidal particles. The structure of such a system can be described by the pair-correlation G(r)
Equation (1):

G(r) = 〈ρ(r)ρ(0)〉 (1)

where ρ(r) is a probability to find a particle at the position r (single particle distribution function) and
brackets 〈 . . . 〉 denote ensemble averaging. In the case of an ideal one-dimensional (1D) crystal lattice,
which is characterized by a periodic arrangement of particles, the function G(r) will look as it is shown
in Figure 1a. The sharp peaks at positions r = na, where n is an integer and a is the average distance
between neighboring particles, indicate that there is a high probability to find the particles at these
separations from the given one. If the magnitude of the peaks approaches a constant nonzero value
for r→∞ , this type of order is called long-range. In a generic X-ray diffraction experiment, one can
measure the structure factor in Equation (2):

S(q) =
∫

G(r) exp(−iqr)dr, (2)

which is the Fourier image of the pair-correlation function G(r) [1]. Thus, in diffraction patterns,
the long-range order manifests itself by the presence of sharp Bragg reflections, as it is schematically
shown in Figure 1b. Due to reduced dimensionality, thermally excited displacements and various
defects, the peaks of G(r) can be broadened and their magnitude may decay with distance. A special
case when this decay is algebraic, i.e., it can be described by a power law∝ r−η, is called quasi-long-range
order. In this case, the magnitude of the higher reflections of the structure factor S(q) decreases and
the peaks become broader.
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(c,d). Due to the exponential decay of the envelope of the correlation function in the case of short-range
order (c), only one broad Lorentzian-shape peak is visible in the structure factor (d). (Adapted from de
Jeu et al. [20]). Reproduced with permission of American Physical Society.

In the case of a simple liquid, the pair-correlation function G(r) behaves quite differently
(see Figure 1c). Instead of sharp peaks at distinct separations, G(r) decays much faster, namely,
as ∝ exp(−r/ξ), where ξ is the correlation length [21]. Such an exponential decay of the correlation
function is a distinctive feature of the short-range order (Figure 1c). Performing the Fourier transform,
one can show that the structure factor S(q) in this case is characterized by a single broad Lorentzian-like
scattering peak centered at ∼ 2π/a (Figure 1d). The width of the peak is inversely proportional to the
correlation length ξ, which allows one to study the decay of the correlation function by analyzing the
shape and width of the X-ray scattering peak.

Clearly, the pair correlation function is only sensitive to the positional order, which makes this
formalism suitable for systems composed of particles with a spherical shape. However, there are many
examples of the assemblies of particles possessing an anisotropic shape, so the orientational degrees of
freedom are coming into the play. This situation is typical for various phases of LCs with elongated or
disk-like molecules as well as certain polymers [22]. In this case the distribution function ρ includes not
only the position of particles but also their orientation, ρ = ρ(r, Ω), where Ω is the angular coordinate
that describes the particle’s orientation [23,24].

In different systems the function ρ(r, Ω) can take different forms. For example, in the case of
the nematic liquid crystal, in which centers of mass of elongated molecules are essentially randomly
distributed but all molecules are oriented along the common direction n (Figure 2a). Therefore,
the distribution function can be written as ρ(r, Ω) = ρ f (cosθ), where ρ is a constant and the
orientation distribution function f (cosθ) depends only on the polar angle between Ω and n, i.e.,
cosθ = (Ωn). In this case the orientational order parameter in nematics can be defined by expanding
f (cosθ) in series of orthogonal polynomials of cosθ, i.e., the Legendre polynomials Pl(cosθ) [25].

An example of more ordered LC phase is a smectic-A phase of parallel molecular layers, in which
elongated molecules in each layer are oriented on average along the layer normals (Figure 2b). In this
phase the single particle distribution function ρ(r, Ω) is periodic along the direction z (perpendicular
to the molecular layers), so ρ(r, Ω) = ρ(z, Ω), while across the layers there is a short-range positional
order. There are many other soft matter systems where various types of order occur in different
directions or at different scales. An example of such a system is the columnar phase of LCs, formed
by flat-shaped discotic molecules [25,26] (Figure 2c). In this phase the flat molecules form columns
along the z-direction with short-range positional order, i.e., the molecules are randomly distributed
along the column. However, the top view of the columnar phase reveals that the projections of the
columns on the plane perpendicular to the orientation of the columns form a periodic two-dimensional
array. This corresponds to a quasi-long-range positional order with the density function of the form
ρ(r, Ω) = ρ(x, y, Ω).
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2.2. Bond-Orientational Order

The concept of the bond-orientational (BO) order has emerged as one of the breakthrough
approaches in condensed matter physics. It appeared first regarding the problem of melting in 2D
crystals, where the hexatic phase possessing the BO order was predicted as an intermediate state
between a crystal and a liquid [27–29]. The BO order is determined by a specific angular arrangement
of the particles and it can be seen as the presence of preferred angles between interparticle “bonds”,
which are virtual lines connecting centers of mass of the neighboring particles [30–32]. Thus, the BO
order differs from the orientational order of anisometric (non-spherical) particles discussed in the
previous section, where the orientation of the particles can be described in terms of the single-particle
distribution function ρ(r, Ω).

To illustrate the simplest case of the BO order, let us consider a dense 2D system of particles,
as shown in Figure 3a. The local orientation of bonds at the spatial position r can be described by the
angle θ(r) between the bond and some reference axis. If local n-fold rotational symmetry is present in
the system, one can introduce the BO order parameters as Equation (3):

Ψn(r) = 〈einθ(r)
〉, (3)

where the brackets 〈 . . . 〉 indicate a coarse grain average [1,32]. In the case of the n-fold rotational
symmetry, the average angle between the bonds is equal to 2π/n, so all exponential terms corresponding
to different bonds in the coarse grain average will have the same phase and they will sum up
constructively. In contrast, for a completely disordered system the angles between bonds are random,
and the coarse grain average in Equation (3) will lead to a zero value of Ψn(r). Thus, it is natural to
combine the magnitude and the phase of the BO ordering field within the complex BO order parameter,
see Equation (4):

Ψn(r) = ψn(r)einθn(r). (4)

Here the value of 0 ≤ ψn ≤ 1 determines the magnitude of the BO order, while the phase θn(r)
corresponds to the local orientation of the bond with respect to the reference axis.

We note that even in the simplest case of densely packed non-interacting spheres in 2D, the local
value of Ψn(r) is non-zero for n = 6, due to the fact that the hexagonal arrangement of particles allows
the highest packing density. This corresponds to the short-range hexatic order in isotropic liquids.
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However, even if the local arrangement of the particles resembles ideal hexagons, the orientational
alignment of the hexagons rapidly falls off with the distance r. To quantify the persistence in orientation
of local arrangement of particles across the entire system, the following orientational correlation
function can be defined in Equation (5):

Gn(r) = 〈Ψn(r)Ψn(0)〉. (5)

Similar to the pair correlation function defined in Equation (1), the exponential decay of
Gn(r) indicates short-range BO orientational order, while the algebraic decay of Gn(r), or its
approaching to constant nonzero value at r→∞ correspond to a quasi-long-range and long-range BO
order, respectively.

Simple liquids are usually characterized by the short-range positional and orientational order
with a typical correlation length of the order of few interparticle distances. Thus, in an X-ray diffraction
experiment all orientations of bonds within the illuminated area are averaged, and the 2D diffraction
pattern consists of a broad and uniform scattering ring as shown in Figure 3b. However, for systems
with the long-range BO order, for example, the hexatic phase (Figure 3c), the modulation of the intensity
along the azimuthal direction is visible [33–38] (Figure 3d).

Materials 2019, 12, x FOR PEER REVIEW 6 of 30 

 

isotropic liquids. However, even if the local arrangement of the particles resembles ideal hexagons, 
the orientational alignment of the hexagons rapidly falls off with the distance 𝒓. To quantify the 
persistence in orientation of local arrangement of particles across the entire system, the following 
orientational correlation function can be defined in Equation (5): 𝐺௡(𝒓) = 〈Ψ௡(𝒓)Ψ௡(0)〉. (5) 

Similar to the pair correlation function defined in Equation (1), the exponential decay of 𝐺௡(𝒓) 
indicates short-range BO orientational order, while the algebraic decay of 𝐺௡(𝒓), or its approaching 
to constant nonzero value at 𝑟 → ∞ correspond to a quasi-long-range and long-range BO order, 
respectively. 

Simple liquids are usually characterized by the short-range positional and orientational order 
with a typical correlation length of the order of few interparticle distances. Thus, in an X-ray 
diffraction experiment all orientations of bonds within the illuminated area are averaged, and the 
2D diffraction pattern consists of a broad and uniform scattering ring as shown in Figure 3b. 
However, for systems with the long-range BO order, for example, the hexatic phase (Figure 3c), the 
modulation of the intensity along the azimuthal direction is visible [33–38] (Figure 3d). 

 
Figure 3. (a) Local BO order field Ψ௡(𝒓) in a 2D system with the short-range BO order; (b) 
Diffraction pattern in the case of the short-range bond-orientational (BO) order; (c) schematic 
structure of the 2D hexatic phase exhibiting a quasi-long-range sixfold BO order; (d) diffraction 
pattern from the 2D hexatic phase. Color in (b,d) represents the intensity of the scattered X-rays. 

The anisotropy of the diffraction pattern allows to experimentally quantify the BO order by 
applying the angular Fourier series decomposition of the 2D scattered intensity distribution. The 
scattered intensity in the detector plane with the polar coordinates (𝑞, 𝜑) (see Figure 3b,d) can be 
written as Equation (6): 

𝐼(𝑞, 𝜑) = 𝐼଴(𝑞) ൭1 + 2 ෍ 𝐶௡(𝑞) cos(𝑛𝜑 + 𝜑௡(𝑞))ஶ
௡ୀଵ ൱, (6) 

where 𝐼଴(𝑞) is the angular-averaged intensity at the momentum transfer 𝑞, 𝐶௡ are the normalized 
magnitudes of the cosine modulations along the ring, and 𝜑௡ corresponds to the relative phases of 
these modulations. In an ideal crystal with P-fold rotational symmetry, the low order diffraction 
peaks at 𝑞଴ are separated by an angle 2𝜋 𝑃⁄ . In this case, the values of the magnitudes 𝐶௡(𝑞଴) 
should be equal to unity if n is divisible by P, and 𝐶௡(𝑞଴) = 0 for all other values of 𝑛. In the case 
of distortion of the orientational order in the crystal lattice, for example, due to the presence of 
domains with slight angular misorientation between them, the diffraction peaks will broaden in the 

Figure 3. (a) Local BO order field Ψn(r) in a 2D system with the short-range BO order; (b) Diffraction
pattern in the case of the short-range bond-orientational (BO) order; (c) schematic structure of the 2D
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The anisotropy of the diffraction pattern allows to experimentally quantify the BO order by applying
the angular Fourier series decomposition of the 2D scattered intensity distribution. The scattered
intensity in the detector plane with the polar coordinates (q,ϕ) (see Figure 3b,d) can be written as
Equation (6):

I(q,ϕ) = I0(q)


1 + 2

∞∑

n=1

Cn(q) cos(nϕ+ ϕn(q))


, (6)

where I0(q) is the angular-averaged intensity at the momentum transfer q, Cn are the normalized
magnitudes of the cosine modulations along the ring, and ϕn corresponds to the relative phases of
these modulations. In an ideal crystal with P-fold rotational symmetry, the low order diffraction peaks
at q0 are separated by an angle 2π/P. In this case, the values of the magnitudes Cn(q0) should be
equal to unity if n is divisible by P, and Cn(q0) = 0 for all other values of n. In the case of distortion of
the orientational order in the crystal lattice, for example, due to the presence of domains with slight
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angular misorientation between them, the diffraction peaks will broaden in the angular direction. As a
result, the values of Cn(q0) will decrease below unity for all n divisible by P and approach zero when
separated diffraction peaks merge into a uniform scattering ring.

Since scattering at q0 ∼ 2π/a corresponds to the average interparticle distance a in real space,
the coefficients 0 ≤ Cn ≤ 1 are sensitive to the orientation of bonds between neighboring particles
separated by a. Thus, the set of coefficients Cn can be considered as the BO order parameters determined
in reciprocal space [17,39–42], in contrast to the complex-valued orientational field Ψn(r) determined
in real space.

2.3. Recent Developments in the Study of Soft Matter with X-rays

Our previous discussion of studies of the soft mater systems was focused on a situation when
comparably large partially coherent X-ray beams were used. In this case, an illuminated part of
the sample is typically much larger than the correlation length and in the scattering experiment we
obtain information from the ensemble average at each illuminated spot. The development of the 3rd
generation X-ray synchrotron sources opened new possibilities to study soft matter with coherent
X-rays. The high degree of coherence of these sources enables interference between the X-rays scattered
from different parts of the sample, which results in appearance of strong fluctuations of intensity in
the diffraction patterns, i.e., speckles (see Figure 4). An apparently random ensemble of speckles
encodes the instantaneous positions and orientations of the particles in the system. This leads to two
different applications; if the system is non-static, then by studies of speckle fluctuations information on
dynamics of the system may be obtained [43]. If the system is static, the complete information on the
instantaneous structure of the system can be recovered by means of coherent diffraction imaging [44,45]
or ptychography [46].

Another advantage of the 3rd generation X-ray synchrotron beams with high coherence is the
ability to focus them to hundred nanometer sizes and below [47–49]. With such small focus sizes
only a limited number of particles may be illuminated by a single X-ray spot. This will naturally
lead to fluctuations of intensity when the X-ray spot will be moved from one part of the sample to
another. In this case a raster scan of the sample with a focused X-ray beam may be performed to obtain
structural information on ensemble average orientational order over a large area of the sample.
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Figure 4. Scheme of an X-ray diffraction experiment in transmission geometry. The focused X-ray
beam can probe different spatial positions on the sample. Diffraction pattern recorded by a 2D detector
positioned behind the sample and polar coordinate system for evaluation of the angular cross-correlation
function C(q1, q2, ∆) are shown. The intensity of the diffraction pattern is coded by color.
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We should also note here that a few conditions should be fulfilled in order to observe speckles in
addition to the high coherence of the X-ray beam. These include illumination times smaller than the
characteristic time scale of the dynamics in the system; otherwise the collected diffraction patterns
would be smeared due to time-averaging. The requirement of the short exposure times leads to another
condition for the photon flux, which should be sufficiently high to produce enough scattering during
the short X-ray pulse. Recently developed X-ray free electron lasers (XFELs) are capable to fully satisfy
these requirements, which paves new ways for experimental studies of the structure of soft mater in
general and the orientational order in particular.

3. Principles of AXCCA

Let us consider an X-ray diffraction experiment in transmission geometry as shown in Figure 4.
To describe the angular anisotropy of the diffraction pattern one can consider the angular Fourier series
of the scattered intensity I(q,ϕ) in Equation (7):

I(q,ϕ) =
∞∑

n=−∞
In(q)einϕ, (7)

where the n-th Fourier component is Equation (8):

In(q) =
1

2π

π∫

−π

I(q,ϕ)e−inϕdϕ. (8)

The non-zero modulus of the complex value In(q) indicates the presence of the n-fold rotational
symmetry in the diffraction pattern, and the phase of In(q) corresponds to the angular positions of the
maxima of this Fourier component with respect to the reference axis. Thus, the zero-order Fourier
component I0(q) equals to the angular-averaged scattered intensity, and all other Fourier components
with n , 0 define the angular modulations of the intensity along the ring of radius q on the detector.

AXCCA constitutes a general approach to describe and analyze the angular anisotropy of the
diffraction patterns. This can be advantageous in the case of complex systems, where angular anisotropy
is present on different length scales, or when the scattering signal needs to be averaged over many
diffraction patterns for better statistics [7]. The basic element of AXCCA is the two-point angular
cross-correlation function (CCF), which is defined as Equation (9):

Ĉ(q1, q2, ∆) =

π∫

−π

I(q1,ϕ)I(q2,ϕ+ ∆)dϕ, (9)

where −π ≤ ∆ < π is the angular variable [50,51]. In the simplest case, when the orientational order in
the system is characterized by a single length scale, one may consider Ĉ(q, ∆) ≡ Ĉ(q, q, ∆). However,
the CCF can also be evaluated for q1 , q2 for the cases where angular correlations between two different
length scales are studied. We should also note that AXCCA is not limited to the two-point CCF, and in
some cases consideration of three- and higher order CCFs is required [38].

A natural way to investigate the symmetry properties of the CCF is to expand it into the angular
Fourier series, see Equation (10):

Ĉ(q1, q2, ∆) =
∞∑

n=−∞
Ĉn(q1, q2)ein∆, (10)

where the n-th Fourier component is Equation (11):
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Ĉn(q1, q2) =
1

2π

π∫

−π

Ĉ(q1, q2, ∆)e−in∆d∆. (11)

By definition, the CCF is a real-valued function, so its Fourier components satisfy the condition
Ĉ−n(q1, q2) = Ĉ∗n(q1, q2), where the asterisk denotes the complex conjugate. In the simplest case of
q1 = q2 = q, the definition of the CCF implies that it is an even function, i.e., Ĉ(q, ∆) = Ĉ(q,−∆),
so only cosine terms are present in the Fourier series, see Equation (12):

Ĉ(q, ∆) = Ĉ0(q) + 2
∞∑

n=1

Ĉn(q) cos(n∆). (12)

The Fourier components Ĉn(q1, q2) contain valuable information about the symmetry of the
system and are directly related to the Fourier components of the scattered intensity In(q). Applying the
convolution theorem, one can show [50], see Equation (13):

Ĉn(q1, q2) = I∗n(q1)In(q2). (13)

Direct comparison of Equations (6), (7), (13) reveals that for q1 = q2 = q the Fourier coefficients Ĉn of the

CCF are related to the BO order parameters as Ĉn(q)/Ĉ0(q) =
∣∣∣∣ In(q)

I0(q)

∣∣∣∣
2
= C2

n(q), defined in Equation (6).
Thus, the values of the BO order parameters can be directly evaluated by ACXXA.

One may consider ensemble-averaged values of the CCF or its Fourier components over many
realizations of the system in Equation (14):

〈Ĉ(q1, q2, ∆)〉 = 1
N

N∑

j=1

Ĉ j(q1, q2, ∆),

〈Ĉn(q1, q2)〉 =
1
N

N∑

j=1

Ĉ j
n(q1, q2),

(14)

where the index j ≤ N enumerates diffraction patterns corresponding to different realizations of the
system. We should note that direct averaging of the 2D diffraction patterns or complex values In(q)
may lead to smearing of the signal, for example, in the case when the patterns differ from each other
only by rotation around the central point q = 0. At the same time, averaging of the CCFs would lead
to an enhancement of the symmetry features of the diffraction patterns, while the experimental noise
will be reduced. Angular anisotropies in X-ray or electron diffraction patterns may be analyzed as well
by the multipole expansion of Legendre polynomials as suggested in reference [52].

To illustrate the type of problems which can be addressed by AXCCA, let us consider X-ray
scattering from an ensemble of identical particles randomly oriented in space. First of all, one can
recover the structure of an individual particle by analyzing the diffraction patterns from the ensemble
of particles with a uniform distribution of orientations [53–57]. This problem becomes significantly
simplified if one can neglect the interference between the diffracted X-rays from different particles,
which is possible if the transverse coherence length of X-rays is smaller than the typical interparticle
distance [51]. This corresponds to the case of a “dilute solution” in conventional scattering theory for
liquids or small-angle X-ray scattering (SAXS), when the structure factor simply equals to unity.

The second type of problems is related to the quantitative description of the orientational
correlation of particles. This includes both, the characterization of orientational distribution of particles
in solutions [58,59] as well as the bond-orientational order in dense systems [12,16,17]. In the latter
case, studies of the bond-orientational order necessarily include interference of the scattered X-rays
between several particles [31,60], which can significantly complicate the analysis. A typical example of
such a system is the hexatic phase in LCs, which will be considered in the following section.
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4. Applications of AXCCA

4.1. The Hexatic Phase in Liquid Crystals

In this section, we will focus on the development of the BO order in the vicinity of the smectic-hexatic
phase transition. The smectic-A (Sm-A) phase in thermotropic LCs can be seen as a set of equidistant
parallel molecular layers, in which elongated molecules are oriented perpendicular to the layer plane
(Figure 2b). The top view of each layer reveals a liquid-like structure, which is characterized by the
short-range positional and BO order (Figure 3a), as well as a zero value of the shear modulus.

In free-standing smectic films, the molecular layers are perfectly parallel to the surface of the
film, which makes them an ideal object for X-ray scattering studies [20,25]. In the geometry depicted
in Figure 5, the X-ray diffraction is sensitive to the in-plane structure of the molecular layers, which
produces a broad scattering ring of radius q0 ∼ 4π/a

√
3, where a is the average in-plane distance

between the LC molecules [20,26]. Based on the phenomenological Ornstein-Zernike model [1,21,23],
the radial cross-section of the scattering ring can be approximated by the Lorentzian function Equation
(15):

I(q) ∝
γ2

(q− q0)
2 + γ2

(15)

with the half width at half maximum (HWHM) γ = 1/ξ, where ξ is the positional correlation length
(compare with Figure 1c,d). Typical values of ξ vary in the range of 1 to 2 in-plane intermolecular
distances [16,17,20], which is a clear indication of short-range positional order.
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Figure 5. Scheme of the diffraction experiment on free standing liquid crystal (LC) films. The molecular
layers are oriented parallel to the film surface, so the X-ray diffraction pattern corresponds to the
in-plane order. (adopted from Zaluzhnyy et al. [17]—Published by The Royal Society of Chemistry).
Used under CC-BY 3.0.

At lower temperatures, some LC compounds form the stacked hexatic phase (Hex-B), which differs
from the Sm-A phase by the presence of the sixfold long-range in-layer BO order (Figure 3c). At the
same time, the positional order remains short-range, however the positional correlation length
increases compared to its value in the Sm-A phase. Due to the interaction between the molecules,
the intermolecular bonds have approximately the same orientation in the neighboring layers, but the
shear modulus between the layers remains zero. As a result, in reciprocal space the BO order in
the Hex-B phase manifests itself by a sixfold modulation of the scattering intensity at q0 along the
azimuthal direction, which at lower temperatures leads to splitting of the scattering ring into six
distinct peaks [20,61] (Figure 3d). It was shown that due to the interaction between the positional order



Materials 2019, 12, 3464 11 of 32

and BO order thermal fluctuations, the radial cross-section through the centers of the hexatic peaks
changes to the square root of the Lorentzian function close to the Sm-A–Hex-B phase transition [17,62],
while far away from the transition temperature it is well described by the simple Lorentzian function
(Equation (15)). The same interaction also slightly shifts the position of the scattering peaks along q over
the value proportional to the mean squared modulus of the hexatic BO order parameter 〈|Ψ6|

2
〉 [62].

Some conclusions about the evolution of the BO order at the Sm-A–Hex-B phase transition may
be drawn from considerations of the symmetry properties of these phases. The in-plane sixfold BO
order in the Hex-B phase can be described in real space by the fundamental BO order field Ψ6(r) and
its higher harmonics Ψ6m(r) (Equation (4)), where m > 1 is an integer [63,64]. However, since the
direct determination of the molecular orientations in LCs is not possible, in an experiment it is more
common to use a set of the BO order parameters C6m defined in reciprocal space according to Equation
(6) [39,63].

The two-component field Ψ6m(r) allows to describe the Sm-A–Hex-B phase transition within the
XY universality class [1], which is characterized by a second-order phase transition in 3D (see the phase
diagram in Figure 6). The transition of Sm-A into the hexagonal crystal phase Cr-B is always first-order
in 3D due to the long-range positional order and the presence of a cubic term in the free-energy
expansion in powers of the Fourier coefficients of the density [65]. The same cubic term is present
for a Hex-B–Cr-B transition in 3D and gives rise to the first-order transition. The two lines of the
first-order transitions intersect on the phase diagram at slightly different slopes, which also shifts the
Sm-A–Hex-B phase transition to the first order [17,40]. This leads to the appearance of a tricritical point
on the Sm-A–Hex-B phase transition line in the vicinity of the Sm-A–Hex-B–Cr-B triple point (Figure 6).
At the tricritical point the Sm-A–Hex-B phase transition changes its order from first to second in the
vicinity of the Sm-A–Hex-B–Cr-B triple point (Figure 6). As a result, in many LC compounds the
Sm-A–Hex-B phase transition occurs in the vicinity of the tricritical point.
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a 3D case according to [40]. Solid and dashed lines correspond to the first- and second-order phase
transitions, respectively (adopted from Zaluzhnyy et al. [17]—-Published by The Royal Society of
Chemistry). Used under CC-BY 3.0.

Assuming that the Sm-A–Hex-B phase transition lies in a crossover region between the mean
field (tricritial behavior) and the 3D XY universality class, Aharony et al. [39,40] have shown that the
BO parameters C6m for m = 1, 2, . . . satisfy the scaling relation, called the multicritical scaling theory
(MCST) Equation (16):

C6m = (C6)
σm , (16)
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where the exponent σm is Equation (17):

σm = m + xm·m·(m− 1). (17)

The parameter xm can be represented as the Taylor series given in Equation (18):

xm ≈ λ− µm + νm2. (18)

Using the renormalization group approach, Aharony et al. [39,63] evaluated the value of the
parameters of the MCST to be λ = 0.3 and µ = 0.008 in 3D hexatics. The theoretical estimation of the
quadratic correction term ν has never been carried out because of the required excessive computational
efforts. It was also shown that in the 2D hexatic phase xm = 1, which significantly simplifies the scaling
relation (see Equations (16) and (17)) [66].

Experimental verification of the MCST predictions is complicated due to the necessity of
the accurate determination of the BO order parameters C6m. In the diffraction experiment on
the 8OSI compound (racemic 4-(2′-methylbutyl)phenyl 4′-(octyloxy)-(1,1′)-biphenyl-4-carboxylate),
by fitting the azimuthal dependence of the scattered intensity with Equation (6), it was possible
to evaluate the values of C6m up to m = 7, which allowed one to obtain λ = 0.295 [39].
In Refs. [17,67] diffraction patterns from n-propyl-4′-n-decyloxybiphenyl-4-carboxylate (3(10)OBC),
n-heptyl-4′-n-pentyloxybiphenyl-4-carboxylate (75OBC) and 1-(4′pirydyl)-3-(4-hexyloxyphyenyl-
oamine)-prop-2-en-1-on (PIRO6) LC compounds were analyzed by AXCCA. The values of the BO
order parameters C6m were directly evaluated as a square root of the corresponding normalized Fourier

coefficients of the CCF C6m =
∣∣∣I6m(q0)

∣∣∣/
∣∣∣I0(q0)

∣∣∣ =
√∣∣∣Ĉ6m(q0)/Ĉ0(q0)

∣∣∣. Due to the spatial uniformity of
the sixfold BO order in the Hex-B films over the range of about 100 µm in hexatic monodomains, the
magnitude of the angular modulation along the scattering ring remained almost constant at different
positions. This allowed averaging the CCFs over 100 diffraction patterns for the 3(10)OBC and PIRO6
compounds and over 25 patterns for the 75OBC compound. As a consequence of such evaluation of
the BO order parameters, it was possible to determine up to mmax = 25 successive Fourier components
for 3(10)OBC, and mmax = 7 for 75OBC, and mmax = 6 for PIRO6, respectively. The magnitudes of
the angular Fourier components of intensity

∣∣∣In(q0)
∣∣∣ in the Hex-B phase for different compounds are

shown in Figure 7. The FCs of the order n, which are not divisible by six have vanishingly small values
on the noise level. In contrast, the sixfold FCs are much larger, indicating the presence of sixfold BO
order in the system. The decay of the magnitudes

∣∣∣I6m(q0)
∣∣∣ with m ≥ 1 can be well fitted by the MCST

law at any temperature point below the Sm-A–Hex-B transition for all three compounds (red lines in
Figure 7).

Although the MCST predicts λ = 0.3 for 3D Hex-B phase, the value of the parameter might
change close to the Sm-A–Hex-B phase transition point. This was observed indeed for all three
compounds [17,67], where λwas abruptly decreasing down to zero at the phase transition temperature
(Figure 8a). However, away from the Sm-A–Hex-B phase transition temperature the experimentally
obtained values λ = 0.31 ± 0.0015 (3(10)OBC), λ = 0.27 ± 0.0015 (75OBC), and λ = 0.29 ± 0.0015
(PIRO6) are in a perfect agreement with the MCST predictions [40]. Moreover, the unprecedentedly
high number of the measured successive BO order parameters at low temperatures in 3(10)OBC
compound, allowed the authors to evaluate a sufficient number of exponents σ6m (Figure 8b) in order
to obtain the correction term µ = 0.009± 0.001 in Equation (18) and estimate the value of the quadratic
correction ν ∼ 10−4 [67].
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∣∣∣ as a function of the order number n for three

different compounds: 3(10)OBC at the relative temperature ∆T = T − TC = −5.3 ◦C (a), 75OBC at
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respective temperature TC of the second-order Sm-A–Hex-B phase transition for each compound. Red
lines show fitting using the MCST (adopted from Zaluzhnyy et al. [17]—-Published by The Royal
Society of Chemistry). Used under CC-BY 3.0.
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Moreover, similar spatially resolved maps of the 54COOBC films revealed that the 
temperature range of the two-phases coexistence, Δ𝑇, is larger for thicker films and diminishes 
with the film thickness (Figure 10). This result is supported by earlier electron diffraction studies 
showing that in very thin (2 molecular layers) 54COOBC films, the Sm-A–Hex-B phase transition is 
continuous [71,72]. In Refs. [70,73] the observed effect was explained by an anomalously large 
penetration length 𝐿଴ of the surface hexatic order into the interior of the film in the vicinity of the 
tricritical point. This influences the temperature width of the two phase coexistence even in thick 
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the LC films, one can tune the proximity of the system to the tricritical point and eventually switch 
between the first- and second-order Sm-A–Hex-B phase transition. 

Figure 8. (a) Temperature dependence of the parameter λ for three LC compounds, obtained
from the fits of experimental data with scaling relations of multicritical scaling theory (MCST).
The relative temperature ∆T = T − Tc is measured from the Sm-A–Hex-B phase transition temperature
TC; (b) Temperature averaged values of 〈σm〉T and their fit with the MCST for three compounds.
In the inset, an enlarged region for m values from one to seven is shown. (adopted from
Zaluzhnyy et al. [17]–Published by The Royal Society of Chemistry) Used under CC-BY 3.0.

While many of the known hexatic LC compounds exhibit a second-order or very weak first-order
Sm-A–Hex-B phase transition [17,39,68,69], this transition in the freely suspended films of the
n-pentyl-4′−n-pentanoyloxy-biphenyl-4-carboxylate (54COOBC) compound is clearly of the first
order. In reference [70], an X-ray beam focused down to 2× 2 µm2 was used to scan the 100× 100 µm2

area of the 54COOBC film in transmission geometry (Figure 5). At each spatial position, AXCCA

was utilized to evaluate the value of the fundamental BO order parameter C6 =
√∣∣∣Ĉ6(q0)/Ĉ0(q0)

∣∣∣.
The values C6 < 0.1 correspond to almost uniform scattering ring with negligible azimuthal modulations
of intensity (Figure 9a). The corresponding position of the film was considered to be in the Sm-A phase.
In the opposite case, points with C6 > 0.1 (Figure 9b) were attributed to the Hex-B phase. The spatially
resolved maps of the BO order parameter C6, measured at different temperatures in the vicinity of the
Sm-A–Hex-B phase transition, revealed the existence of the temperature interval where both phases
are present simultaneously in the film (Figure 9c–f). The coexistence of two phases is a convincing
indication of the first-order Sm-A–Hex-B transition in the 54COOBC films.
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Moreover, similar spatially resolved maps of the 54COOBC films revealed that the temperature
range of the two-phases coexistence, ∆T, is larger for thicker films and diminishes with the film
thickness (Figure 10). This result is supported by earlier electron diffraction studies showing that in
very thin (2 molecular layers) 54COOBC films, the Sm-A–Hex-B phase transition is continuous [71,72].
In Refs. [70,73] the observed effect was explained by an anomalously large penetration length L0 of the
surface hexatic order into the interior of the film in the vicinity of the tricritical point. This influences
the temperature width of the two phase coexistence even in thick smectic films consisting of thousands
of molecular layers [70,73]. Thus, by varying the thickness of the LC films, one can tune the proximity
of the system to the tricritical point and eventually switch between the first- and second-order
Sm-A–Hex-B phase transition.Materials 2019, 12, x FOR PEER REVIEW 14 of 30 
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Figure 9. Coexistence of the smectic-A (Sm-A) and stacked hexatic (Hex-B) phases in a 54COOBC
compound. (a,b) Examples of the in-plane diffraction from the Sm-A phase (a) and Hex-B phase (b);
(c–f) spatially resolved maps of the BO order parameter C6. The color code indicates the normalized
intensity of the scattered X-rays. The white dashed line in (d,e) separates regions of Sm-A (blue) and
Hex-B (green) phases. (adopted from Zaluzhnyy et al. [70]). Reproduced with permission of American
Physical Society.
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Figure 10. Dependence of the temperature width of the Sm-A and Hex-B coexistence region on the LC
film thickness. The solid line shows the result of fitting with the analytical equation ∆T ∝ (1− L0/L)2,
where L0 ≈ 0.9 µm is the characteristic length scale (adopted from Zaluzhnyy et al. [70]). Reproduced
with permission of American Physical Society.

4.2. Reconstruction of the Anisotropic Pair Distribution Function (PDF)

In any dense system, the positional and BO orders are coupled with each other, so for a complete
description of the structure, one has to consider both of them. The most natural way for such a
description is provided by the pair distribution function (PDF) [1,74], which in homogeneous systems
can be determined as Equation (19):

g(r) =
1

〈n〉2V
〈

∑

i, j

δ
(
r− ri + r j

)
〉, (19)

where 〈n〉 is an average density of particles, V is a volume of the system, angular brackets 〈 . . . 〉 denote
ensemble averaging, the indexes i and j enumerate all particles in the system, and ri is the position of
the i-th particle. The PDF g(r) defines the probability of finding a particle at the separation r from any
other arbitrarily chosen particle. Usually for isotropic systems, e.g., simple liquids, due to ensemble
averaging in Equation (19) the angular dependence of g(r) washes out, so one considers the so-called
radial distribution function g(r), which is the PDF g(r) averaged over all possible directions of the
vector r. However, in the case of a system exhibiting the BO order, such angular averaging will lead to
the loss of structural information. Thus, below we will consider non-averaged angular-dependent PDF.

If the PDF g(r) is invariant with respect to some symmetry transformations, the corresponding
structure factor S(q) will also exhibit the same symmetry, as it directly follows from the following
relation [1,75] Equation (20):

S(q) = 1 + 〈n〉
∫

(g(r) − 1)e−iqrdr. (20)

In reference [76], the particular case of a 2D system was analyzed and the following relation between the
angular Fourier components of the PDF gn(r) and the structure factor Sn(q) was obtained Equation (21):

gn(r) = δ0,n +
1

2π〈n〉in

∞∫

0

(Sn(q) − δ0,n)Jn(qr)qdq, (21)

where δ0,n is the Kronecker delta and Jn(qr) is the Bessel function of the first kind of integer order n.
The 2D PDF g(r) = g(r,θ), where r and θ are the polar coordinates of the 2D radius vector, can be
evaluated as the angular Fourier series in Equation (22):
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g(r,θ) =
∞∑

−∞

gn(r)einθ, (22)

where the coefficients gn(r) are defined in Equation (21). Clearly, AXCCA, which is capable of
accurate evaluation of the angular Fourier components of the scattering intensity, is well suited for the
determination of Sn(q) and subsequent reconstruction of the angular-resolved 2D PDF.

By applying this approach to the experimentally measured diffraction patterns of the 3(10)OBC LC
compound, it was demonstrated how the sixfold rotational symmetry appears in the arrangement of
molecules while the LC film goes throughout the Sm-A–Hex-B phase transition [76]. Figure 11 displays
the direct correspondence between the sharpness of the hexatic diffraction peaks (Figure 11a–d) in
reciprocal space and development of the sixfold BO order in molecular layers (Figure 11e–h).

The oscillations of the PDF in the Sm-A phase (Figure 11e) decay over few intermolecular distances,
while in the Hex-B phase the magnitude of the peaks of the PDF stays almost constant over the same
distance (Figure 11h). This indicates the simultaneous increase of the positional correlation length
ξ with the development of the BO order. Another important observation is that the concentric rings
of the PDF in the Sm-A phase (Figure 11e) gradually change into hexagonally arranged peaks in the
Hex-B phase (Figure 11f–h), which is also an evidence of the coupling between the positional and BO
orders. As a result of this coupling, the PDF decays at different rates in different directions (compare
faster decay in the direction A and slower decay in the direction B in Figure 11h). In reference [76] it
was shown that for an unambiguous determination of the positional correlation length in such systems
with angular anisotropy one has to consider the decay of the projection of the PDF onto the direction of
the diffraction peaks (direction A). In this case, the results obtained by measuring the width of the
diffraction peaks in the radial direction, and analysis of the PDF in real space will give similar values
of the positional correlation length ξ.

Another approach relevant to the 3D case was considered in reference [31], where AXCCA was
used to reconstruct the orientational correlation function Θ(r, r′,θ). This function determines the
probability to find in the system two bonds of length r and r′ with an angle θ between them. It has
been theoretically shown that by measuring a large number (>105) of anisotropic diffraction patterns
from liquid phases, metallic glasses, or organic molecules, one can in principle reconstruct the function
Θ(r, r′,θ).
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structure of a dry colloidal film consisting of spherical silica nanoparticles of 19.3 and 12.2 nm in 
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Figure 11. (a–d) Measured diffraction patterns from 3(10)OBC LC compound above (a) and below
(b–d) the Sm-A–Hex-B phase transition. (e–h) Corresponding reconstruction of the 2D pair distribution
function (PDF). Development of the BO order and increase of the positional correlation length is
visible in (f–h). (adopted from Zaluzhnyy et al. [76]). Reproduced with permission of American
Physical Society.
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4.3. Colloidal Systems

Another important and intensively studied class of soft matter system are colloidal systems,
the unique properties of which, such as tunable photonic bandgap and response to external stimuli,
make them attractive for many applications [77–82]. X-rays are especially well suited for structural
studies of colloidal systems due to their high penetration length. However, the interpretation of the
scattering data from bulk colloidal crystals possessing various defects is usually challenging. Using
coherent X-ray diffraction, it was demonstrated that AXCCA is capable to detect rotational symmetry in
a local arrangement of colloidal particles even in thick colloidal films [12]. In contrast to the previously
discussed LC systems with the long-range BO order, in which the anisotropy of the diffraction patterns
can be often easily identified by the unaided eye, the coherent diffraction patterns from colloids usually
consist of the apparently random speckles along the scattering ring. Thus, AXCCA is in many cases a
unique technique which allows one to study the local order in colloids [83].

In reference [84], X-ray diffraction with a 400 nm beam was combined with AXCCA to study
the structure of a dry colloidal film consisting of spherical silica nanoparticles of 19.3 and 12.2 nm in
diameter. Applying AXCCA to individual diffraction patterns and collecting data at different spatial
positions on the sample, the authors were able to observe changes of the colloidal crystal structure
over the scanned area. In Figure 12, the spatially resolved maps of two angular Fourier components,

evaluated by AXCCA as
∣∣∣Îl(Q)

∣∣∣ =
√

Ĉl(Q), where Ĉl(Q) are the corresponding Fourier components of

the normalized CCF, are shown. The signal at Q1 = 0.16 nm−1 and Q2 = 0.31 nm−1 corresponds to
the scattering from larger and smaller particles, respectively. The maps of higher order components
l = 4, 6 show how the BO order changes depending on the local ratio between the number of large
and small particles (Figure 12c–f).

Similar spatially resolved maps were retrieved for the phase Ωl=4 of the normalized intensity
angular Fourier components Îl(Q) =

∣∣∣Îl(Q)
∣∣∣exp(iΩl(Q)), which can be evaluated as the angular Fourier

coefficients of the scattering intensity along the Q-ring (see Equation (8)). This phase quantifies the
orientation of the colloidal crystal structure with respect to a reference axis. Two maps at different
Q-values in Figure 12 g,h show the existence of patches of similar orientations within the sample,
which resemble the drying front of silica particle suspensions. An analogous approach which includes
a combination of the focused X-ray beam and AXCCA was used in [19] to investigate patches with
four- and sixfold orientational order in the film of self-assembled gold nanoparticles.
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Figure 12. (a–f) Spatially resolved maps of the magnitude of the normalized intensity Fourier
components

∣∣∣Îl(Q)
∣∣∣ of the colloidal film for l = 2, 4, 6 at Q = Q1 (a,c,e) and Q = Q2 (b,d,f).

(g,h) Spatially resolved maps of the phase Ωl=4 of the normalized intensity angular Fourier components
Îl=4(Q) for Q = Q1 (g) and Q = Q2 (h) (adopted from Shroer et al. [84]—Published by The Royal
Society of Chemistry). Used under CC-BY 3.0.

In some cases of nearly crystalline structures, it is viable to consider the initial angular CCF
rather than its Fourier components. The colloidal crystals made of poly(methyl-methacrylate) (PMMA)
hard-spheres of 125.5 nm in diameter were studied in [85]. In Figure 13, well distinguishable peaks of
the angular CCF measured at four different q-values indicate that the sample is crystalline. To decide
between two preferable close-packed structures, face-centered cubic (fcc) or hexagonal close-packed
(hcp), the model CCFs for these two structures were evaluated. For each structure (fcc or hcp),
103 perfect crystals in random orientations were modeled for monodisperse particles of the same size

Figure 12. (a–f) Spatially resolved maps of the magnitude of the normalized intensity Fourier
components

∣∣∣Îl(Q)
∣∣∣ of the colloidal film for l = 2, 4, 6 at Q = Q1 (a,c,e) and Q = Q2 (b,d,f).

(g,h) Spatially resolved maps of the phase Ωl=4 of the normalized intensity angular Fourier components
Îl=4(Q) for Q = Q1 (g) and Q = Q2 (h) (adopted from Shroer et al. [84]—Published by The Royal
Society of Chemistry). Used under CC-BY 3.0.

In some cases of nearly crystalline structures, it is viable to consider the initial angular CCF
rather than its Fourier components. The colloidal crystals made of poly(methyl-methacrylate) (PMMA)
hard-spheres of 125.5 nm in diameter were studied in [85]. In Figure 13, well distinguishable peaks of
the angular CCF measured at four different q-values indicate that the sample is crystalline. To decide
between two preferable close-packed structures, face-centered cubic (fcc) or hexagonal close-packed
(hcp), the model CCFs for these two structures were evaluated. For each structure (fcc or hcp),
103 perfect crystals in random orientations were modeled for monodisperse particles of the same size
and volume fraction as the sample system in the experiment, and the CCFs at the same q-values were
calculated for each diffraction pattern and averaged. A comparison between the experimental and
model data (Figure 13) has revealed that the structure of the real colloidal crystals is more likely to be
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fcc with indications of stacking faults. We should note here that in this case the standard analysis of the
measured angular averaged structure factor of the colloidal crystal S(q) fails to distinguish between fcc
and hcp structures. Only additional information about the angular correlations accessible by AXCCA
can overcome the limitation of powder average and enable access to the details of the crystal structure.
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orientational order. One of the prominent examples of such systems is a suspension of colloidal 
particles. The aqueous solution of charge-stabilized polyacrylate colloidal particles was studied at 
high pressure in reference [86]. X-ray diffraction patterns at ambient and high pressures (𝑝 = 1 bar 
and 𝑝 = 2500 bar, respectively) in Figure 14a,b clearly show the development of the sixfold BO 
order in the system. The evolution of the angular averaged structure factor 𝑆(𝑄) as a function of 
increasing pressure also indicates a transition from isotropic liquid-like structure of the colloidal 
suspension to the fcc structure Figure 14c. These observations were supported by the increasing 
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Figure 14a. The authors attributed this fourfold symmetry to the metastable ordered state of the 
colloidal suspension at ambient pressure due to shear-induced melting. 

Figure 13. Experimentally measured cross-correlation function (CCF) C(q, ∆) at four different values
of the momentum transfer q1 = 0.027 nm−1, q2 = 0.029 nm−1, q3 = 0.031 nm−1, q4 = 0.044 nm−1 (top)
and modelled CCFs assuming ideal face-centered cubic (fcc) (middle) and hexagonal close-packed (hcp)
(bottom) structures. Curves are shifted vertically for better visual appearance. (adopted from [85]).
Used under CC-BY 4.0.

While the standard analysis of angular averaged scattering intensity shows excellent results for
isotropic systems, like liquids and powders, and various crystallographic techniques are well suited
to study the structure of crystals, AXCCA appears to be very useful to study the systems with weak
orientational order. One of the prominent examples of such systems is a suspension of colloidal
particles. The aqueous solution of charge-stabilized polyacrylate colloidal particles was studied at
high pressure in reference [86]. X-ray diffraction patterns at ambient and high pressures (p = 1 bar and
p = 2500 bar, respectively) in Figure 14a,b clearly show the development of the sixfold BO order in
the system. The evolution of the angular averaged structure factor S(Q) as a function of increasing
pressure also indicates a transition from isotropic liquid-like structure of the colloidal suspension to the
fcc structure Figure 14c. These observations were supported by the increasing magnitude of the sixfold
modulations of the CCF (Figure 14d). Surprisingly, AXCCA also revealed fourfold orientational order
in the system under ambient pressure, which is not well resolved in Figure 14a. The authors attributed
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this fourfold symmetry to the metastable ordered state of the colloidal suspension at ambient pressure
due to shear-induced melting.Materials 2019, 12, x FOR PEER REVIEW 19 of 30 
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Figure 14. (a,b) Diffraction patterns from solution of charge-stabilized polyacrylate particles suspended
in water at ambient pressure (a) and under pressure of 2500 bar (b). (c) Evolution of the structure
factor under applied pressure. (d) Evolution of the cross-correlation function C(Q, ∆) under increasing
pressure directly reveals the development of BO order (reprinted from Schroer et al. [86], with permission
of AIP Publishing).

5. Mesocrystals Formed by Nanoparticles

Superstructures of nanoparticles, which preserve the unique properties of nanoparticles, and at
the same time allow easy integration into devices due to their mesoscopic structure, have attracted
increasing interest in the last decade [87–91]. In this section, we will focus on the studies of a specific
type of such superstructures, called mesocrystals, consisting of periodically arranged iso-oriented
nanoparticles spatially separated by some media [92]. Inorganic nanoparticles interlinked with
organic π-systems are particularly promising materials for various applications, including field-effect
transistors (FETs), light-emitting diodes (LEDs), photodiodes, and photovoltaic cells (PVCs) [93,94].
Such organic-inorganic mesocrystals can be conveniently fabricated by self-assembly of nanoparticles
from solution by exploiting ligand–ligand interactions [95–97]. However, a self-assembled superlattice
is prone to various defects, which influence the electrical, optical, and mechanical properties of the
mesocrystals [98–100]. Nanofocused X-ray diffraction in combination with AXCCA is a unique tool
allowing one to explore the real structure of mesocrystals, which should facilitate the applications of
synthetic mesocrystals.

In contrast to colloidal crystals consisting of spherical particles, which were discussed in the
previous section, the nanoparticles here are faceted single crystals, and therefore exhibit significant
anisotropy [101,102]. Facet-specific interaction between organic ligands and inorganic nanoparticles
can lead to a well-defined orientation of the nanoparticles with respect to the mesocrystalline
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superlattice [103–105]. Thus, a comprehensive structural study of mesocrystals addresses not only the
structure of the superlattice, but also the orientation of the nanoparticles with respect to the superlattice.
AXCCA appears to be especially suited for such studies since it naturally allows to investigate mutual
angular correlations between the mesocrystal superlattice and the atomic lattice of the nanoparticles by
means of the CCF Ĉ(q1, q2, ∆).

The structure of a mesocrystalline assembly of PbS nanoparticles with a diameter of 6.2 nm in
size, interlinked with the organic π-system tetrathiafulvalenedicarboxylate (TTFDA), was studied in
reference [18] (Figure 15a,b). Approximately 200–300 nm thick mesocrystals were scanned with the
X-ray beam focused down to 400× 400 nm2. A large 2D detector positioned behind the sample was
shifted from the optical axis of the beam to record simultaneously the small-angle X-ray scattering
(SAXS) from the superlattice at q ∼ 1–2 nm−1 (Figure 15c) and the wide-angle X-ray scattering
(WAXS) signal from the atomic lattice (AL) of individual PbS nanoparticles. As a result, it was
possible to measure the scattering signal at the scattering vector qAL

111 = 18.3 nm−1 and qAL
200 = 21.2 nm−1,

corresponding to the 111 and 200 reflections from the PbS atomic lattice of the nanoparticles (Figure 15c).
The presence of well-defined reflections from the PbS atomic lattice clearly indicates that, at least
within the illuminated volume, the nanoparticles have a preferred orientation with a mean deviation
(“mosaicity”) ∆Φ about 10◦.
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Figure 15. (a) Schematic view of a single PbS nanoparticle with the shape of a truncated cube
with six 100 and eight 111 facets, and the chemical structure of the tetrathiafulvalenedicarboxylate
(TTFDA) anion; (b) Structure of a mesocrystal formed by PbS nanoparticles crosslinked with TTFDA
molecules; (c) Scheme of the diffraction experiment, in which small angle scattering from the mesocrystal
superlattice and wide angle scattering from PbS atomic scattering were recorded simultaneously by a
large 2D detector. (Adapted with permission from Zaluzhnyy et al. [18]. Copyright (2017) American
Chemical Society).

To investigate the structure of the mesocrystal on a larger scale, maps of the orientation of the
diffraction peaks were analyzed. In Figure 16a, green arrows represent the angular position of the
strongest superlattice (SL) peaks at qSL

112 = 1.72 nm−1, which were attributed to the {112} reflections.
A similar map of the angular positions of the {111} and {200} reflections from the PbS atomic lattice of
nanoparticles is shown in Figure 16b. A comparison between these two maps reveals the presence of
domains with typical linear dimensions of 2–4 µm, in which the orientation of both, the superlattice
and the individual nanoparticles, is preserved.

For the quantitative characterization of the mutual orientation of the nanoparticles with respect
to the superlattice, the CCF C

(
qAL

111, qSL
112, ∆

)
was evaluated to verify if the angular positions of the

diffraction peaks from the atomic lattice in WAXS are correlated with the angular positions of the
diffraction peaks from the superlattice in SAXS. The CCF averaged over all diffraction patterns, where
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both WAXS and SAXS signals are present, is shown in Figure 16c. Well-distinguishable peaks of the
CCF clearly indicate that a certain orientation of the nanoparticles in the superlattice is preserved, not
only within the domains but in all scanned regions of the sample. Further analysis of the CCF, which
required simulations of the scattering patterns and evaluation of the model CCF shown in Figure 16d,
revealed that the atomic lattice and the superlattice of the mesocrystal have five common directions,
namely three 〈100〉 directions, as well as the [110] and [−110] directions (Figure 16e). Moreover, the
sensitivity of AXCCA to angular positions of the scattering peaks allows one to establish that the
mesocrystal superlattice exhibits a tetragonal distortion with c/a ≈ 1.22 (a = 7.9 nm, c = 9.7 nm),
which appears as splitting of the CCF peaks at about ∆ = ±90◦ (Figure 16c,d). The width of the CCF
peaks also contains important information about the orientational order in the system, namely that the
above-mentioned mutual orientation of the nanoparticles and superlattice is preserved in all scanned
positions with a mean deviation of ~2.5◦.
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Figure 16. (a,b) Spatially resolved maps, showing the angular positions of the {112}SL reflections of
the superlattice (green arrows in (a)); {111}AL and {200}AL reflections of the atomic lattice (red and
blue arrows in (b); respectively). Single-crystalline domains with a persistent orientation of PbS
particles with respect to the superlattice are marked in orange; (c,d) Experimentally measured (c) and
modelled (d) cross-correlation functions C

(
qSL

112, qAL
111, ∆

)
are shown by blue and red color, respectively;

(e) Schematic of the mesocrystal unit cell displaying the angular correlation between the atomic lattice
(AL) and superlattice (SL); collinear axes are indicated in red (〈100〉 directions) and blue (〈110〉 directions)
(Adapted with permission from Zaluzhnyy et al. [18]. Copyright (2017) American Chemical Society).

The details of attachment of organic ligands to the nanoparticles were addressed in reference [106],
where electron diffraction was used. The authors studied a monolayer of 1-dodecanethiol-coated
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gold nanoparticles of 5.7 nm in diameter. Electron diffraction allows collecting sufficient scattering
signal from light atoms (H, C, S) in the organic ligands and hence be sensitive to the orientation of the
rod-like organic molecules with respect to the facets of the nanoparticles. The angular CCF C(s, ∆)
was evaluated along the three scattering rings at s = s1, s3, s4, corresponding to different length
scales in real space. Thus, the scattering signal at s1 = 0.66 Å−1 corresponds to the inter-particle
distance d1 = 6.6 nm in the close-packed hexagonal structure (Figure 17a). The Fourier spectra of the
CCF at s = s1 contain dominant contributions from the second, fourth and sixth order components
(Figure 17b). The ν = 2 and ν = 4 components were attributed to the astigmatism of the electron
beam and scattering from the substrate. After subtraction of these contributions from the experimental
CCF, the resulted function exhibits a clear sixfold symmetry which was assigned to the hexagonal
superlattice (Figure 17c).
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Figure 17. (a,d,g) Illustration of the three feature length scales in mesocrystals: d1 ≈ 6.6 nm corresponds
to the distance between Au nanoparticles (a), d3 ≈ 0.433 nm corresponds to the hexagonal superlattice
of dodecanethiol ligands bound to the gold core facets at specific locations between gold atoms
(d), d4 ≈ 0.372 nm corresponds to the distance between carbon atoms of ordered ligand chains (g).
(b,e,h) Magnitudes of the angular Fourier components of intensity Iν(s) at scattering vectors s1, s3 and
s4 corresponding to the distances d1, d3 and d4, respectively. The angular dependence of the scattered
intensity is shown in the insets by black lines. (c,f,i) Angular cross-correlation functions C(∆) measured
at scattering vectors s1 (c), s3 (f), s4 (i) when frequency v = 2 is set to zero (red line) or when the two
frequencies with v = 2 and v = 4 are set to zero (purple line) (adopted with permission from Mancini et
al. [106] Copyright (2016) American Chemical Society).

The scattering signal at s3 = 1.45 Å−1 corresponds to the distance d3 = 4.43 Å between two
nearest locations of the attached ligands (Figure 17d). After filtering the ν = 2 and ν = 4 components
(Figure 17e), the experimental CCF shows no sixfold or higher rotational symmetry (Figure 17f), which
is explained by the fact that ligands are attached to all facets of the nanoparticles, so the scattering
signal at s3 is averaged over all angles. The signal at s4 = 1.68 Å−1 corresponds to the real-space
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distance d4 = 3.72 Å between parallel ligands, which occurs when the ligands are attached to the facets
at a certain angle (Figure 17g). The Fourier analysis of the corresponding CCF at s4 reveals a strong
contribution of the ν = 4 and ν = 6 components (Figure 17h,i). This effect was explained by two factors:
(1) The nanoparticles assemble in a hexagonal or tetragonal superlattice and (2) a preferred orientation
of the nanoparticles with respect to the superlattice. Thus, even without recording the diffracted signal
from the atomic lattice of gold nanoparticles, the analysis of the angular correlations allowed the
authors to establish a certain degree of orientational order between individual nanoparticles as well as
obtaining information on how the organic ligands are attached to the facets of the nanoparticles.

Laser-Induced Orientational Order in Photo-Reactions

In the previous sections we discussed the studies of the orientational order in the systems in
equilibrium. The recently developed XFELs are capable to produce femtosecond X-ray pulses that
allow to probe fast dynamics at nanoscale, for example, molecular dynamics. The potential of AXCCA
to study the evolution of the orientational order in the time-resolved X-ray scattering experiment
on solvated molecules was demonstrated in reference [58]. In this work, the aqueous molecules of
tetrakis-µ-pyrophosphitodiplatinate (II) (PtPOP) were excited by a short 50 fs optical laser pulse (pump)
with a wavelength of 395 nm. From the whole ensemble of randomly oriented PtPOP molecules,
the linearly polarized optical light selectively excites only the molecules, in which the Pt-Pt axis is
oriented parallel to the external laser electric field E (Figure 18a). The succeeding 50 fs 9.5 keV X-ray
pulse (probe) produces a snapshot of the configuration after photo-excitation at a single time-delay τ
(see scheme of the setup in Figure 18b).
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Figure 18. (a) Temporal evolution of an ensemble of randomly oriented tetrakis-µ-pyrophosphitodiplatinate
(II) (PtPOP) molecules before (τ < 0) and after (τ ≥ 0) excitation. Only the molecules with the transition
dipole moment (along the Pt-Pt axis) parallel to the laser field E are excited at τ = 0; (b) Scheme of
the optical pump X-ray probe experiment at LCLS. On the detector, the difference diffraction pattern
averaged over N ≈ 3000 shots is shown; (c) Temporal decay with the time constant 46± 10 ps of the
value S2(τ), which is normalized area under the peak at q = 1.8 Å−1 of the second Fourier component
of the CCF 〈C2(q, τ)〉. The faster decay of S2(τ) with the time constant 1.9± 1.5 ps is shown in inset
(adapted from [58]). Used under CC-BY 4.0.

The change of the electronic structure in the excited PtPOP molecules leads to contraction of the
Pt-Pt bond approximately by 0.24 Å. This contraction can be readily detected on the difference signal
images which are created by subtracting an X-ray diffraction pattern from non-excited molecules in
the ground state from an X-ray diffraction pattern from the partially excited ensemble of molecules.
Thus, the difference diffraction images contain only the signal from changes in the PtPOP molecules
upon excitation and their interaction with the solvent. To study the dynamics of the photoexcited
molecules, approximately N = 3000 difference diffraction patterns were collected at each time bin of
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1 ps. Applying AXCCA, it was shown that the difference diffraction signal is anisotropic, and moreover,
the anisotropy can be well described by the second Fourier component C2(q) (see Equation (12)),
which is in agreement with the theoretical approach proposed in reference [107].

The temporal evolution of the difference diffraction pattern anisotropy, i.e., temporal decay of the
value of 〈C2(q)〉, is shown in Figure 18c. Fitting the total decay by a sum of two exponential terms,
the authors found two different time scales occurring in the system. The longer time constant of
46± 10 ps corresponds to the rotational dephasing of the initial angular distribution of the molecules,
and the shorter time constant of 1.9 ± 1.5 ps may be attributed to the dampening time for Pt–Pt
bond vibrations.

6. Conclusions and Outlook

Soft matter materials are ubiquitous and have found many applications in modern technology.
Usually the structural studies of soft matter systems include an analysis of the pair correlation functions
between particles in the system. However, the development of experimental techniques and theoretical
approaches revealed the importance of the mutual arrangement and orientation of the particles on the
properties of the system. The importance of the orientational order is well-known for LCs, in which
a specific orientation of anisometric molecules leads to the formation of numerous LC phases with
different optical, electrical and mechanical properties.

Another type of orientational order, so-called bond-orientational order, is related not to the
orientation of individual particles, but to the orientation of imaginary “bonds” between them.
First discovered in a process of 2D crystal melting, it was realized later that the BO order can
also exist in 3D systems. These includes the so-called stacked hexatic phase, where the BO order
exists across the 2D molecular layers, and also “true” 3D systems, for example colloids, glasses and
quasicrystals, in which particles form local 3D clusters of certain symmetry. Nowadays, such complex
materials as mesocrystals can be synthesized, which can be seen as a superlattice formed by oriented
nanoparticles. The orientation of the atomic lattice of individual nanoparticles with respect to the
crystallographic directions of the superlattice plays an essential role in the electrical properties of
mesocrystals. The appearance of such new complex materials with intricate relations between the
structure and functional properties require the development of new methods for characterization of
these systems.

AXCCA is a basic analysis tool which is capable to quantitatively characterize the angular
anisotropy of the X-ray diffraction patterns and relate this anisotropy to the structural properties of
the system under investigation. Originally, AXCCA was used for the analysis of SAXS diffraction
patterns from solution of bioparticles to obtain additional information on the structure of an individual
particle [8,50,57]. Later it was demonstrated that a combination of AXCCA with a coherent, focused
X-ray beam can reveal local orientational order in colloidal crystals [12], which gave rise to intensive
studies of various dense systems by AXCCA [15,17–19]. The combination of AXCCA with X-ray
microscopy using a micro- or even nanofocused X-ray beam gives information not only on the local
order in the system, but also reveals how this local order changes depending on the spatial position in
the system.

An intriguing option is to combine AXCCA with ultra-short X-ray pulses from XFEL sources.
This allows one not only to study the static structure of the system, but also to investigate dynamical
processes. In order to measure the coherent diffraction from a dynamical system, the X-ray pulse
duration should be shorter than the characteristic time scale in the system; otherwise the speckles
on the diffraction pattern would smear out due to the movement of the particles. This also means
that the incoming photon flux should be high enough to produce sufficient diffraction signal from a
single shot. The usage of short X-ray pulses together with AXCCA potentially opens the opportunity
to study the structure of molecular clusters which are instantaneously formed in liquids, for example,
in water [108]. The recent paper by P. Vester et al. [58] sets a benchmark for AXCCA to provide an
asset in such time-resolved studies of molecular dynamics at XFELs. We foresee that it is only a matter
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of time before AXCCA is combined with the techniques studying dynamics of the systems such as
X-ray photon correlation spectroscopy (XPCS).

Despite the undoubted progress in extracting structural information using AXCCA, there are a
few aspects which can be addressed in future. First of all, similar to many other X-ray techniques, one
of the limiting factors are X-ray detectors. For AXCCA, it is desirable to record the full scattering ring in
order to perform the Fourier analysis of the angular anisotropy of the diffracted intensity. The smaller
the length scales of the scattering objects, the larger are the X-ray scattering angles, which means that
larger detectors are required to capture the whole scattering ring. Sometimes it is sufficient to record
only a part of the scattering ring (see, for example, [18,99]), but this usually requires some pre-existing
knowledge about the structure of the system, so this approach cannot be used in general. Another
possible improvement could be the development of faster detectors. The existing 2D detectors allow
collecting a limited number of images with MHz frequency, however in a continuous regime the frame
rate is limited by kHz. Increase of the frame rate would allow combining of AXCCA with XPCS type
measurements to investigate the dynamics of various soft matter systems in the non-destructive regime.

In the interpretation of the AXCCA results, the most complicated part is to relate the anisotropy of
the measured diffraction patterns to the actual structure of the system, especially in the 3D case. One of
the possible ways to simplify this problem is to limit the number of illuminated particles, which can be
obtained by focusing of the incoming beam. Focusing would also allow to perform a finer raster scan
of the sample, which can provide an important structural information on the inhomogeneity of the
sample, as it was demonstrated in many examples of this review. However, due to the low efficiency
of the X-ray focusing optics, the high initial flux is required in order to have sufficient number of X-ray
photons in the focused beam. Moreover, these photons have to be coherent in order to create the
speckles on the diffraction pattern.

Fortunately, the brightness of the modern X-ray sources already provides a sufficient flux of
coherent photons for studies of the soft matter. Nowadays, the most advanced diffraction limited
storage rings (DLSR) are specially designed to supply the highest possible coherent photon flux.
Currently, the first multiband-achromat synchrotron source MAX IV (Lund, Sweden) is already under
operation, and several more synchrotron sources are under commissioning, upgrade or in the planning
stage. These are, for example, SIRIUS (Campinas, Brazil), ESRF-EBS (Grenoble, France), APS-U
(Argonne, USA), and PETRA IV (Hamburg, Germany). The higher degree of coherence from these
new sources would increase the contrast of the diffraction patterns, which would result in a higher
signal-to-noise ratio.

Finally, we would like to speculate on the future development of AXCCA. Being a general analysis
technique, AXCCA could be used in studies of almost any system with angular correlations. In this
review, we considered several examples, such as the hexatic phase in LCs, colloidal crystals and
self-assembling nanoparticles, but in principle AXCCA could provide valuable information on the
orientational order in almost any soft matter system. Moreover, combining AXCCA with resonant
elastic X-ray scattering (REXS), could potentially reveal hidden features of magnetic and charge
order superstructures in hard condensed matter systems, for example, the lattice of skyrmions [109]
or ferroelectric domain walls [110]. It was also shown [111] that combinations of AXCCA with
the multiple-wavelength resonant scattering can be used for element-specific imaging of various
nanoscale objects.

We also would like to point out that the general mathematical apparatus of AXCCA can be
extended beyond X-ray scattering. Usage of electrons as a probe for scattering allows to address
problems which can hardly be solved by X-ray diffraction. This includes very thin or weakly scattering
samples almost transparent for X-ray, for example very thin LC films [72], monolayer superlattices of
nanoparticles [106], or metallic glasses [112,113].

AXCCA has been developed to investigate the structure of partially ordered systems, to detect
hidden symmetries and weak angular correlations. These include various complex fluids, polymer
melts, colloids, liquid crystals, suspensions of biological molecules, block copolymers and mesocrystals.



Materials 2019, 12, 3464 27 of 32

Having in mind the astonishing achievements in the synthesis of new molecules of almost any shape
and sequences, there are no doubts that in the near future a great number of new substances will appear,
the properties of which are hard to imagine at the present time. The various types of orientational order
should be an essential feature of newly synthesized materials. Thus, the role of AXCCA as a unique
tool in X-ray studies of orientational order and angular correlations will only increase with time.
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