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Abstract

MicroRNAs play a critical role in many essential cellular functions in the mammalian species. However, limited information is
available regarding the regulation of miRNAs gene transcription. Microarray profiling and real-time PCR analysis revealed a
marked down-regulation of miR-206 in nuclear receptor SHP2/2 mice. To understand the regulatory function of SHP with
regard to miR-206 gene expression, we determined the putative transcriptional initiation site of miR-206 and also its full
length primary transcript using a database mining approach and RACE. We identified the transcription factor AP1 binding
sites on the miR-206 promoter and further showed that AP1 (c-Jun and c-Fos) induced miR-206 promoter transactivity and
expression which was repressed by YY1. ChIP analysis confirmed the physical association of AP1 (c-Jun) and YY1 with the
endogenous miR-206 promoter. In addition, we also identified nuclear receptor ERRc (NR3B3) binding site on the YY1
promoter and showed that YY1 promoter was transactivated by ERRc, which was inhibited by SHP (NROB2). ChIP analysis
confirmed the ERRc binding to the YY1 promoter. Forced expression of SHP and AP1 induced miR-206 expression while
overexpression of ERRc and YY1 reduced its expression. The effects of AP1, ERRc, and YY1 on miR-206 expression were
reversed by siRNA knockdown of each gene, respectively. Thus, we propose a novel cascade ‘‘dual inhibitory’’ mechanism
governing miR-206 gene transcription by SHP: SHP inhibition of ERRc led to decreased YY1 expression and the de-
repression of YY1 on AP1 activity, ultimately leading to the activation of miR-206. This is the first report to elucidate a
cascade regulatory mechanism governing miRNAs gene transcription.
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Introduction

Small heterodimer partner (SHP, NROB2) is a well established

nuclear transcriptional co-repressor. SHP interacts with a broad

range of nuclear receptors and transcription factors and inhibits

their transactivation [1]. In the past years, the metabolic regulatory

function of SHP has been characterized using SHP2/2 mice [2–4].

These studies revealed a diverse role of SHP in several metabolic

diseases. Our recent study suggests a new aspect of SHP regulation

in the development of hepatocellular carcinoma (HCC), which is

associated with SHP inhibition of cellular proliferation and

activation of apoptosis signaling [5,6].

MicroRNAs (miRNAs, miR) are highly conserved small RNA

molecules of 22 nucleotides in length which regulate the gene

expression by binding to the 39-untranslated regions (39-UTR) of

specific mRNAs [7]. Despite the growing evidence for their

importance in development, proliferation, and differentiation [8–

10], limited information is available about how miRNAs are

regulated transcriptionally. To determine the regulation of SHP in

miRNAs expression and function, we recently cloned two

overlapping primary transcripts encoding miR-433 and miR-

127, respectively [11]. The coupled miR-433 and miR-127 were

transcribed from independent promoters repressed by SHP in a

compact space by using overlapping genomic regions [12]. Our

study identified SHP as an important transcriptional regulator of

miRNAs gene expression.

In this study, we cloned the full length primary transcript of miR-

206 and elucidated a regulatory cascade activating miR-206

expression by SHP which involved AP1 (transcription factor activator

protein 1), YY1 (Ying Yang 1), and ERRc (estrogen related receptor

gamma). This is the first report to elucidate a cascade regulatory

mechanism governing miRNAs gene transcription.

Results

Identifying decreased expression of miR-206 in SHP2/2

mice and determining miR-206 full length primary
transcript

A custom microarray identified a subset of miRNAs that were

differentially down-regulated in livers of SHP2/2 mice, which

exhibited a 2-fold or greater decrease in expression (Figure 1a).

Two clusters of miRNAs, miR-206/miR-133b on chromosome 1

and miR-1/miR-133a on chromosome 2 showed the largest

magnitude of down-regulation (Table S1). Interestingly, a cluster

of other down-regulated miRNAs was observed on chromosome 1

(Table S2), which were more distantly located (Figure 1b). Real-

time PCR analysis confirmed that the expression level of miR-206

and miR-133b was decreased by an average of 50% to 60% in the

liver of SHP2/2 mice than in wild-type (WT) controls (Figure 1c).

Interestingly, the basal expression of miR-206 was about 2-fold

higher than miR-133b, suggesting that the paired miR-206 and

miR-133b might be derived from two primary transcripts under

PLoS ONE | www.plosone.org 1 September 2009 | Volume 4 | Issue 9 | e6880



the control of independent promoters, similar to the paired miR-

433 and miR-127 [11,12]. It was noted that the extent of miR-206

down-regulation was higher by microarray than by real-time PCR.

However, real-time PCR was generally considered as a more

quantitative method for gene expression analysis. Nevertheless,

both methods produced similar expression profiles for miR-206

and showed decreased expression of miR-206 in SHP2/2 mice.

The down-regulation of these miRNAs in SHP2/2 mice suggested

that they were potential transcriptional targets of SHP.

We focused on determining the primary transcript encoding

miR-206 because the basal level of miR-206 in the liver was much

higher than miR-133b (Table S1). For this we used a bioinfor-

matics approach developed in our laboratory [11]. Expressed

sequence tag (EST) and non-coding RNA database (mouse non-

RefSeq RNA database from NCBI) analysis identified an EST

sequence (AK031267, GenBank Accession number) ended before

pre-miR-133b (Figure 2–2, T in red), which was followed by the

consensus polyadenylation signal. This suggested that the 39-end of

this EST was complete. The 59-end of this EST ended close to the

39-end of the miR-206 hairpin sequences and did not contain

miR-206, based on the genomic location of pre-miR-206

(Figure 1d). This suggested that it did not contain the full length

pri-miR-206. Sequence prediction suggested that miR-206 and

miR-133b may arise from two separate, and possibly overlapping

primary transcripts. This prediction is consistent with the report

that pri-miRNA transcripts vary in length from a few hundreds of

bases up to tens of kilobases [13]. To elucidate the transcriptional

initiation site (TIS) of the primary transcript of miR-206 (pri-miR-

206), we used Rapid Amplification of cDNA Ends (RACE) to

determine the 59-end of the transcript. 59RACE produced one

strong and two weak PCR products (Figure S1a). However, a

single TIS from the strongest PCR product was confirmed to be

specific by sequencing analysis, which was located 498 nt upstream

of pre-miR-206 (Figure 1d, Figure S1b, and Figure 2–1). The two

weak bands appeared to be non-specific PCR amplification. In

addition, the expression level of pri-miR-206, as detected using

primers in the 59RACE amplified region, was about 50% lower in

SHP2/2 mice as compared to the wild-type (WT) mice (Figure 1e),

Figure 1. Cloning of full length pri-miR-206 in the livers of SHP2/2 mice. (a) Hierarchical clustering of the down-regulated miRNAs in the
livers of SHP2/2 mice compared to wild-type (WT) mice. (b) Schematic of the chromosomal location of the down-regulated miRNAs in SHP2/2 mice
on chromosome 1. (c) Real-time PCR verification of the miR-206 and miR-133b expression in the livers of WT and SHP2/2 mice. (d) Schematic of the
genomic structure of miR-206 gene. The gene for miR-206 is located on chromosome 1 on the positive strand. The green arrow represents the
putative transcriptional initiation site (TIS) of pri-miR-206, which is 498 bp upstream of pre-miR-206. The navy arrows indicate the location of 59RACE
primers used to identify TIS. TFs, transcription factor sites. (e) Real-time PCR analysis of pri-miR-206 expression in the livers of WT and SHP2/2 mice.
Primers are located within the 59RACE amplified region. Data in c and e are represented as mean6SEM. *Significantly different (p,0.01).
doi:10.1371/journal.pone.0006880.g001

SHP Activates miR-206

PLoS ONE | www.plosone.org 2 September 2009 | Volume 4 | Issue 9 | e6880



Figure 2. Genomic sequences of the miR-206 gene, including the full length sequences of the pri-miR-206 primary transcript and
the miR-206 promoter region. Putative AP1 binding sites are indicated (pink). Primer sequences for RACE (purple), promoter cloning (aqua),
promoter deletion construct (magenta), and ChIP assays (blue): underlined; TIS, transcriptional initiation site; TTS, transcriptional termination site. The
color in word description matches with the color of the gene sequences.
doi:10.1371/journal.pone.0006880.g002
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consistent with the expression pattern of the mature miR-206

(Figure 1c). Because this TIS site has not been verified using

additional experimental approaches such as primer extension

assays, we considered this as a putative TIS site. The identification

of this putative TIS allowed us to determine the location of the

miR-206 promoter and to clone it for transcriptional analysis of

miR-206 expression.

YY1 inhibits miR-206 promoter transactivation by AP1
A number of studies have established SHP as a transcriptional

repressor. Thus, the decreased miR-206 expression in SHP2/2

mice indicated a secondary effect due to the loss of SHP

repression. We hypothesized a ‘‘dual inhibitory mechanism’’, by

which SHP repressed an intermediate gene that inhibited the miR-

206 promoter resulting in a final outcome of SHP activating pri-

miR-206 expression.

The transcription factor activator protein 1 (AP1) is a

heterodimer nuclear protein composed of the proto-oncogene

products c-Jun and c-Fos, and is involved in regulation of cell

proliferation and tumor promotion [14]. AP1 can activate its

target gene promoters through AP1 binding elements. Yin Yang 1

(YY1) is a multifunctional protein that plays a fundamental role in

development, differentiation, replication, and cellular proliferation

[15]. YY1 exerts its effects via its ability to initiate, activate, or

repress transcription depending upon the context of the cells and

promoters. Sequence analysis of the miR-206 promoter with the

MatInspector program predicted four potential binding sites for

AP1 (Figure 2–1, pink). Because it has been reported that YY1 can

inhibit c-Jun activity by direct protein-protein interaction [16], we

investigated whether YY1 could suppress AP1 activity in the miR-

206 promoter.

Overexpression of c-Jun or c-Fos alone showed marginal

activation of the miR-206 promoter, while overexpression of

AP1 containing c-Jun and c-Fos significantly transactivated the

miR-206 promoter in a dose-dependent manner (Figure 3a).

However, this positive regulation was abrogated by YY1 co-

expression (Figure 3b). In contrast, no effect was observed with

SHP alone (not shown) or co-expression on AP1 activity.

Mutagenesis studies by mutating the upstream two AP1 sites

(sites 1&2) in the miR-206 promoter decreased AP1 activity, but

did not abolish it (Figure S2), suggesting that other putative AP1

sites may also contribute to the AP1 responsiveness. Therefore,

three miR-206 promoter luciferase (pro. Luc) reporter deletion

constructs were generated in which putative AP1 sites were

sequentially deleted (Figure 2–1, see primer locations used for

deletion constructs). Transient transfection assays showed that

deletion of AP1 sites 1 and 2 (del 1 pro. Luc) decreased AP1

activity as compared to the normal miR-206 pro. Luc (Figure 3c).

Deletion of AP1 site 3 (del 2 pro. Luc) did not further decrease

AP1 activity, whereas deletion of AP1 site 4 (del 3 pro. Luc)

significantly diminished AP1 activity. Thus, sites 1, 2 and 4 in the

miR-206 promoter appeared to be potent AP1 sites for AP1

activation.

Chromatin immunoprecipitation (ChIP) analysis with a primer

set covering the AP1 sites 1 and 2 confirmed the physical

association of AP1 and YY1 with the endogenous miR-206

Figure 3. YY1 inhibits AP1 activation of the miR-206 promoter and expression. (a) Transient transfection assays to determine AP1 (c-Jun/c-
Fos, 50, 100, 200 ng) transactivation of pri-miR-206 promoter (pro.). The promoter of pri-miR-206 was cloned into a pGL3-basic vector. Hela cells were
transfected with the miR-206Luc in the presence of c-Jun and/or c-Fos plasmids. Luciferase (luc.) activities (act.) were determined, which were
normalized by b-gal (gal.) activities. Con, control (pcDNA3). (b) YY1 (50, 100, 200 ng) inhibition of miR-206Luc activity by AP1 (200 ng). (c) AP1
(200 ng) activation of miR-206Luc deletion constructs (nor, normal promoter containing 4 putative AP1 sites; del 1, AP1 sites 1 and 2 deleted; del 2,
AP1 site 3 deleted; del 3: AP1 site 4 deleted). Con, control (pcDNA3). (d) ChIP assays of c-Jun and YY1 Co-immunoprecipitation (Co-IP) on the miR-206
promoter region containing putative AP1 sites 1 and 2. (e) Real-time PCR analysis of miR-206 expression in Nmuli cells with AP1 and YY1
overexpression. Data in a, b, c, and e are represented as mean6SEM. *Significantly different (p,0.01).
doi:10.1371/journal.pone.0006880.g003
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promoter in mouse hepatoma Hepa-1 cells by using specific c-Jun

and YY1 antibodies (Figure 3d). In contrast, a non-specific (n.s.)

primer set located ,11 kb downstream of miR-206 promoter did

not produce PCR product. Nevertheless, overexpression of AP1 (c-

Jun & c-Fos) induced miR-206 expression which was decreased by

YY1 co-expression (Figure 3e). To this point, we conclude that the

miR-206 promoter can be potently transactivated by AP1 and this

response can be reversed by YY1.

SHP inhibits YY1 promoter transactivation by ERRc
We hypothesized that YY1 might be the intermediate gene

through which SHP regulated miR-206 expression. Although the

YY1 promoter had more than 90% GC content and was initially

difficult to amplify, we successfully cloned it into a luciferase

reporter (Figure S3a). ERRc is a nuclear receptor and a target for

SHP repression [3,12]. A conserved estrogen related receptor

response element (ERRE) was identified in the YY1 promoter

(Figure S3b). As predicted, ERRc dramatically activated YY1

promoter, which was repressed by expression of SHP (Figure 4a).

Mutation of the ERRE in the YY1 promoter reduced ERRc
activity below the basal level (Figure 4b). ChIP analysis using

specific ERRc antibodies confirmed ERRc binding to the YY1

promoter in Hepa-1 cells (Figure 4c), in which ERRc showed

increased expression compared to normal mouse hepatocye Nmuli

cells [12]. Finally, the expression of YY1 mRNA was increased by

ERRc and decreased by SHP (Figure 4d). The data identified

ERRc and SHP as novel transcriptional regulators of YY1 gene

expression.

Cascade transcriptional activation of miR-206 by SHP
Based on the above experimental results, we propose a cascade

regulatory model of miR-206 expression. In this model, SHP

inhibits ERRc activation of the YY1 promoter and YY1 represses

AP1 activation of the miR-206 promoter. Thus, SHP inhibition of

ERRc leads to decreased YY1 expression and the de-repression of

YY1 on AP1 activity, which ultimately leads to the increase in

miR-206 expression (Figure 5a). In support of this model, the

expression of YY1 and ERRc was increased whereas the

expression of c-Jun was decreased in livers of SHP2/2 mice

(Figure 5b), which corresponded to the down-regulation of miR-

206 (Figure 1).

We further tested the effect of each individual nuclear receptor

and transcription factor on miR-206 expression in Nmuli cells. As

expected, SHP overexpression resulted in an induction of miR-206

expression (Figure 5c–a’). Unfortunately, we could not obtain

satisfactory results with SHPRNAi due to the low SHP levels and

knockdown efficiency in Nmuli cells. Expression of ERRc caused a

reduction of miR-206 levels, which was reversed in ERRc-siRNA

transfected cells (Figure 5c–b’). In a similar way, an inhibitory

effect of miR-206 was observed in YY1 overexpressed cells and the

repression was absent when YY1 levels were decreased by siRNA

(Figure 5c–c’). Consistent with the previous results, AP1 (c-Jun &

c-Fos) induced miR-206 expression and the effect was partially

blocked by c-Jun knockdown (Figure 5c–d’). Considering together,

these results demonstrate a cascade regulatory mechanism

governing miR-206 gene transcription which involved SHP,

ERRc, YY1, and AP1.

Discussion

MiR-206 was initially identified as a skeletal muscle specific

miRNA [17] that played an important function in muscle

development [18–20]. Recent studies showed that miR-206 was

downregulated in estrogen receptor (ER) positive breast cancer

[21], which may be associated with ER as a miR-206 target [22].

Thus, miR-206 is suggested to function as a suppressor of breast

cancer metastasis [23], although the mechanism remains to be

defined. In addition, the expression of miR-206 in the brain has

been associated with schizophrenia [24]. Recently, specific

expression of miR-206 was reported in brown adipocytes [25]

and the expression level of miR-206 was also increased in bone

marrow-derived DC19+ WM cells associated with Waldenstrom

macroglobulinemia [26]. Although miR-206 is less abundant in

the liver, our study identified down-regulation of miR-206 in the

liver of SHP2/2 mice. These observations suggest a broader tissue

specific expression and physiological function of miR-206 than

originally anticipated.

Despite the important function of miR-206 in physiological

regulation, how the expression of miR-206 is controlled at the

transcriptional level remains unknown. To address this question,

we first cloned the full length pri-miR-206 using a bioinformatics

approach. Cloning of pri-miR-206 is significant, because only a

few miRNAs have their full length primary sequences determined

[11,27,28]. It is noted that the identified transcriptional initiation

site of pri-miR-206 is localized in a simple GGA/GAA sequence

repeat region, with no identifiable core promoter elements.

However, this feature is not unusual for the miRNA genes. Our

previous studies identified (CT)n or (CTT)n simple sequence

repeats in the promoter of the primary transcript of miR-127

[11,12]. Another study also showed that TATA-box was not

Figure 4. SHP inhibits ERRc activation of YY1 promoter and expression. (a) SHP repression of YY1 promoter transactivation by ERRc.
Transient transfection assays to determine ERRc (20, 40, 80 ng) transactivation and SHP (100, 200, 400 ng) transrepression of YY1 promoter (pro.).
(b) Mutagenesis assays. The ERRE of the YY1 promoter Luc was mutated and used for transient transfection. (c) ChIP assays of ERRc Co-
immunoprecipitation (Co-IP) on the YY1 promoter region containing a putative ERRE. (d) Real-time PCR analysis of YY1 mRNA expression in Nmuli
cells with ERRc and SHP overexpression. Data in a, b, and d are represented as mean6SEM. *Significantly different (p,0.01).
doi:10.1371/journal.pone.0006880.g004
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common for most miRNA genes in C. elegans and H. sapiens,

although most studied miRNA genes of A. thaliana and O. sativa

contained TATA-box [29]. In addition, several other studies

reported that (CT)n, (CCT)n, (CTT)n, (CCTT)n, (CGCT)n,

(CCTCG)n, (CCTCT)n, (CGTCT)n, and (CTCTT)n simple

sequence repeats were the significant motifs in core promoters of

miRNA Genes [30–33].

A major funding of this study is the identification of a cascade

regulatory mechanism governing miR-206 expression by SHP.

Genes encoding miRNAs are transcribed by RNA polymerase II

[27] and in some cases RNA polymerase III [34]. However, little is

known about how transcriptional regulation affects miRNAs levels

and function in cells and tissues. Using both an in vitro cell system

and in vivo gene expression analysis, we show that several nuclear

transcription factors and signaling molecules, including SHP,

ERRc, YY1, and AP1, coordinately regulate the transcription of

miR-206. Thus, SHP is identified as a transcriptional activator of

miR-206 expression via a ‘‘dual inhibitory’’ mechanism. Because

the expression of miR-206 is also markedly down-regulated in

skeletal muscle of SHP2/2 mice compared to the wild-type mice

(Figure S4), where it is preferentially expressed, we propose that

this transcriptional cascade that activates miR-206 by SHP may

exist in muscle as well. The data suggests that complexity mRNA-

miRNA interactions participate in miR-206 control of multiple

cellular processes.

Methods

Total RNA isolation and miRNA microarray analysis
Protocols for animal use were approved by the Institutional

Animal Care and Use Committee at the University of Utah. Total

RNA with miRNA was isolated from the liver of two month old

male mice (n = 3) using mirVanaTM miRNA Isolation Kit

(Ambion, Austin, TX). The RNA quality control was performed

using Bioanalyzer 2100. SHP knockouts (SHP2/2) and wild type

mice on a pure C57/BL6 background were analyzed. The mice

were given normal chow diet under feeding conditions. MiRNA

microarray including labeling, hybridization, image scanning and

Figure 5. A ‘‘dual-inhibitory’’ mechanism activating miR-206 gene transcription by SHP. (a) Proposed cascade regulatory model
activating miR-206 expression by SHP. (b) Real-time PCR analysis of ERRc and YY1 mRNA expression and semi-quantitative PCR analysis of c-Jun
mRNA expression in the livers of SHP2/2 and wild-type (WT) mice. (c) Top: real-time PCR analysis of miR-206 expression in Nmuli cells with SHP (a’),
ERRc (b’), YY1 (c’) and AP1 (d’) overexpression or knockdown. Bottom: semi-quantitative PCR analysis of ERRc (left), YY1 (middle), and c-Jun (right)
expression level in cells transfected with a control (con) or gene specific shRNA against ERRc, YY1, and c-Jun, respectively. Data in b and c are
represented as mean6SEM. *Significantly different (p,0.01).
doi:10.1371/journal.pone.0006880.g005
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initial data analysis was carried out by LC sciences (http://www.

LCsciences.com, Houston, TX). All protocols were deposited at

ArrayExpress. LC-miRHumanMouseRat-9.1-070207-MRA-1030

array was used which was deposited in MIAMExpress. In brief,

arrays were made based on mParaflo microfluidic technology

(Atactic Technologies). On the mParaflo microfluidic chip, each

detection probe consisted of a chemically modified nucleotide

coding segment complementary to target microRNA (from

miRBase, http://microrna.sanger.ac.uk/sequences/) or other

RNA (control or customer defined sequences) and a spacer

segment of polyethylene glycol to extend the coding segment away

from the substrate. The detection probes were made by in situ

synthesis using photogenerated reagent (PGR) chemistry (Array

Protocol: LC Mir-Array-Prtl-060518). Small RNAs (,300 nt)

were 39-extended with a poly(A) tail using poly(A) polymerase. An

oligonucleotide tag was then ligated to the poly(A) tail for later

fluorescent dye staining; two different tags were used for the two

RNA samples in dual-sample experiments (Labeling Protocol: LC

Mir-Label Prtl-060518). Hybridization was performed using a

micro-circulation pump (Atactic Technologies). The hybridization

conditions were 100 mL 6xSSPE buffer (0.90 M NaCl, 60 mM

Na2HPO4, 6 mM EDTA, pH 6.8) containing 25% formamide,

34uC, and overnight (Hybridization Protocol: LC Mir-Hyb Prtl-

060518). Hybridization images were collected using a laser

scanner (GenePix 4000B, Molecular Device). Scan resolution

was set at 10 m and PTM is set between 350 to 700 V (Scanning

Protocol: LC Mir-Scan Prtl-060518). Data were analyzed by first

subtracting the background and then normalization. The

background was determined using a regression-based background

mapping method. The regression was performed on 5% to 25% of

the lowest intensity data points excluding blank spots. Raw data

matrix was then subtracted by the background matrix. Normal-

ization was carried out using a LOWESS (Locally-weighted

Regression) method on the background-subtracted data (Normal-

ization Protocol: LC Mir-Norm Prtl-060518). The data was

deposited to the ArrayExpress database and the accession number

is E-MEXP-1721 [12].

Database mining and EST extension
MiRNAs precursor sequences were downloaded from the

Sanger Institute (http://microrna.sanger.ac.uk/ sequences). The

BLASTN search of the mouse genome was done online. The

mouse EST and ncRNA database were downloaded from

GenBank. A 3 kb genomic sequence centered in the miRNA

precursor was extracted manually and used as query to search the

EST and ncRNA database with the command ‘‘Megablast -e 1e-

100 -F ‘‘m L’’ -D 3’’. The Blast Packages (v2.2.10) were

downloaded from the NCBI website (ftp://ftp.ncbi.nlm.nih.gov.

blast/executables). The ncRNA and ESTs with the opposite

transcription direction compared to query were removed from the

Blast hits. The hits with an aligned length less than 95 of their

original length were filtered out. After filtering, the ESTs matched

to the 22 kb to 2 kb flanking regions were selected for further

analysis [11].

Real-time RT-PCR quantification of miRNAs
Real-time reverse transcription polymerase chain reaction (RT-

PCR) quantification of miRNA expression was carried out using

TaqManH MicroRNA Assays Kit (Applied Biosystems Inc. Foster

City, CA) according to manufacturer’s protocol. snoRNA202 was

used as an internal control to normalize RNA input in the real-

time RT-PCR assay. The detailed method was described in our

recent publication [12].

RACE mapping of miRNA primary transcript
Total liver RNA was isolated using an RNeasy Mini Kit

(Qiagen, Valencia, CA) and mRNA was isolated using an Oligotex

Direct mRNA Mini Kit (Qiagen, Valencia, CA). The GeneRacer

Kit (Invitrogen, California, USA) was used to map the

transcriptional initiation site of primary transcript. The first strand

cDNA was synthesized at 65uC with Thermo-XTM reverse

transcriptase using 2 mg of mRNA, followed by a polymerase

chain reaction with 95uC denaturation step and then 45 cycles of

touchdown annealing temperature. Primer sequences are indicat-

ed in Figure 2. The genomic sequences of the miR-206 gene was

deposited in GenBank, Accession number FJ469647.

Transient transfection and luciferase assay
Expression plasmids of SHP, ERRc, YY1, c-Jun, and c-Fos

were cloned into the pcDNA3 vector. Luciferase reporters of miR-

206 and YY1 were cloned into the pGL3 reporter construct

(Promega, Madison, WI). Twenty four hours before transfection,

56104 cells were plated per well in a 24-well plate. 30 ng of miR-

206 or YY1 luciferase reporter construct, different concentrations

of expression plasmid, and 30 ng of beta-gal plasmid pSV-b-

Galactosidase Control Vector (Promega, Madison, WI) were

transfected using FuGENE HD (Roche, Indianapolis, IN).

Different amounts of expression vector pcDNA3 were added to

keep the final amount of DNA constant for all transfections. Thirty

six hours after transfection, luciferase and b-galactosidase assays

were performed using the Luciferase Assay System system and

Beta-GloH Assay System (Promega, Madison, WI). Luciferase

activities were normalized to galactosidase activities for each

transfected well. For each experimental trial, wells were transfect-

ed in triplicate and each well was assayed in triplicate.

Chromatin immunoprecipitation (ChIP) assays
ChIP Assays were performed using the ChIP Assay Kit (Upstate

Biotechnology, Lake Placid, NY). Hepa-1 cells were cultured until

70%–80% confluence. Chromatin was cross-linked with 1%

formaldehyde at 37uC for 10 min. Cells were washed with cold

PBS twice and disrupted in SDS Lysis Buffer containing the

protein inhibitor cocktail. Chromatin was sonicated to shear DNA

to an average length between 200 bp and 1000 bp as verified by

agarose gel. The sonicated cell supernatants were diluted 10 fold in

ChIP Dilution Buffer containing the protein inhibitor cocktail and

an aliquot of the solution was reserved for input control. Ten

micrograms of YY1 (Abcam, Cambridge, MA), ERRc (Aviva

Systems Biology, San Diego, CA), or c-Jun (Abcam, Cambridge,

MA) antibodies were added and the chromatin solution was gently

rotated overnight on ice. The protein A agarose slurry was added

to the antibody bound chromatin solution and incubated at 4uC
for 1 hr with constant rotation. The agarose beads were collected

by centrifugation, washed and the antibody bound chromatin was

released from the agarose beads. Finally, the DNA was purified by

phenol/chloroform extraction and ethanol precipitation. The

binding region was detected using primers in PCR reactions. A

10 kb region downstream from the binding site was used as

negative control (n.s.). All ChIP primers used for miR-206

promoter and YY1 promoter are indicated in Figure 2-1 and

Figure S2b. The non-specific primers for miR-206 promoter ChIP

assays are: F: 59-CTACTTATGCAGCTAGAGATACAAG-39

and R: 59-ACTTCCAATAAGTCTTTGACCCATG-39.

RNA interference (RNAi)
ShRNA constructs against Mus musculus ERRc, SHP, YY1 and

c-Jun were purchased from Origene Company (Rockville, MD).

SHP Activates miR-206
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Nmuli cells were cultured until 70%,80% confluence. ShRNA

constructs were transfected into the cells using transfection reagent

Fugene HD (Roche) according to the manufacturer’s instructions.

The level of miR-206 expression was determined using real-time

PCR.

Statistical analysis
All the experiments were repeated at least three times and the

error bars represent the standard error of the mean (SEM).

Statistical analyses were carried out using Student’s unpaired t test;

p,0.01 was considered statistically significant.

Supporting Information

Table S1 MiRNAs with the largest magnitude of down-

regulation in SHP2/2 mice. miR-206 and miR-133b were

clustered on chromosome 1, whereas miR-1 and miR-133a were

clustered on chromosome 2. The expression level of miR-206 was

markedly higher than miR-133b, and the expression level of miR-

1 was markedly higher than miR-133b.

Found at: doi:10.1371/journal.pone.0006880.s001 (1.30 MB TIF)

Table S2 Down-regulated miRNAs in SHP2/2 mice on

chromosome 1.

Found at: doi:10.1371/journal.pone.0006880.s002 (1.30 MB TIF)

Figure S1 (a) Determining the putative transcriptional initiation

site (TIS) by 59-RACE for pri-miR-206. Total liver RNA was

isolated using RNeasy Mini Kit (Qiagen, Valencia CA) and

mRNA was isolated using a Oligotex Direct mRNA Mini Kit

(Qiagen, Valencia CA). A GeneRacer Kit (Invitrogen, California

USA) was used to map the transcriptional initiation site of the

primary transcript. (b) Chromatogram of 59 RACE sequences of

the pri-miR-206 primary transcript. The putative transcriptional

initiation site of pri-miR-206 (G) is indicated by a pink arrow.

Found at: doi:10.1371/journal.pone.0006880.s003 (3.89 MB TIF)

Figure S2 Mutagenesis assays. Two upstream putative AP1 sites

(sites 1&2) (see Figure 2–1 for the location of each site) of the miR-

206 promoter was mutated by using the QuickChange XL site-

Directed Mutagenesis Kit (Stratagene), which generated the

mutated miR-206 promoter luciferase reporter mut1 (single AP1

site 1 mutation) and mut1-2 (double AP1 sites 1&2 mutation). For

luciferase reporter experiments, 30 ng of wt, mut1, mut1-2 and

30 ng of b-gal plasmid pSV-b-Galactosidase control vector were

co-transfected with the AP1 expression vector (80 ng) into Hela

cells using FuGENE HD (Roche). Thirty six hours after

transfection, luciferase and b-galactosidase assays were performed

using the Luciferase Assay System system and Beta-GloH Assay

System (Promega). Luciferase activities were normalized to

galactosidase activities for each transfected well. For each

experiment, wells were transfected in triplicate and each well

was assayed in triplicate.

Found at: doi:10.1371/journal.pone.0006880.s004 (3.89 MB TIF)

Figure S3 (a) Cloning of the high GC content mouse YY1

promoter. The PCR product was cloned into a pGL3-basic vector

and used for transfection assays. The construct was verified by

sequencing. (b) YY1 promoter sequences. TSS, transcriptional

start site; ERRE, putative ERR binding site; YY1 pro. F and R,

forward and reverse primers used to clone the YY1 promoter

(pro.) and for ChIP assays.

Found at: doi:10.1371/journal.pone.0006880.s005 (3.89 MB TIF)

Figure S4 Real-time PCR analysis of miR-206 expression in

skeletal muscle of SHP2/2 and SHP+/+ mice. Data is

represented as mean6SEM. *Significantly different (p,0.01).

Found at: doi:10.1371/journal.pone.0006880.s006 (3.89 MB TIF)
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