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Introduction: The development and prognosis of HCC involve complex molecular mechanisms, which
affect the effectiveness of its treatment strategies. Tumor mutational burden (TMB) is related to the effi-
cacy of immunotherapy, but the prognostic role of TMB-related genes in HCC has not yet been deter-
mined clearly.
Objectives: In this study, we identified TMB-specific genes with good prognostic value to build diagnostic
and prognostic models and provide guidance for the treatment of HCC patients.
Methods: Weighted gene co-expression network analysis (WGCNA) was applied to identify the TMB-
specific genes. And LASSO method and Cox regression were used in establishing the prognostic model.
Results: The prognostic model based on SMG5 and MRPL9 showed patients with higher prognostic risk
had a remarkedly poorer survival probability than their counterparts with lower prognostic risk in both
iversity,
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Immune checkpoint
 a TCGA cohort (P < 0.001, HR = 1.93) and an ICGC cohort (P < 0.001, HR = 3.58). In addition, higher infil-
trating fractions of memory B cells, M0 macrophages, neutrophils, activated memory CD4 + T cells, fol-
licular helper T cells and regulatory T cells and higher expression of B7H3, CTLA4, PD1, and TIM3 were
present in the high-risk group than in the low-risk group (P < 0.05). Patients with high prognostic risk
had higher resistance to some chemotherapy and targeted drugs, such as methotrexate, vinblastine
and erlotinib, than those with low prognostic risk (P < 0.05). And a diagnostic model considering two
genes was able to accurately distinguish patients with HCC from normal samples and those with dysplas-
tic nodules. In addition, knockdown of SMG5 and MRPL9 was determined to significantly inhibit cell pro-
liferation and migration in HCC.
Conclusion: Our study helps to select patients suitable for chemotherapy, targeted drugs and
immunotherapy and provide new ideas for developing treatment strategies to improve disease outcomes
in HCC patients.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

As the most common type of primary liver cancer, hepatocellu-
lar carcinoma (HCC) is listed as the sixth most common tumor and
the fourth leading cause of cancer-related death worldwide, bring-
ing a heavy health burden to society [1]. Since HCC is usually diag-
nosed at an advanced stage, it is not suitable for surgical treatment,
such as radical liver resection or liver transplantation; as such, the
prognosis of patients is usually poor, and the probability of recur-
rence is high [2]. The molecular mechanisms leading to the evolu-
tion of HCC tumors are extremely complex, involving multiple
genetic abnormalities, including genomic instability, single nucleo-
tide polymorphisms (SNPs), somatic mutations, and dysregulation
of signaling pathways related to HCC occurrence and development
[3,4]. Analysis of the complex relationship between genes, proteins
and other molecules aids the understanding of the underlying
oncogenic molecular mechanisms of HCC; in addition, specific gene
expression characteristics obtained from such analysis may help
accurately predict the risk of HCC and be translated into novel
diagnostic, prognostic and treatment indicators in clinical inter-
ventions, providing new options for treatment [5,6].

In recent years, immunotherapy, including immune checkpoint
inhibitors, has attracted wide attention in the field of anticancer
therapy as a new treatment option [7]. Many studies have con-
firmed that multiple types of tumor cells, including HCC cells, carry
new antigens induced by gene mutations on the surface that may
be recognized by the immune system, making them targets for
activated immune cells [8–10]. However, there is currently no reli-
able molecular predictive marker that can clarify which HCC
patients respond to immunotherapy. Tumor mutation burden
(TMB) has been proven to be related with the efficacy of
immunotherapy; the higher the TMB is, the better the tumor
remission effect and clinical benefits obtained from immunother-
apy [11,12]. TMB is interpreted as the total number of nonsynony-
mous mutations occurring in each coding region in the tumor
genome [13]. Some studies have shown that some types of cancer
(such as non-small-cell lung cancer and colorectal cancer) with
high TMB values are likely to have a poor prognosis [14,15], but
the prognostic value of the TMB in HCC has not yet been deter-
mined clearly.

The rise of high-throughput sequencing technology creates an
opportunity to find specific gene expression characteristics that
can effectively predict the risk and prognosis in HCC [16]. In this
study, we conducted comprehensive analysis on the genomic
sequence in HCC and identified genes bearing important mutations
contributing to TMB and closely related with the prognosis in HCC
patients to establish diagnostic and prognostic models for HCC. We
assessed the capability of the prognostic model in predicting the
response to chemotherapy, targeted drugs and immune checkpoint
inhibitors in HCC patients. Our findings will help develop individ-
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ualized therapeutic plans for HCC patients and improve their dis-
ease outcomes.
Materials and Methods

Determination of differentially expressed hub genes in HCC

The mRNA sequence and corresponding clinical information of
HCC patients were obtained from the TCGA database, including
19,676 annotated mRNA sequences and data from 370 HCC tissue
samples and 50 normal tissue samples. The limma R package was
performed to determine differentially expressed genes (DEGs) with
cut-off values of absolute log 2-fold change (FC) > 1 and adjusted P
value < 0.05.

Calculation of TMB and definition of high- and low-TMB groups

Somatic mutation profiles were downloaded from the General
Genomic Data (GDC) website. Maftools were adopted to evaluate
somatic mutations. The formula used to calculate the TMB was
as follows: TMBi = 1.0 * NTMi + 1.5 * TMi [17].

TMBi represents the TMB of sample i. NTMi represents the total
number of nontruncated mutations, including missense, in-frame
deletion, in-frame insertion and nonstop deletions. TMi represents
the total number of truncated mutations, including nonsense,
frame-shift deletion, frame-shift insertion, and splice-site dele-
tions. Silent mutations were not integrated into the calculation of
TMB because they do not cause any downstream changes. Accord-
ing to Foundation Medicine official reports, TMB levels were
divided into three groups: low (1–5 mutations/mb), intermediate
(6–19 mutations/mb), and high (�20 mutations/mb) [18]. In this
study, we classified samples with TMB < 6 mutations/mb into the
low TMB group and samples with TMB � 20 mutations/mb into
the high TMB group.

WGCNA for identifying the TMB-specific module

WGCNA was applied in identifying the HCC TMB-specific mod-
ule using the R package ‘‘WGCNA” [19,20]. The expression profiles
of DEGs between HCC patients and normal samples in the TCGA
database were used as input for the WGCNA, and TMB was calcu-
lated and defined as the phenotype of the sample. A signed scale-
free co-expression gene network was ensured through setting the
power of b = 10 and scale-free R2 of 0.90 as the soft threshold
parameters. A co-expression matrix was established based on the
b value and the input gene expression matrix to classify genes with
similar expression patterns into the same gene module, thereby
generating co-expression modules. The correlation between the
module Eigengenes (ME) and TMB was calculated using the Eigen-
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genes function. A heat map was adopted to visualize the correla-
tion between each module and TMB. And the dark green module
depicted the highest correlation with TMB among these modules
was identified as the TMB-specific module. Then, the correlation
matrix between the TMB and the genes in the TMB-specific module
was calculated.

Gene set variation analysis (GSVA) of the genes in the TMB-specific
module

GSVA was accomplished with the R package ‘‘GSVA” [21] to
evaluate differentially enriched metabolic pathways in which
genes in the TMB-specific module were involved. Pathways used
for GSVA were obtained from the Molecular Signatures Database
(MSigDB) (http://software.broadinstitute.org/gsea/msigdb).

Determination of genes in the TMB-specific module closely related to
the prognosis in HCC

Cox regression and the LASSO method were adopted to assess
the prognostic value of the genes in the HCC TMB-specific module.
We first used univariate Cox regression to choose genes associated
with the prognosis of HCC. Genes with P < 0.05 represents statisti-
cal significance. The LASSO method with an L1 penalty was per-
formed to determine the genes with the greatest impact on the
prognosis of HCC. LASSO applies an L1 penalty to reduce the
regression coefficient and reduce the number of indicators with a
final weight of nonzero, thus determining the indicators with the
highest contribution [22]. In this study, LASSO to cut down the
number of genes was accomplished by the glmnet package in R
using 10-fold cross validations and 1000 iterations. Related param-
eters were set as follows: max_iter = 1000 and cv = 10. After 1000
iterations of LASSO, the higher the nonzero coefficient, the stronger
the capability of the corresponding gene in predicting prognosis
was. The selected genes were then incorporated in a multivariate
Cox regression model and the gene set with the best prognostic
value of HCC was determined through forward selection and back-
ward elimination.

Establishment and validation of a prognostic model

A prognostic model was constructed from the gene set identi-
fied by the multivariate Cox regression. The prognostic score for-
mula was organized as follows: prognostic index (PI) = (b1 *
expression level of SMG5) + (b2 * expression level of MRPL9). The
median was set as a threshold to divide HCC patients with survival
data into high-risk and low-risk groups. The predictive perfor-
mance of the prognostic model was examined by K-M curves and
ROC curve analysis.

Construction and assessment of a predictive nomogram

Independence analysis of the prognosis-predicting ability of the
prognostic model compared to traditional clinical prognostic vari-
ables (containing age, AFP, weight, vascular tumor cell invasion,
sex, pathologic grade and TNM stage) was carried out using uni-
variate and multivariate Cox regression analyses. The confirmed
independent predictive factors were integrated to construct a
nomogram and corresponding calibration map via ‘‘rms” R soft-
ware. The calibration curves and consistency index (C-index),
which was calculated via a bootstrap method with 1000 resamples,
were applied in measuring the consistency between the predicted
results of the nomogram and the actual results. ROC curves were
generated to compare the specificity and sensitivity of the predic-
tion ability of the nomogram with single independent predictors.
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Decision curve analysis (DCA) was employed to analyze the clinical
benefits achieved by the predictive results of the nomogram com-
pared to those of single independent predictors.

Validation of the prognostic value of gene expression for HCC

Further validation of the prognostic value of SMG5 and MRPL9
was performed in the HCC cohort from the UALCAN database.
The Wilcoxon signed-rank test was employed to analyze the
expression differences of SMG5 and MRPL9 between tumor tissues
and nontumor tissues and examine the effect of the expression of
the two genes on the survival time and recurrence time of HCC
patients.

Determination of immune cell infiltration

CIBERSORT analysis was adopted to quantitatively convert tran-
scriptome data into the absolute abundance of immune cell and
matrix cell types in heterogeneous tissues to evaluate the propor-
tions of 22 human immune cell subsets [23]. Standard annotation
files were used to organize gene expression profiles. mRNA data
converting into infiltration levels of nontumor cells in tumor
microenvironments was realized using the R package
‘‘CIBERSORT”.

Cell culture and siRNA treatment

Human hepatocellular carcinoma cell lines (including SK-HEP1
and LM3) were obtained from the American Type Culture Collec-
tion (ATCC) (Manassas, VA, USA). The cells were cultured in DMEM
containing 10% fetal bovine serum (FBS), 2 mM L-glutamine and
100 U/ml penicillin–streptomycin solution at 37 �C in 5% CO2 in
an incubator.

SMG5 and MRPL9 siRNAs were synthesized by GeneChem
(Shanghai, China) and transfected into cells using Lipofectamine
2000 (Invitrogen, California, USA) according to the manufacturer’s
instructions. The cells were cultured in basic DMEM media for 6–
8 h before the media was for DMEM media containing FBS and
penicillin–streptomycin.

Western blot analysis

RIPA lysis buffer (Invitrogen) containing PMSF (Bio-Rad, Shang-
hai, China) was used to collect proteins from SK-HEP1 and LM3
cells. 10% sodium dodecyl sulfate–polyacrylamide gel elec-
trophoresis (SDS-PAGE) was applied in separating protein samples
and a polyvinylidene fluoride membrane (PVDF) membrane (Invit-
rogen, Carlsbad, USA) was used to transfer the separated protein.
The membrane was blocked in 5% skim milk at room temperature
for 2 h in a shaker, and then incubated with the primary antibody
at 4 �C overnight and subsequent incubation with the secondary
antibody for 2 h. The blots were detected and imaged using the
iBright FL1500 intelligent imaging system (Invitrogen, Carlsbad,
USA). The details of antibodies in this study are listed in the sup-
porting information.

Quantitative reverse transcription-polymerase chain reaction (qRT-
PCR)

Total RNA was extracted from cultured SK-HEP1 cells and LM3
cells using TRIzol� reagent (Invitrogen, Carlsbad, USA) following
the manufacturer’s protocol. Then, the RevertAid First Strand cDNA
Synthesis kit (Thermo Fisher Scientific, USA) was used for reverse
transcribing total RNA to cDNA, and qRT-PCR was performed using
Real-time PCR Master Mix (SYBR Green; TOYOBO, Japan). The rel-
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ative expression (fold change) of the target genes was determined
using the 2-DDCTmethodology. b-Actin served as the internal con-
trol. Each experiment was repeated at least three times. The pri-
mers used for qRT-PCR were purchased from RiboBio Co.Ltd. The
primers used for qRT-PCR are listed in the supporting information.
Cell proliferation assay

After transfection with SMG5 and MRPL9 siRNA for 48 h, SK-
HEP1 and LM3 cells were cultured in 96-well plates (3000 cells/-
plate in 200 ml DMEM). The proliferative capacity of treated cells
was detected at 0, 24, 48 and 72 h. Cell Counting Kit-8 (CCK8)
reagent (Yeasen, Shanghai, China) was added to each plate accord-
ing to the kit instructions, and the OD450 value was analyzed by a
microplate spectrophotometer (Thermo Fisher Scientific, MA, USA).
Cell proliferation was also measured using 5-ethynyl-20-
deoxyuridine (EdU) agent (Ruibo, Guangzhou, China), and the
EdU assay was conducted following the manufacturer’s protocol.
Transwell migration assay

SK-HEP1 and LM3 cells were transfected with SMG5 and MRPL9
siRNA for 48 h and cultured in 24-well culture plates with 8 mm
pore-containing membrane inserts to measure cell migration
capacity. Serum-free DMEM was added to the upper chamber,
and DMEM (Gibco, NY, USA) supplemented with 10% fetal bovine
serum was added to the lower chamber. Cells were incubated at
37 �C for three days. Cells in the lower chamber (below the mem-
brane) were stained with 0.4% trypan blue (Invitrogen) and
counted under a light microscope. Each experiment was repeated
three times.
Statistical analyses

R language (version 3.5.2) and GraphPad Prism 7 software (ver-
sion 7.0) were used to perform statistical analysis and generate fig-
ures. Differences in data with a normal distribution between paired
groups were compared using Student’s t-tests, and the results are
exhibited as the mean ± standard deviation (SD). Differences in
data with a nonnormal distribution between paired groups were
compared using the Wilcox rank sum test, and the results are
expressed as the median (interquartile range). P < 0.05 was consid-
ered to represent statistical significance.
Results

Acquisition of differentially expressed hub genes in TMB in HCC

The TMB characteristics for the TCGA HCC cohort and ICGC HCC
cohort are presented in Fig. 1A,B. We identified 6,800 HCC-related
DEGs from TCGA (Fig. 1C). Through WGCNA, we grouped these
genes into modules to aggregate genes with similar traits (Fig-
ure S1). Then, the ‘‘dark green” module with the highest correlation
with TMB (Cor = 0.15, P < 0.01) was identified as the HCC TMB-
specific module (Fig. 1D). Fig. 1E indicates that there is a close cor-
relation between the expression characteristics of genes in the
TMB-specific module and TMB level. Then, GSVA was performed
on the genes in this module. A total of 50 hallmark pathways
obtained from the Molecular Signatures Database (MSigDB)
(http://software.broadinstitute.org/gsea/msigdb) were incorpo-
rated in the analysis (Table S1). We found that the gene set was
mainly enriched in the heme metabolism and apoptosis signaling
pathways in HCC patients (Fig. 1F).
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Comprehensive analysis to determine the association of genes and the
prognosis of HCC

Cox regression and the LASSO method were performed on 370
HCC samples with survival data from TCGA to determine the prog-
nostic relevance of the genes in the HCC TMB-specific module. The
univariate Cox regression results indicated that the expression of
41 genes was clearly correlated with the prognosis of HCC
(P < 0.05) (Table S2). Then, 5 of these genes were further selected
through the LASSO method with 10-fold cross validation in 1000
substitution samplings (Figure S2). The subsequent multivariate
Cox regression analysis finally determined that 2 genes (SMG5
and MRPL9) could serve as markers for the prediction of prognosis
in HCC (P < 0.05) (Table S3).
Construction of the prognostic model and validation of its predictive
performance

A prognostic model based on the 2 genes (SMG5 and MRPL9)
was constructed. The prediction score of the model was calculated
as follows: PI = (0.369 * expression level of SMG5) + (0.404 *
expression level of MRPL9). A total of 370 HCC samples with sur-
vival data from TCGA were employed as a training set, and 243
HCC samples with survival information from ICGC were adopted
as a validation set to assess the predictive performance of the prog-
nostic model. HCC samples were divided into high-risk and low-
risk groups using the median as a threshold. K-M curves indicated
that patients with high risk had a significantly lower overall sur-
vival (OS) probability than their counterparts in both the training
set (P < 0.001, HR = 1.93) (Fig. 2A) and validation set (P < 0.001,
HR = 3.58) (Fig. 2D). Fig. 2B and 2E show the expression profiles
of SMG5 and MRPL9 and the prognostic risk of HCC patients. The
AUC values of ROC curves at 0.5, 1, 3, and 5 years reached 0.72,
0.75, 0.66, and 0.67, respectively, in the training set (Fig. 2C) and
0.62, 0.69, 0.72 and 0.71, respectively, in the validation set
(Fig. 2F), confirming the high specificity and sensitivity of the prog-
nostic model for predicting the prognosis of HCC. We then further
explored the correlation between the prognostic model and TMB in
the HCC cohort from TCGA and confirmed that the prognostic score
of HCC patients was positively correlated with TMB (Figure S3).
Construction and validation of a nomogram integrating independent
predictive factors

370 HCC samples with clinical information from TCGA was
adopted to evaluate the independent performance of the prognos-
tic score in predicting prognosis compared with that of clinical
characteristics (including age, AFP, weight, vascular tumor cell
invasion, sex, pathologic grade and TNM stage) using univariate
and multivariate Cox regression analyses. The results determined
that age (P < 0.05, HR = 1.735), TNM stage (P < 0.05, HR = 2.218)
and the prognostic score (P < 0.05, HR = 1.905) were independent
predictive factors of prognosis in HCC (Fig. 3A) (Table S4). A nomo-
gram based on these independent predictive factors was estab-
lished to quantify survival probability in HCC patients at 1, 3 and
5 years (Fig. 3B). The calibration curves of the nomogram were
close to the 45� line (Fig. 3C–E), and the C-index was 0.65, indicat-
ing high consistency between the nomogram’s prediction and
actual results. ROC curves confirmed that the specificity and sensi-
tivity of the nomogram for predicting prognosis were superior to
those of any single independent predictive factor (Fig. 3F–H).
DCA also demonstrated that prognosis prediction through the
nomogram provided the best clinical benefits, suggesting that the
nomogram has operational value in clinical practice (Fig. 3I–K).

http://software.broadinstitute.org/gsea/msigdb


Fig. 1. Identification of DEGs affecting TMB in HCC. A and B Characteristics of TMB for the TCGA HCC cohort (A) and ICGC HCC cohort (B). C DEGs in the TCGA HCC cohort. D
Modules with different traits identified via WGCNA. E Determination of genes in the HCC TMB-specific module. F GSVA for genes in the HCC TMB-specific module.

Fig. 2. Survival analysis results, distribution of risk scores, and predictive performance in the training set (A-C) and validation set (D-F). A and D K-M curves showing the
prognosis differences between the high-risk and low-risk groups. B and E Distribution of prognostic risk and expression of SMG5 and MRPL9 in patients with HCC. C and F ROC
curves for validating the specificity and sensitivity of the prognosis model.
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Fig. 3. The independence of the prognosis model its correlation with clinical pathological features in prognosis prediction. A Forest map showing independent predictive
factors for prognosis in HCC. B Nomogram for predicting the survival probability in HCC patients at 1, 3 and 5 years. C-E Calibration charts for validating the predictive
accuracy of the 1-year, 3-year, and 5-year survival probabilities of the nomogram. F-H ROC curves comparing the predicted performance of the nomogram and single
independent predictive factors. I-K Evaluation of the clinical benefits that the nomogram can achieve.
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Determination of differences in immune cell infiltration and immune
checkpoint expression in the high-risk and low-risk groups

We determined the level of immune cell infiltration in the TCGA
cohort, and the median was used to divide HCC patients with prog-
nostic data into high-risk and low-risk groups. Fig. 4A shows the
expression of multiple subtypes of human leukocyte antigen
(HLA) in the high-risk and low-risk groups. The distributions of
158
prognosis risk and the 22 infiltrating immune cell fractions in
tumor tissues are shown in Fig. 4B. Comparing with the low-risk
group, the high-risk group exhibited a higher proportion of infil-
trating memory B cells, M0 macrophages, neutrophils, activated
memory CD4 + T cells, follicular helper T cells and regulatory T cells
within tumor tissues (Fig. 4C–H). We found that the T cell receptor
signaling pathway enrichment score was obviously higher in high-
risk patients comparing with low-risk patients (Figure S4).



Fig. 4. The correlation between immune cell infiltration and the expression of immune checkpoints and prognostic model components. A HLA subtype expression in high-risk
and low-risk patients. B Distribution of prognostic risk and immune cell infiltration within tumor tissues in patients with HCC. C-H Violin charts revealing the relationship
between the fraction of immune cells and prognostic risk score (C memory B cells; D M0 macrophages; E neutrophils; F activated memory CD4 T cells; G follicular helper T
cells; H regulatory T cells). I Distribution of prognostic risk score and immune checkpoint expression in patients with HCC. J The association between prognosis risk and
immune checkpoints. K-N Column charts showing the expression of immune checkpoints in high-risk and low-risk patients (K PD1; L B7H3; M CTLA4; N TIM3).
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As an innovative therapy, immunotherapy based on immune
checkpoint inhibitors is gradually being used in the treatment of
various types of advanced cancer. Tumors usually upregulate
immune checkpoints to avoid detection and killing by the immune
system, while immune checkpoint inhibitors can rejuvenate host
immune cells and target the adaptive immune system to tumor
cells [24]. Fig. 4I shows expression profiles of immune checkpoint
molecules and prognostic risk for 370 HCC samples from TCGA. The
correlation between prognosis risk score and the expression of
immune checkpoints is visualized in Fig. 4J. We found that a posi-
tive correlation was exhibited between prognosis risk score and
immune checkpoints such as B7H3 and CTLA4 (Table S5). Then,
we further revealed that higher relative expression of PD1, B7H3,
CTLA4 and TIM3 was presented in patients with higher prognostic
risk comparing with patients with lower prognostic risk (Fig. 4K–
159
N), suggesting that patients with high risk may obtain more clinical
benefits from immunotherapy.

Prediction of therapeutic response to chemotherapy drugs and
targeted drugs according to prognostic risk in patients with HCC

Chemotherapy and targeted drugs are common treatments for
patients with HCC, especially suitable for patients with HCC who
cannot undergo surgery to reduce tumor volume and prolong their
survival as is postoperative adjuvant chemotherapy to inhibit the
recurrence and progression of tumor [25], but drug resistance is
a critical issue influencing the effectiveness of anticancer drugs.
We evaluated the therapeutic response of HCC patients to 266 anti-
cancer drugs on the Genomics of Drug Sensitivity in Cancer (GDSC)
website with reference to half the maximum inhibitory concentra-



Fig. 5. Response of HCC patients to chemotherapy drugs. A-O Differences in
response to chemotherapy drugs between high-risk and low-risk patients. P Top 5
signaling pathways positively regulated by the TMB-specific prognostic model. Q
Top 5 signaling pathways negatively regulated by the TMB-specific prognostic
model.
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tion (IC50). The responses of HCC patients to traditional
chemotherapeutic drugs and molecularly targeted chemothera-
peutic drugs such as methotrexate, vinblastine, erlotinib and gefi-
tinib are presented in Fig. 5A–O. We found that more resistance to
chemotherapy was exhibited in high-risk patients were than in
low-risk patients (P < 0.05). The top 5 positively regulated path-
ways are presented in Fig. 5P, and the top 5 negatively regulated
pathways are presented in Fig. 5Q. Through GSEA, we found that
the prognosis model was related to signaling pathways involved
in physiological processes including the cell cycle, mismatch repair
and spliceosome signaling, and biological processes including the
cell cycle [26], mismatch repair [27] and spliceosome signalling
[28] were shown to have a regulatory effect on cancer cell
chemoresistance in previous studies, and differences in these path-
ways in patients may lead to different prognosis risks and different
resistance to chemotherapy.

Construction and validation of diagnostic models to accurately
distinguish patients with HCC from normal subjects and those with
dysplastic nodules

For improving the probability of early detection in HCC, a step-
wise logistic regression method was performed to build a diagnos-
tic model. The diagnostic formula is determined as follows: logit
(P-HCC) = -7.819 + (0.160 � SMG5 expression level) + (1.014 � M
RPL9 expression level). 50 normal samples and 50 paired HCC sam-
ples from TCGA were used as a training set, and 202 normal sam-
ples and 210 paired tumor samples from ICGC were adopted as a
validation set to determine the performance of the diagnostic
model. The results suggested that the diagnostic model achieved
88.00% specificity and 84.00% sensitivity in the training set
(Fig. 6A) and 92.57% specificity and 85.71% sensitivity in the valida-
tion set (Fig. 6C). The AUCs of the training set and validation set
were 0.928 (Fig. 6B) and 0.950 (Fig. 6D), respectively, confirming
that the diagnostic model made a accurate distinction between
HCC and normal subjects. Fig. 6C and 6G show the distribution of
SMG5 and MRPL9 expression in HCC samples, as well as the pre-
dicted disease status and actual status. High expression of SMG5
and MRPL9 was exhibited in HCC patients. Next, we explored the
relationship between SMG5 and MRPL9 and revealed that there
is a positive correlation between the expression levels of the two
genes (P < 0.001) (Fig. 6F and H).

Currently, early diagnosis of HCC mainly relies on radiology
examination combined with pathological diagnosis, but small nod-
ules<2 cm have an increased likelihood of being missed because
they are difficult to characterize via pathological or radiology
examination [29]. We built a diagnostic model integrating SMG5
and MRPL9 in a training set (GSE6467) with 35 HCC samples and
17 dysplastic nodule samples to detect whether HCC and dysplas-
tic nodules could be accurately distinguished. The diagnostic for-
mula was identified as follows: logit (P-HCC) = -51.308 +(2.
967 � SMG5 expression level) + (3.966 � MRPL9 expression level).
GSE98620, which contains data from 49 HCC samples and 24 dys-
plastic nodule samples, was adopted as a validation set to further
validate the diagnostic capability of the diagnostic model. The
results determined that the diagnostic model could correctly dis-
tinguish HCC from dysplastic nodules, with specificity of 82.35%
and sensitivity of 91.43% in the training set (Fig. 6I) and specificity
of 54.17% and sensitivity of 77.55% in the validation set (Fig. 6K).
The AUC reached 0.948 in the training set (Fig. 6J) and 0.776 in
the validation set (Fig. 6L), indicating high consistency between
predicted diagnostic status and actual status. The expression of
SMG5 and MRPL9 in patients, predicted disease status and actual
status are shown in Fig. 6M and P. Consistent with the above find-
ing, the expression levels of SMG5 and MRPL9 were positively cor-
related (P < 0.001) (Fig. 6N and 6P).
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Determination of the correlation of SMG5 and MRPL9 with prognosis
and recurrence of HCC

We explored the expression characteristics of SMG5 and MRPL9
through the online database Oncomine and the data visualization
platform GEPIA for external validation. We found that in the Onco-
mine database, higher expression levels of SMG5 and MRPL9 was
exhibited in tumor tissues compared to normal tissues (Fig. 7A,
B), and the results of analysis in GEPIA were similar (Fig. 7C,D). A
log-rank test and K-M curve analysis were conducted to further
assess the predictive value of SMG5 and MRPL9 expression for
prognosis and recurrence in HCC. The results determined that
patients with HCC and higher expression levels of SMG5 and
MRPL9 had remarkedly shorter survival time (Fig. 7E,F) and lower
relapse-free survival (RFS) time (Fig. 7G,H) than those with lower
expression levels of SMG5 and MRPL9. The above findings con-
firmed that the prognostic model based on SMG5 and MRPL9 is



Fig. 6. A diagnostic model for differentiating HCC from normal (A-H) and dysplastic nodule (I-P) samples. A and C Confusion matrix of the binary results in the diagnostic
model for distinguishing HCC and normal subjects. B and D ROC curves confirming the predictive accuracy of the diagnostic model. E and G Expression levels of SMG5 and
MRPL9 in patients with HCC: distribution of the predicted results and actual results. F and H The correlation between the expression of SMG5 and MRPL9. I and K The
specificity and sensitivity of the diagnostic model for distinguishing HCC lesions from dysplastic nodules. J and L ROC curves validating the predictive performance of the
diagnostic model. M and O Expression characteristics of SMG5 and MRPL9 in patients with HCC: distribution of the predicted results and actual results. N and P Positive
correlation of SMG5 and MRPL9 expression levels.

B. Tang, J. Zhu, Z. Zhao et al. Journal of Advanced Research 33 (2021) 153–165
reasonable and holds value in clinical practice. Besides, we used
the data of HCC patients in the TCGA-LIHC cohort to evaluate the
correlation between SMG5 and MRPL9 and immune cells in the
TIMBER database. Fig. 7I,J shows that the expression of these two
genes conducted correlation with the infiltration level of immune
cells, such as B cells, CD4 + T cells, macrophages, and neutrophils.

Measurement of the oncogenic effect of SMG5 and MRPL9 in HCC cells

To further explore the role of SMG5 and MRPL9 on the prolifer-
ation and migration of HCC cells, the expression of SMG5 and
MRPL9 in human LO2 hepatocytes and different HCC cell lines
was detected using qPCR. The results showed that SMG5 and
MRPL9 exhibited the highest expression in SK-HEP1 and LM3 cells
(Figure S5A and S5B), so we used SKHEP1 and LM3 to perform
follow-up experiments. We knocked down the levels of SMG5
and MRPL9 in HCC cell lines (including SK-HEP1 and LM3 cells).
Western blotting showed that the administration of SMG5 siRNA
and MRPL9 siRNA significantly inhibited the expression of SMG5
and MRPL9 in cells (Fig. 8A–D). The CCK assay indicated that both
SMG5 inhibition (Fig. 8E and G) and MRPL9 inhibition (Fig. 8F and
161
8H) significantly inhibited the proliferation of HCC cells. The EdU
assay also determined that SMG5 and MRPL9 inhibition showed
a significant inhibitory effect on the proliferation of SK-HEP1 cells
and LM3 cells. (Fig. 8I,J). In addition, the results of transwell anal-
ysis revealed that SMG5 and MRPL9 inhibition obviously inhibited
the migration of SK-HEP1 cells and LM3 cells (Fig. 8K–L). The quan-
titative statistics are presented in Fig. 8M–P. The findings above
confirmed that the expression of SMG5 and MRPL9 had a close
association with the proliferation and migration of HCC cells and
further confirmed the value of SMG5 and MRPL9 in predicting
the prognosis of HCC.
Discussion

HCC is a major health problem worldwide with its increasing
morbidity and mortality [30]. HCC exhibits obvious molecular
heterogeneity, including various somatic genome mutations in
addition to epigenetic modifications [2]. However, to date, no pro-
posed molecular markers can accurately predict the prognosis or
recurrence of HCC. TMB is a characteristic representing the total



Fig. 7. The value of SMG5 and MRPL9 in predicting the prognosis and recurrence of HCC. A-B The expression of SMG5 (A) and MRPL9 (B) as assessed in Oncomine. C-D The
expression of SMG5 (C) and MRPL9 (D) as assessed in GEPIA. E-F Survival analysis for SMG5 (E) and MRPL9 (F). G-H Recurrence analysis for SMG5 (G) and MRPL9 (H). I-J The
correlation of the expression of SMG5 (I) and MRPL9 (J) with the infiltration of different immune cells.
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number of somatic coding mutations in tumors [31]. There is
increasing evidence that TMB has value as a potential biomarker
in non-small-cell lung cancer, rectal cancer and other cancer types
[18,32,33]. Therefore, identifying and utilizing genes that carry
mutations that provide important contributions to TMB may help
optimize the early diagnosis of HCC and predict the prognostic risk
of patients.

The increased ease of use of high-throughput sequencing tech-
nology opens up opportunities for us to better understand the
pathological process of HCC and identify key genes involved in
the carcinogenesis of HCC [34]. In this study, we focused our
research on those mutated genes mostly intricately involved in
TMB and tried to clarify the prognostic and diagnostic value of
these key genes in HCC through a series of comprehensive analyses
to accurately stratify the disease risk of patients with HCC and
develop individualized treatments. We used integrated analysis,
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Cox regression, and the LASSO method to determine that SMG5
and MRPL9 have strong prognostic value in HCC. Knockdown of
SMG5 and MRPL9 was determined to significantly inhibit cell pro-
liferation and migration in HCC, suggesting that the expression of
these two genes has a close association with the progression of
HCC. A prognostic model based on the two genes could indepen-
dently predict the prognosis of HCC patients with high specificity
and sensitivity. SMG5 is a regulator of the nonsense-mediated
messenger RNA (mRNA) decay (NMD) pathway in cells, which is
a cell quality control and post-transcriptional gene regulation
mechanism. SMG5 is thought to have important regulatory effects
on the viability of most multicellular organisms [35]. MRPL9 is a
nuclear gene encoding protein components in the ribosome in
mitochondria, which is essential for mitochondrial function [36].

HCC has an insidious onset and progresses rapidly, and it is usu-
ally diagnosed in advanced stages (BCLC stage B and C).



Fig. 8. The effect of SMG5 and MRPL9 on the progression of HCC. A–D Western blot analysis confirmed that the expression of SMG5 and MRPL9 was inhibited by SMG5 and
MRPL9 siRNA administration. E-H CCK8 assay indicated that SMG5 and MRPL9 inhibition significantly suppressed the proliferation of SK-HEP1 cells (E-F) and LM3 cells (G-H).
I-J EdU assay revealed that SMG5 and MRPL9 inhibition showed a significant inhibitory effect on the proliferation of SK-HEP1 cells and LM3 cells, respectively. K-L Transwell
migration assays confirmed that SMG5 and MRPL9 inhibition obviously inhibited the migration of SK-HEP1 cells and LM3 cells. M�P Quantitative statistical results of the
effects of SMG5 and MRPL9 expression on the migration of SK-HEP1 cells (M�N) and LM3 cells (O-P). Data are shown as the mean ± SD of at least three independent
experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
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Chemotherapy is one of the most important treatments for
patients with advanced HCC, especially for those who cannot
undergo surgical resection, have a poor response to TACE, and have
extrahepatic metastases or vascular invasion [37]. However, tumor
cells may develop intrinsic or acquired resistance during the pro-
cess of chemotherapy, resulting in poor chemotherapy effects
and affecting the prognosis of patients [38]. Changes in gene
expression profiles associated with somatic mutations in HCC play
a significant role in regulating the sensitivity of tumor cells to
chemotherapy [39]. In addition to drug-resistant regulatory factors
and carcinogenic drivers, somatic mutations can also produce
uniquely altered proteins, including new antigens to which specific
antitumor immunity can be raised. These mutation-derived anti-
gens can be recognized by the immune system and targeted by
immunotherapy [40,41]. The more somatic mutations a tumor
has, the more neoantigens it may form. Clinical studies have con-
firmed a significant correlation between the production of neoanti-
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gens and immune-mediated clinical responses [42]. TMB is thus
also regarded as a potential marker for immunotherapy and can
provide a useful estimate of tumor neoantigen load [43]. Through
comprehensive analysis of genes that play an important role in
TMB, potential markers may be found to identify patients sensitive
to chemotherapy and suitable for immunotherapy.

In our study, we used a TMB-based prognostic model to stratify
HCC risk and assess immune cell infiltration and immune check-
point expression in patients with different risks and test patient
response to different chemotherapy drugs; by so doing, we further
explored the effect of the expression of SMG5 and MRPL9 on the
response of HCC patients to immunosuppressive therapy and
chemotherapy. We found that compared with low-risk patients,
high-risk patients showed higher levels of immune cell infiltration
and higher expression levels of immune checkpoints in tumor tis-
sues, and high-risk patients were more resistant to chemotherapy
drugs. Subsequent GSEA suggested that the genes involved in the
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prognostic model were related to the signaling pathways related to
physiological processes such as the cell cycle [26], mismatch repair
[27] and the spliceosome [28], which have been found to have a
regulatory effect on the chemoresistance of cells in previous stud-
ies. It was reported that SMG5 is involved in regulating the expres-
sion of a series of genes with a wide range of cellular activity
functions, including cell cycle progression [44], which may partly
explain the differences in chemoresistance among patients with
different prognostic risks. The findings above indicate that in clin-
ical management, high-risk patients may be the beneficiaries of
targeted immunotherapy, while low-risk patients can benefit more
from chemotherapy.

The early diagnosis of HCC mainly relies on radiological exam-
ination and pathological examination. The development of imaging
technology has improved the recognition rate of HCC, enabling
small HCC tumors (<2 cm) to be diagnosed at an early stage for fur-
ther histological identification [45,46]. However, increasing evi-
dence suggests that small nodules are difficult to characterize.
There is no clear boundary in morphology and histology between
high-grade proliferative nodules and well-differentiated HCC
lesions, and it is difficult to accurately distinguish them [47,48].
Therefore, it is urgent to find molecular markers to objectively
and accurately identify HCC. Two diagnostic models including
SMG5 and MRPL9 expression were confirmed to accurately distin-
guish HCC from normal and dysplastic nodule samples (<2 cm) in
this study, suggesting that the model may be beneficial to improve
the early detection rate of HCC and is conducive to early clinical
intervention in patients with HCC, thus improving the prognosis
and likelihood of relapse of patients. Our findings lay the founda-
tion for using SMG5 and MRPL9 as biomarkers for the early diagno-
sis of HCC patients.

Inevitably, there is some limitations in our study. First, when
using the LASSO method to filter genes in the early analysis, the
limitations of the LASSO method itself led to the potential for miss-
ing some genes with similarly important contributions when the
regression coefficients were adjusted. The clinical characteristics
considered in the independence analysis of the prognostic model
and the construction of the nomogram are traditionally recognized
as important factors affecting the carcinogenesis of HCC, while
some clinical variables with similar contributions, such as geo-
graphical factors, dietary patterns, and exposure to endogenous
or exogenous chemicals, were not included in the study due to
insufficient sample information, which may affect the results.
When identifying HCC lesions and nodules, the small sample size
also affected the evaluation of the performance of the diagnostic
model. Besides, we will further confirm the performance of the
prognostic model for evaluating immunotherapy and chemother-
apy response in follow-up clinical trials.
Conclusion

The prognostic model based on SMG5 and MRPL9 expression
was proven to have accurate prediction capability, and it helped
to identify patients suitable for immunotherapy. Patients with
higher prognostic risks may obtain better clinical benefits through
immunotherapy and achieve greater tumor remission. Prognostic
risk was confirmed to have a close correlation with chemothera-
peutic response. Low-risk patients had a significant survival advan-
tage compared to high-risk patients receiving chemotherapy.
Diagnostic models constructed using SMG5 and MRPL9 can make
an accurate distinction between HCC and normal and dysplastic
nodule samples. The comprehensive analysis of multidimensional
genomic data opens up new ideas for determining patient treat-
ment strategies and improving disease outcomes.
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