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Objective:  This review introduces interpretable predictive machine learning approaches, natural language processing, image recog-
nition, and reinforcement learning methodologies to familiarize end users.
Background:  As machine learning, artificial intelligence, and generative artificial intelligence become increasingly utilized in clinical 
medicine, it is imperative that end users understand the underlying methodologies.
Methods:  This review describes publicly available datasets that can be used with interpretable predictive approaches, natural lan-
guage processing, image recognition, and reinforcement learning models, outlines result interpretation, and provides references for 
in-depth information about each analytical framework.
Results:  This review introduces interpretable predictive machine learning models, natural language processing, image recognition, 
and reinforcement learning methodologies.
Conclusions:  Interpretable predictive machine learning models, natural language processing, image recognition, and reinforcement 
learning are core machine learning methodologies that underlie many of the artificial intelligence methodologies that will drive the 
future of clinical medicine and surgery. End users must be well versed in the strengths and weaknesses of these tools as they are 
applied to patient care now and in the future.
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reinforcement learning

INTRODUCTION
Machine learning (ML), artificial intelligence (AI), and notably, 
generative AI have entered daily clinical and research discus-
sions. These methodologies enable crowdsourcing vast amounts 
of data and subjecting these to new open-source analytic tech-
niques powered by modern computational methods to explore 
unanswered questions or generate hypotheses that were hereto-
fore unimaginable. In this regard, research questions are largely 
driven by available analytical methods. For example, using a 
clinical trial framework, the research question will question the 
efficacy of intervention A versus B on outcome Y for patient 
group Z. With ML and AI becoming increasingly common, it is 
essential for users to understand their fundamentals and impli-
cations. In the words of Albert Einstein, “If you can’t explain it 
simply, you don’t understand it well enough.”

Therefore, this article aims to review ML models and their 
applicable clinical questions, discuss publicly available data-
sets for these models, outline result interpretation, and provide 

references for in-depth information about each analytical frame-
work. Despite the expanding repertoire of ML methods, this 
review concentrates on interpretable predictive ML models, 
natural language processing (NLP), image recognition, and rein-
forcement learning.

“Black-box” vs. “White-box” Models

In the context of interpretability, ML models are classified as 
“black-box” and “white-box” (interpretable) models. Compared 
to white-box models, black-box models are more complex 
regarding mathematical functions and can capture intricate 
patterns in data, often yielding higher accuracy. However, this 
increased complexity makes the predictions and internal work-
ings of black-box models more challenging to explain and 
understand, particularly by domain experts. The term “black 
box” denotes their opaque decision-making process.1 Notably, 
deep learning neural networks exemplify this, which automati-
cally learn input features undergoing several layers of nonlinear 
transformations, rendering them noninterpretable to end-users.2

White-box models, on the other hand, are inherently inter-
pretable. They rely on clear patterns, rules, or decision struc-
tures, balancing accuracy and explainability. Interpretability 
is not limited to white-box models, as black-box models can 
also be made interpretable through some external approaches. 
However, white-box models eliminate the need for additional 
interpretation models to gain insight into their decision-making 
process.3 For instance, linear regression and decision tree mod-
els are straightforward to interpret for experts who can under-
stand how inputs are mathematically transformed into outputs. 
The weight of the covariates in linear regression models can be 
used to assess the relative importance of the variables in the 
predictions made.4

Interpreting black-box models requires using a trained model 
as input and extracting information about the relationships 
learned by the model. This process is known as post hoc inter-
pretability and occurs during the post hoc analysis stage through 
techniques such as local interpretable model-agnostic explana-
tions (LIME) or Shapley additive explanations.1 However, it is 
important to note that interpretations may not always perfectly 
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represent the relationships learned by a model. This can be 
especially challenging for complex black-box models such as 
neural networks, which encode nonlinear relationships less 
transparently.5

Interpretable Machine Learning or Outcomes Prediction

Interpretable ML can be defined as the extraction of relevant 
knowledge from an ML model about relationships contained in 
data or learned by the model. In other words, interpretable ML 
not only provides prediction to clinicians but also clarifies the 
contributing predictors, enhancing clinical decision-making by 
revealing factors affecting event probabilities.

Two fundamental tasks come to the forefront of outcome 
prediction: classification and regression, which are crucial for 
comprehending and forecasting the future states of structured 
data. Classification categorizes outcomes into discrete classes 
or labels, essential for applications such as disease diagnosis, 
assessing treatment success, and identifying high-risk patients. 
The choice between classification and regression depends on 
the nature of the outcome variable and the specific objectives 
of the predictive modeling process. For example, classification 
is applied when dealing with categorical outcome variables. 
Regression, on the other hand, estimates continuous values or 
scores, crucial for predicting survival rates, drug dosage opti-
mization, and length of hospital stay, where the aim is to pre-
dict specific numerical values. In essence, classification and 
regression offer tailored solutions for diverse clinical predictive 
challenges.6 Supplemental Table 1, http://links.lww.com/AOSO/
A329 summarizes these ML models for structured outcomes 
data, providing insights into their applications, and highlight-
ing their potential advantages and disadvantages, thus aiding in 
selecting the most suitable approach for specific predictive tasks.

Which Questions Can This Approach Address?

In a clinical context, interpretable ML is valuable for outcome 
prediction in both longitudinal and cross-sectional studies, where 
it leverages historical or current variable sets, respectively.7 Also, 
the methods can be applied in clinical decision support systems 
(CDSS) used for enhancing information management and med-
ical decision-making by offering faster, data-driven recommen-
dations than traditional methods.8,9 ML-powered AI methods 
are increasingly applied in the form of CDSSs to assist health-
care professionals in predicting patient outcomes9,10 as well as to 
evaluate the implementation of CDSSs.8

Publicly Available Datasets

Interpretable ML methods can be performed using any dataset 
with a categorical outcome and multiple predictors. In clinical 
research, key datasets are frequently used, including:

•	 Economic Innovation Group Distressed Communities Index 
data (EIG DCI)11: encompasses regional demographics and 
socioeconomic data.

•	 NORC, Kaiser Permanente Research Bank (KP),12 and 
National Trauma Data Bank (NTDB)13: Provide vital health 
outcome information.

•	 American Hospital Association Annual Survey database14: 
offers crucial insights into health facilities.

•	 Healthcare cost and utilization project15: a vital repository 
of United States hospital care data, alongside Optum and 
AllPayors.

•	 Other notable datasets include MedPar/Carrier, All of Us, 
N3C (National COVID Cohort Collaborative), metabolic 
and Bariatric Surgery Accreditation and Quality Improvement 
Program (MBSAQIP), National Surgical Quality Improvement 
Program (NSQIP), Veterans Affairs Surgical Quality 

Improvement Program (VASQIP), Surveillance, Epidemiology, 
and End Results—Medicare (SEER-medicare), society of tho-
racic surgeons national database (STS), agency for healthcare 
research and quality (AHRQ), veterans affairs corporate data 
warehouse (VA CDW), centers for Medicare and Medicaid 
Services (CMS), and Chesapeake regional information system 
for our patients (CRISP).

These datasets enable researchers to address various health-
care questions, improving quality and accessibility.

Interpretation

Achieving interpretability is crucial from several perspectives, 
with multiple methods available to accomplish it.16 The first is 
the conventional method, which considers a feature’s signifi-
cance for the model as a whole. It then delves into how specific 
features affect predictions, considering conditional expecta-
tion curves, partial dependence plots, and compounded local 
effects. Also, one can consider surrogate trees, which use a 
short decision tree to approximate the underlying model for 
clearer understanding. Finally, explanations for personalized 
predictions, such as individual patients, look at how the value 
of a feature (predictor) for a given patient affects the predic-
tion.16,17 Supplemental Table 2, http://links.lww.com/AOSO/
A329 outlines various interpretable ML approaches, offering a 
foundational overview of their key advantages and drawbacks. 
When selecting an ML model for a study, these insights are 
valuable for informed decision-making. However, it is essential 
to recognize that the specific context and dataset can influence 
the suitability of each method in use.

A case study in high-risk surgery utilized ML to enhance risk 
calculator predictions, and elucidate individual features and 
their contributions to mortality prediction.18 After using a series 
of ML methods, including gradient boosting machine models, 
generalized linear models, random forest, and deep neural net-
works, the resultant modeling features were explored using a 
LIME approach.19 LIME is a method that uses an interpretable 
model to explain the predictions of a regressor by approximat-
ing it locally. It modifies a single data sample by altering fea-
ture values to observe their impact on the outcome, providing 
local interpretability. As a result, the LIME approach allowed 
the identification of patient-specific factors influencing mortal-
ity and determining their weight in favor of or against patient 
survival, besides providing insights into personalized features 
and their impact on survival probabilities and model accuracy.18

To demonstrate the LIME technique, Supplemental Figures 
1, http://links.lww.com/AOSO/A321 and Supplemental Figures 
2, http://links.lww.com/AOSO/A322 use the BreastCancer data-
base from the R package mlbench, containing 699 observations 
across 9 biopsy features. The plot in Supplemental Figure 1, 
http://links.lww.com/AOSO/A321 presents a predictor impor-
tance estimation. It indicates which variables the model con-
siders the most important for cancer prediction. Features that 
display a dot on the right correspond to the most important 
variables for this model. The plot below corresponds to a binary 
classification model using the Ranger algorithm, a variant of the 
Random Forest. This model is employed here as an example to 
classify cancer as malignant or benign. In this analysis, features 
such as bare nuclei emerged as crucial predictors (Supplemental 
Figure 1, http://links.lww.com/AOSO/A321). LIME was then 
used to create an explainer object, trained just like the model 
and fit to the data, so new predictions for individuals could 
be made. Supplemental Figure 2, http://links.lww.com/AOSO/
A322 displays the LIME explanation for 4 individuals, named 
cases 45, 537, 644, and 683 in this example. For each individ-
ual, the plot presents the original outcome (e.g., true for case 45 
and false for case 537), the predicted outcome (true for case 45 
and false for case 537), and the predicted probability (97.2% 
for case 45 and 100% for case 537). It also approximates how 
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much and in which direction each variable contributed to a pre-
diction for each individual. Blue bars represent the amount by 
which the variable increases the risk of the outcome, while red 
bars present the risk in the opposite direction. For example, the 
plot indicates that epithelial cell size, cell shape, margin adhe-
sion, blood chromatin, and cell size were the variables contrib-
uting the most to model predictions for case 45.

Model Validation

In model validation, it is crucial to evaluate the predictive mod-
el’s performance using a comprehensive set of metrics that offer 
insights into the model’s overall discriminatory power and a 
more holistic evaluation of model effectiveness.20 Apart from 
evaluating overall performance, considering bias in the training 
data becomes crucial. A model that performs well on training 
data but fails to generalize to new data may result from data 
biases. Cross-validation can ensure the model’s applicability to 
new data. Therefore, this section discusses the importance of 
utilizing metrics that provide distinct perspectives on the mod-
el’s performance.21

In classification metrics, accuracy is a fundamental gauge of 
overall model performance, indicating how many classes were 
correctly classified without distinction between categories. 
For instance, if a model accurately classifies 950 out of 1000 
instances, it boasts an accuracy of 95%, reflecting its general 
correctness. However, accuracy can be problematic in unbal-
anced problems since it can yield misleadingly high scores by 
neglecting the minority class. On the other hand, precision is a 
common and essential metric that focuses on a model’s precision 
in identifying a specific class. It is determined by the ratio of true 
positives to the total number of predicted positives, quantifying 
the model’s adeptness at avoiding false positives. For example, 
if a model predicts 100 positive cases and correctly identifies 90, 
its precision would be 90%. Another essential metric is recall, 
which measures the ability of a model to correctly identify all rel-
evant instances within a dataset. Moreover, the precision-recall 
curve is a valuable tool for evaluating the trade-off between pre-
cision and recall, providing insights into a model’s performance, 
particularly in contexts of imbalanced datasets. However, since 

it provides a single numerical performance value, interpretation 
may be less intuitive. The F1 Score is a harmonious mean of 
precision and recall, offering a balanced perspective when their 
values need reconciliation. For instance, if precision and recall 
stand at 0.80 and 0.70, respectively, the F1 score calculates to 
0.74, encapsulating the model’s ability to balance classification 
tasks. However, it does not specify which type of errors are more 
frequent, making it less helpful in certain situations.

A confusion matrix is a visual tool used to assess the per-
formance of a classification model. It displays the number of 
correct and incorrect classifications for each class, as shown 
in Figure 1. Sensitivity, or the true positive rate, quantifies the 
likelihood of correctly identifying positive instances, a metric of 
paramount importance in applications such as medical diagnos-
tics, where the ability to detect cases accurately can be critical. 
Specificity, the true negative rate, assesses the model’s accuracy 
in identifying negative instances, complementing sensitivity in 
providing a fuller picture of model performance.

The area under the receiver operating characteristic (AUROC) 
is a single metric ranging from 0 to 1, indicating the overall 
performance of a model in distinguishing positive and negative 
classes, with higher values indicating superior performance. The 
area under the precision-recall curve, particularly relevant for 
classification tasks in imbalanced datasets, offers a different 
perspective on performance, especially in cases with rare pos-
itive instances. Notably, the prevalence of the dependent vari-
able within the dataset profoundly influences the interpretation 
of these metrics, underscoring the need to contextualize model 
performance against the backdrop of what could be achieved 
through random chance or using naive classifiers. For instance, 
when the prevalence of dependent variable is extremely low, a 
high AUROC may be misleading, as the model might achieve 
a high true negative rate by simply classifying the majority of 
instances as negative. Supplemental Figure 3, http://links.lww.
com/AOSO/A323 shows an example of a receiver operating 
characteristic curve with an area under the curve of 0.9.

In the assessment of regression models, crucial metrics such 
as the R-squared and the adjusted R-squared play significant 
roles in evaluating the model’s explanatory power regarding the 
variance in the data, with adjustments made for the number of 

Figure 1.  Confusion Matrix. A confusion matrix is a visual tool used to assess the performance of a classification model. It displays the number of correct and 
incorrect classifications for each class.
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predictors to avoid overfitting. Regression metrics include the 
mean squared error (MSE), which measures predictive accuracy 
by calculating the average of squared prediction errors. Higher 
MSE indicates decreased model accuracy. Visual representa-
tions, such as plots of squared errors, furnish valuable insights 
in a graphical manner. The root mean squared error (RMSE), an 
essential variation of MSE, corrects for units, making the metric 
more interpretable. RMSE retains the same punishing character-
istics for predictions far from actual values.

Mean absolute error (MAE) provides a gentler approach to 
measuring errors by calculating the average absolute differences 
between predicted and actual values. Unlike MSE and RMSE, 
MAE is less influenced by outliers, ensuring a more balanced 
assessment. Additionally, a plot of absolute errors can visually 
represent MAE in action, making it easier to understand and 
interpret. Finally, mean absolute percentage error expresses 
errors as a percentage, simplifying the evaluation of relative 
accuracy. Particularly valuable in financial forecasting, a lower 
mean absolute percentage error reflects more precise predic-
tions. Displaying percentage errors graphically significantly aids 
in comprehending the model’s accuracy.

Evaluating a model with comprehensive metrics and visuals 
enriches our understanding of performance, aiding informed 
decisions on effectiveness. Additionally, ensuring model fairness 
is an essential and ethical concern in developing and deploying 
ML models. One critical aspect of fairness is subgroup equity 
analysis, which focuses on identifying and addressing dispari-
ties in model performance across various subgroups within the 
dataset, such as gender, race, age, or other relevant attributes, 
suggesting biases that require correction. Addressing potential 
bias and discrimination in ML models is crucial since biased 
models can perpetuate and even exacerbate societal inequalities, 
which are morally and legally unacceptable,22 and also lead to 
unfair outcomes and erode trust in AI systems, potentially result-
ing in reputational damage and legal consequences for organi-
zations. Remediation may involve data re-sampling, algorithm 
adjustments, or feature and label modifications. Additionally, 
fairness-aware ML methods, including adversarial training and 
fairness constraints, aim to minimize bias by discouraging mod-
els from learning features associated with sensitive attributes.23

Additional Resources

As clinical tools and research increasingly incorporate ML 
methods, clinicians are urged to scrutinize these methods’ accu-
racy and significance, much like traditional diagnostic or prog-
nostic tools. The “user guide to medical literature” provides an 
ML overview and advice on assessing the published literature, 
outlining the use of ML-based tools to establish medical diag-
noses.21 Additionally, the “guide for making black box models 
explainable” intends to make complex ML models and their 
decisions more “interpretable” by exploring concepts of inter-
pretability.17 ML methods are subject to bias, such as missing 
data, patients not identified by algorithms, sample size, under-
estimation, and misclassification and measurement error when 
using electronic health record (EHR) data. Therefore, it is worth 
exploring the available literature on recognizing and potentially 
solving such biases.22

Furthermore, transparent and accurate reporting is vital in 
research and medical imaging. To achieve this, researchers have 
developed powerful tools and guidelines to uphold their work’s 
reliability and quality. In this context, reporting frameworks 
are essential for researchers and practitioners, allowing them 
to create, validate, and communicate their work effectively. 
24PROBAST (Prediction model Risk Of Bias ASsessment Tool),25 
is a valuable tool for creating, validating, and improving mul-
tivariable prediction models used in diagnosis and prognosis. It 
helps determine the probability of individuals experiencing spe-
cific outcomes based on age, biomarkers, and symptoms. While 
invaluable for systematic reviews and evaluating prediction 

models, PROBAST is unsuitable for predictor discovery studies 
or comparative evaluations.25

The "Guidelines for developing and reporting machine learn-
ing predictive models in biomedical research"26 were created 
through expert interviews and aimed to ensure transparent 
reporting of ML models. They offer comprehensive reporting 
guidelines, including a flowchart for data validation. These 
guidelines promote using ML in biomedical research to distin-
guish accurate findings from chance.26

Finally, the CLAIM sets standards to ensure transparent and 
high-quality communication about AI applications in medical imag-
ing. It should be used throughout the research process, from project 
initiation to publication, to meet ethical and regulatory standards. 
While comprehensive, CLAIM necessitates adaptation to specific 
projects and evolving AI and regulatory landscapes, highlighting 
the importance of contextual flexibility in application.24

Natural Language Processing

NLP should be utilized for analyzing human-generated text or 
speech. Its healthcare applications include data extraction, clas-
sification, and sentiment analysis. In a clinical context, NLP can 
extract, classify, and automate information expressed in a nat-
ural language, converting the free text from clinical narratives 
into columns in a traditional dataset. Examples of medical free 
text include radiology and pathology reports, admission and 
discharge summaries, surgical reports, and reports containing 
laboratory test results. Therefore, NLP can be applied in disease 
recognition using EHR and patient-experienced or reported 
events to detect adverse events and postoperative complications 
from physician documentation, on studies aiming to identify 
toxicity, hate, or abuse, identification of failures in communica-
tion among healthcare teams, generation of summaries compli-
ant with international reporting guidelines, supporting clinical 
trial recruitment, or assisting biomedical literature retrieval 
and analysis for therapy, facilitating knowledge discovery, and 
reducing manual search and review.27,28

Regarding sentiment analyses, NLP can be used when the goal 
is to infer whether the individuals writing the text were posi-
tive or negative about that topic, to assess healthcare providers’ 
conditions (such as burnout) through EHR messages, and to 
evaluate the public perception of a certain condition, treatment, 
healthcare policy, or other health-related constructs.29

Table 1 provides an overview of NLP models that have con-
tributed significantly to the field. These models have played a 
pivotal role in advancing the capabilities of text understanding, 
generation, and processing.

Publicly Available Datasets

Extraction and classification NLP methods can be performed 
using any dataset that might have free text containing medi-
cal information, such as medical information mart for intensive 
care-IV, Metabolic and MBSAQIP, and NSQIP, which contain 
health outcomes data. Sentiment analysis can be performed 
using any source of free text written by individuals in the popu-
lation where researchers would like to evaluate positive or neg-
ative feelings, such as social media (e.g., Twitter), satisfaction 
surveys, and reviews. Table 2 presents significant datasets that 
play a crucial role in healthcare text analysis.

Interpretation

The application of NLP ranges from processing clinical notes 
to detecting phenotypes for cohort construction and detecting 
the occurrence of events pertinent to a medical visit (diagnoses, 
procedures, medications, etc.). There are several pathways to 
achieve this, from the use of elementary methods, such as pat-
tern matching,36 to ML models for named entity recognition.37,38 
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Also, generative language models trained with human feed-
back capable of synthesizing clinical interpretations based on 
knowledge acquired from clinical texts can be applied.39 While 
NLP interpretation is not one-dimensional, as each technique 
or model addresses unique challenges, several companion meth-
ods, including sensitivity analysis, specificity analysis, positive 
predictive value, and negative predictive value analyses, aid in 
interpreting NLP-generated data.40

An illustrative example involves the use of NLP and ML algo-
rithms to analyze and classify self-reported narratives by patients 
with migraine and cluster headaches.41 The study applied chi-
square tests to calculate the key tokens for the analysis of lexical 
diversity discerning the 2 diagnostic categories (Supplemental 
Figure 4, http://links.lww.com/AOSO/A324) and ML to classify 
the text into the right diagnosis category, using positive predic-
tive value and sensitivity to evaluate accuracy. The study also 
presents a lexicon-based sentiment analysis to assess the senti-
ment expressed in the dataset as positive or negative. The results 
showed that NLP could detect differences in lexical choices 
between the 2 groups, and ML algorithms have good potential 
to classify patients’ descriptions of headache attacks, highlight-
ing the relevance of NLP in clinical information extraction and 
the potential benefits of using digital techniques in analyzing 
patient-generated text.41

Additional Resources

With the availability of Python and other open-source tools, 
modern text analysis has become easily accessible, enabling 
individuals to explore textual data analysis and gain insights 
using NLP and computational linguistics algorithms. A start-
ing point for NLP is learning data cleaning, statistical NLP, and 
deep learning with natural language and text samples.42

Image Recognition

Image recognition methods can extract and classify data from 
an image. In a clinical context, medical images are analyzed 
(e.g., magnetic resonance imaging and computerized tomog-
raphy examinations), for the purposes of diagnosis, progno-
sis, and response to therapy predictions. Image recognition 
can be applied to establish a diagnosis of a given condition 
based on medical images, staging of a given condition based 
on medical images, screening of candidates for a determined 
surgery, prognosis based on examinations with a graphical 
output such as the electrocardiogram, and prognosis of a 
given condition.43–45

We provide an overview of cutting-edge image recognition 
methods used to extract and classify data from images in Table 3.

TABLE 1.

NLP Models and Frameworks and Their Characteristics

Model Description

BERT (bidirectional encoder representations from 
transformers)30

A language model known for its groundbreaking approach to pretraining language representations. It excels in NLP 
tasks due to its ability to comprehend word and phrase context by considering surrounding words simultaneously, 
represented as high-dimensional vectors.

GPT (generative pre-trained transformer)31 It is a series of natural language processing models developed by OpenAI. These models are adept at generating human-
like text and performing language-related tasks with high accuracy based on the Transformer architecture.

RoBERTa (A robustly optimized BERT pretraining 
approach)32

It is an NLP model by Facebook AI, building upon BERT’s pretraining methods with enhancements like larger scale, longer 
training, and dynamic masking. It eliminates the Next Sentence Prediction task and refines text processing.

XLNet (generalized autoregressive pretraining for 
language understanding)33

It is another model using the Transformer architecture. It enhances text comprehension with permutation-based training 
and advanced techniques like two-stream self-attention and relative positional encoding.

ALBERT (A lite BERT for self-supervised learning of 
language representations)34

It was introduced by Google, aiming to improve parameter efficiency through shared parameter factorization. It replaces 
next sentence prediction with sentence order prediction and is pre-trained for various NLP tasks.

OpenNLP35 OpenNLP is a Java-based framework for NLP that allows developers to integrate language processing tasks into Java 
applications. It is widely used for text analysis, information extraction, and chatbot development. As an open-source 
project, OpenNLP is continuously improved by the NLP community.

AI indicates artificial intelligence; NLP, natural language processing.

TABLE 2.

NLP Datasets and Their Characteristics

Database Description

National COVID cohort collaborative (N3C) N3C is a US collaborative effort to hasten COVID-19 research. It collects de-identified clinical data from diverse sources, 
standardizes data representation, ensures secure data access, supports public health response efforts, and enables rapid 
progress in COVID-19 understanding.

PubMed abstracts PubMed abstracts are used to train NLP models for tasks like text classification, named entity recognition, and information 
extraction. By automating literature reviews, tracking disease outbreaks, and extracting vital information, they provide structured 
data for analysis, hypothesis generation, and integration with other biomedical databases.

MIMIC-III and MIMIC-IV MIMIC-III and MIMIC-IV are comprehensive clinical databases containing de-identified health records of ICU patients at Beth Israel 
Deaconess Medical Center. The datasets are a valuable resource for NLP research, predictive modeling, clinical decision support, 
and public health research.

Kaggle datasets Kaggle is a platform for data science and machine learning. Kaggle Datasets offers NLP datasets for research, analysis, and 
machine learning. Users can explore, visualize, collaborate, and participate in NLP competitions, driving model training, algorithm 
benchmarking, application development, and NLP research.

BioNLP shared task datasets BioNLP shared task datasets offer challenges to extract structured information from unstructured biomedical text in scientific 
articles, clinical records, and medical literature.

Social media and health forums Data from social media platforms and health forums represent a valuable source of biomedical text data. These sources often 
contain patient experiences, health-related discussions, and medical information, making them relevant for biomedical NLP 
research and applications.

ICU indicates intensive care unit; MIMIC, medical information mart for intensive care; NLP, natural language processing.
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Publicly Available Datasets

Image recognition methods can extract and classify data from 
any dataset with medical images, such as examination results 
(e.g., radiographs, magnetic resonance imaging, computerized 
tomography, electrocardiogram, mammography, and micros-
copy) or photographs, such as hospitals’ EHR, the National 
Cancer Institute’s Genomic Data Commons Data Portal, and 
the National Center for Tumor Diseases Biobank and University 
Medical Center Mannheim pathology archive.54,55 Table 4 high-
lights the importance of these datasets in this field.

Interpretation

Automated analysis techniques are increasingly applicable because 
medical images can be digitized. Initially, low-level pixel processing 
(edge and line detector filters and region growing) and mathemat-
ical modeling (fitting lines, circles, and ellipses) were used to create 
compound rule-based systems for specific tasks. Then, supervised 
techniques that utilize training data to construct a system (active 
shape models, atlas approaches, feature extraction, and statisti-
cal classifiers) became more prevalent. However, these techniques 
rely on human researchers to extract discriminant features from 
the images.56 Recently, deep learning methods, which use neural 
networks with multiple layers to convert input data into outputs, 
have become increasingly popular for image detection and clas-
sification. One of the most widely used algorithms for this pur-
pose is neural networks. The neural network has several stages, 

including forward propagation, total error calculation, gradient 
(derivative) calculation, gradient checking, and updating weights. 
Hyperparameters, which include characteristics such as the number 
of layers, nodes, learning rate, weight values, bias or offset value, 
and hidden layers, can be modified by the modeler to improve the 
model’s performance.57

Understanding the results of deep learning models is a cru-
cial task that involves comprehending the model’s architecture, 
hyperparameters, and input data. Evaluating the performance 
of a deep learning model is a primary goal, which is achieved by 
assessing its accuracy and error rate. To evaluate a deep learning 
model, several performance metrics, such as accuracy, precision, 
recall, and F1-score, are commonly used.

Unbalanced data, which occurs when instances in one class 
greatly exceed instances in another, is yet another significant 
issue in clinical settings that requires special attention. This 
leads to models biased toward the majority class and poor per-
formance on the minority class. Techniques such as oversam-
pling the minority class, undersampling the majority class, or 
class weighting can balance the classes to address this issue.

For example, convolutional neural networks (CNN) are 
used in the development of computer-aided diagnosis systems. 
Supplemental Figure 5, http://links.lww.com/AOSO/A32557 
illustrates a system capable of detecting radiological abnormali-
ties by analyzing chest X-ray images. It provides the probability 
of an underlying condition and generates a heatmap, high-
lighting the regions in the image most indicative of the input 
pathology. The aim is to assist doctors and radiologists in the 
interpretation and classification of pulmonary diseases.57 As the 
example presented in Supplemental Figure 5, http://links.lww.
com/AOSO/A325, the diagnosis system takes an X-ray image 
as input. It outputs a heatmap highlighting the regions in the 
image most indicative of pathology, in this case, tuberculosis. 
The heatmap indicates the areas of the image that receive more 
attention. In this case, the cavitary lesion is indicated by small 
arrows, while the larger arrows highlight airspace opacities. 
These abnormalities are accurately localized by the base-CNNs, 
as depicted by the red-colored areas.

Another example is fully automated algorithms for segment-
ing the abdomen from computerized tomography scans using 
CNN to quantify body composition, implying better informa-
tion for individual care and decreasing, if not excluding, time 
as a limiting factor in studying body composition metrics and 
their influence on many clinical outcomes (Supplemental Figure 
6, http://links.lww.com/AOSO/A326).58 The images demon-
strate body composition segmentation through deep learning, 
depicting various body compartments such as subcutaneous 
adipose tissue, muscle, visceral adipose tissue, visceral organs, 
and bone. They compare segmentation from a semi-automated 
method and U-Net predictions, with arrows marking areas of 
disagreement.58

TABLE 3.

Image Recognition Methods

Model Description

ResNet (residual networks)46 Deep networks that use residual connections to successfully train deeper networks are widely used in medical image analysis.
UNet47 Popular architecture for medical image segmentation is used to segment organs or structures in MRI and CT images.
DenseNet (densely connected networks)48 Networks that introduce dense connections between layers saving parameters and improving performance, applied in medical 

tasks.
Inception (GoogLeNet)49 Efficient architecture used in various computer vision applications in healthcare, including medical image analysis and diagnosis.
EfficientNet50 A family of architectures known for balancing performance and computational efficiency, used in various computer vision tasks in 

healthcare.
MobileNet51 Architectures designed for use in mobile devices, applied in telemedicine applications and mobile health apps.
SqueezeNet52 Efficient architecture successfully applied in medical tasks, useful in scenarios with limited computational resources.
Dilated convolutional networks53

ConvNetX (facebook/meta)
Popular in medical image segmentation tasks, allowing for the capture of broader contextual information.
ConvNetX by Facebook/Meta is an advanced image recognition model that excels in object detection, classification, and 

segmentation. It utilizes cutting-edge techniques in computer vision to solve complex image analysis problems.

CT indicates computed tomography; MRI, magnetic resonance imaging.

TABLE 4.

Image Recognition Datasets

Database Description

CheXpert Chest X-ray dataset with detailed clinical 
annotations.

MIMIC-CXR MIMIC-related dataset with chest X-ray images 
and annotations.

NIH chest X-ray database A collection of chest X-ray images used in 
pulmonary disease research.

ChestX-ray8 Dataset of chest X-ray images for the detection of 
various conditions.

RSNA pneumonia detection 
challenge

Challenge dataset for pneumonia detection in 
chest X-ray images.

The cancer imaging archive 
(TCIA)

A platform with multiple medical image datasets, 
including CT and MRI.

Medical ImageNet Medical image dataset inspired by ImageNet.
BraTS (brain tumor 

segmentation)
Brain MRI dataset for brain tumor segmentation.

CT indicates computed tomography; MIMIC, medical information mart for intensive care; MRI, 
magnetic resonance imaging; RSNA, radiological society of North America.

http://links.lww.com/AOSO/A325
http://links.lww.com/AOSO/A325
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Deep learning algorithms using cropped images from angi-
ographies can be used for more accurate predictions. For exam-
ple, in a comparison among the ability of humans, angiographic 
parameters, and deep learning to predict the lesion that would 
be responsible for a future myocardial infarction in a popula-
tion of patients with nonsignificant coronary artery disease at 
baseline, deep learning outperformed human visual assessment 
and established angiographic parameters in the prediction of 
future culprit lesions (Supplemental Figure 7, http://links.lww.
com/AOSO/A327).59 The performance of the deep learning 
model and the models based on angiographic parameters such 
as diameter stenosis, area stenosis, and quantitative flow ratio 
were evaluated using receiver operating characteristic curves. 
The corresponding area under the curve values were obtained 
for each model.59

Additional Resources

Successful neural networks for image recognition typically com-
prise multiple analysis layers. To facilitate an understanding of 
how these neural networks work, an analogy of written language 
can be applied.60 Also, a comprehensive overview of the methods 
belonging to the category of spectral-spatial classification, along 
with guidelines for the design of new approaches, can help to 
clarify the mechanism behind existing classification methods.

Reinforcement Learning

Reinforcement learning (RL), as a branch of ML, aims to deter-
mine a series of steps that maximize the likelihood of reach-
ing a specific objective. It has proven to be effective in various 
healthcare domains, particularly in situations where sequential 
decision-making is involved, such as diagnosing patients or 
establishing treatment regimens. RL addresses these challenges 
by employing a trial-and-error learning process, mimicking 
human learning behavior.61

RL involves a learning agent interacting over time with its 
environment and making decisions using a policy to optimize 
a specified reward function. Beyond the agent and the environ-
ment, an RL system comprises 4 main sub-elements: (1) a policy 
that defines the agent’s behavior at a given time; (2) a reward 
signal that determines the immediate, intrinsic desirability of 
environmental states and defines the goal of an RL problem; 
(3) a value function that specifies the long-term desirability of 
environmental states; and, optionally, (4) a model of the envi-
ronment that mimics the behavior of the environment or allows 
for inferences about its behavior.62

In a clinical context, RL can be applied in optimizing treat-
ment strategies, clinical decision-making, and risk-based screen-
ing policies.63–65

Publicly Available Datasets

RL methods can be performed using any dataset that might 
have EHR data, such as medical information mart for intensive 
care-IV and the N3C.66,67

Interpretation

To interpret RL methods, it is crucial to understand how the 
different components interact and how they are used to train 
the agent. There are various approaches to RL, including value- 
based, policy-based, and actor-critic methods, and each has its 
own strengths and weaknesses.62

For instance, Yu et al.68 compared the dissimilarities between 
Soft Actor-Critic (SAC) and conventional Actor-Critic algorithms 
concerning their effectiveness in dealing with decision-making 
challenges related to ventilation and sedative dosing in inten-
sive care units. In the SAC approach, an actor suggests the 

most favorable action (policy optimization). At the same time, 
a critic evaluates the qualities of the actions by computing the 
suggested action’s quality (assessing the quality of the action). 
The findings indicated that the SAC algorithm not only focuses 
on long-term patient recovery but also minimizes the divergence 
from the strategy employed by medical professionals, leading to 
enhanced therapeutic outcomes.68

In another example, the VentAI algorithm, a computational 
model using RL, was developed to suggest a dynamically opti-
mized mechanical ventilation regime for critically ill patients, 
including the three-dimension settings: ideal body weight-
adjusted tidal volume, positive end-expiratory pressure levels, 
and the fraction of inspired oxygen (Supplemental Figure 8, 
http://links.lww.com/AOSO/A328).69 To evaluate the differ-
ences in performance conservatively, the study compared the 
90% lower bound of the VentAI performance return with the 
90% upper bound of the clinicians. The best dynamically cho-
sen mechanical ventilation regime by the VentAI algorithm 
resulted in a 93.64 estimated performance return in validation 
and 91.98 in the testing dataset, respectively. This represents an 
improvement of 42.6%, compared to the best performance of 
the clinicians, based on the learned model, and an improvement 
of 22.6%, compared to observable clinician behavior.69

Additional Resources

For a clear and straightforward view of the main ideas of RL, an 
introduction aimed at readers in all related disciplines would be 
of great help.62 Then, the implementation of RL models can be 
studied and performed both using R56 and Python.34

DISCUSSION
Interpretable predictive ML models, NLP, image recognition, 
and RL are core ML methodologies that underlie many of the 
AI methodologies that will drive the future of clinical medicine 
and surgery. End users must be well-versed in the strengths and 
weaknesses of these tools as they are applied to patient care in 
the future. In this review, we have described publicly available 
datasets that can be used with these models, outline interpreta-
tion of results, and, finally, provide references for in-depth infor-
mation about each analytical framework. It is our hope that 
future reviews will focus on a case-driven approach to acceler-
ate the adoption of the most recent developments in artificial 
intelligence into clinical use.
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