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The nervous system exerts a profound influence on the function of the immune system

(IS), mainly through the sympathetic arm of the autonomic nervous system. In fact, the

sympathetic nervous system richly innervates secondary lymphoid organs (SLOs) such

as the spleen and lymph nodes. For decades, different research groups working in the

field have consistently reported changes in the sympathetic innervation of the SLOs

during the activation of the IS, which are characterized by a decreased noradrenergic

activity and retraction of these fibers. Most of these groups interpreted these changes as

a pathological phenomenon, referred to as “damage” or “injury” of the noradrenergic

fibers. Some of them postulated that this “injury” was probably due to toxic effects

of released endogenous mediators. Others, working on animal models of chronic

stimulation of the IS, linked it to the very chronic nature of processes. Unlike these views,

this first part of the present work reviews evidence which supports the hypothesis of

a specific adaptive mechanism of neural plasticity from sympathetic fibers innervating

SLOs, encompassing structural and functional changes of noradrenergic nerves. This

plasticity mechanism would involve segmental retraction and degeneration of these

fibers during the activation of the IS with subsequent regeneration once the steady

state is recovered. The candidate molecules likely to mediate this phenomenon are also

here introduced. The second part will extend this view as to the potential changes in

sympathetic innervation likely to occur in inflamed non-lymphoid peripheral tissues and

its possible immunological implications.

Keywords: neuro-immune interaction, sympathetic fibers, secondary lymphoid organs, neural plasticity,

semaphorins, neurotrophins

INTRODUCTION

The nervous (NS) and immune (IS) systems have aroused increasing interest in biomedical
research during the last 50 years accompanied by important advances in the understanding of
their functioning. Since the 1970s many research groups have attempted to understand the
complex relationship between both systems and how the NS modulates the immune response,
considering that the IS works in a physiological framework instead of being a self-regulated
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system. The two major pathways involved in such
neuroendocrine-immune interactions are the hypothalamic-
pituitary-adrenal (HPA) axis and the autonomic nervous
system (ANS), mainly the sympathetic nervous system
-SNS- [reviewed in (1, 2)]. However, the proper mechanisms
mediating this crosstalk are only partly understood. The
present review will provide some clues compatible with the
existence of a still hypothetical neural plasticity mechanism
arising during the development of an immune response in
secondary lymphoid organs (SLOs), probably influential in
immunological terms.

Sympathetic Innervation of SLOs
In 1984 Felten et al. (3) made a detailed description of the
sympathetic innervation of mouse lymph nodes by means of
fluorescent histochemistry. Noradrenergic fibers enter the hilus
and distribute either into a subcapsular nerve plexus or travel
via blood vessels through the medullary cords. These fibers go
along with small vessels into the parenchyma of paracortical
region (the T zone, where the antigenic presentation takes place)
and cortical region (the B zone), surrounding the lymphoid
follicles. Individual lymph nodes receive their sympathetic input
from postganglionic neurons depending on the region where this
lymphoid organ is located (4).

After these initial studies, noradrenergic innervation in
the rat spleen was identified by the same group by using
immunohistochemistry for tyrosine-β-hydroxylase -TβH- (the
rate-limiting enzyme of catecholamine biosynthesis and specific
marker for sympathetic fibers) and electron microscopy (5–7).
Noradrenergic fibers enter the spleen around the splenic artery,
travel with the vasculature in plexuses, and continue along the
trabeculae in trabecular plexuses. Fibers from both the vascular
and trabecular plexuses go into the white pulp and continue along
the central artery and its branches. Noradrenergic varicosities
radiate from these plexuses into the T zone, that is, the periarterial
lymphatic sheath (PALS). The B zone is also innervated, and
the red pulp contains scattered fibers, primarily associated with
the plexuses along trabeculae and surrounding tissues. The
well-characterized co-transmission phenomenon of sympathetic
fibers, assures the release of neuropeptide Y (NPY) and adenosine
triphosphate (ATP) together with adrenaline and noradrenaline
(NA) by the sympathetic terminals and varicosities (8), for which
NPY positive fibers can also be identified in the rat spleen (9).
In addition, the prevertebral sympathetic ganglia associated with
the celiac-mesenteric plexus were found to provide the major
sympathetic input to the spleen (10). A similar noradrenergic
innervation pattern has recently been demonstrated in the
human spleen (11).

NA released from the sympathetic nerves mediate its effects
by primarily interacting with the α- and β-adrenergic receptors
(12, 13) expressed on immune cells (4). Furthermore, immune
cells also express functional purinergic (14–16) and NPY-Y
receptors (17, 18), allowing ATP and NPY to respectively
interact with them. A non-synaptic neurotransmission has been
suggested at this level, so the released neurotransmitters may
act in a paracrine fashion (19), with no synaptic neuro-immune
communication being demonstrated so far (20).

Changes in Noradrenergic Innervation of
SLOs During the Immune Response
Upon activation, the IS elicits a rapid and selective increase in
splenic sympathetic activity in the early phase of the immune
response (21–24). Conversely, many studies seem to indicate
that once the IS becomes fully activated, such sympathetic
activity significantly decreases in SLOs. Pioneering work from
Besedovsky and del Rey’s group (25, 26) described a very
important decrease in NA content in lymphoid organs like the
spleen and lymph nodes during the IS activation. They initially
showed that 3 days after challenging rats with a harmless antigen
such as sheep red blood cells -the timepoint when the IS begins
to get fully activated- there was a substantial decline of NA in
SLOs. Following that, it was observed that specific-pathogen-free
rats, which usually have contact with environmental antigens and
therefore possess a stimulated IS, had lower concentrations of NA
within their spleens, compared to germ-free rats from the same
strain. Importantly, this decrease in NA was observed regardless
of the results were expressed as NA content per gram tissue or
per total spleen. There were no changes in NA content from
non-lymphoid organs.

Expanding these studies (27), the same group also
reported a positive correlation between the magnitude of
the immune response and the decrease of splenic NA.
Investigations on whether the development of sympathetic
innervation in the spleen was affected by lymphoid cells
(28), revealed no difference in NA content in the spleen
from newborn athymic nude mice and normal thymus-
bearing littermates, but demonstrated higher NA levels
in 7-, 11-, and 21-day old athymic mice. Remarkably, the
reconstitution of newborn nude mice by thymus transplantation
or thymocyte injection resulted in splenic NA levels
comparable to those seen in normal mice. Fluorescence
histochemistry for the visualization of splenic sympathetic
fibers showed a higher number of fluorescent fibers and
enhanced fluorescence intensity within the spleens from 21-
day old athymic mice, compared to normal counterparts or
thymus-grafted mice.

Following these demonstrations, other studies consistently
observed a decreased sympathetic activity in different animal
models, both during acute and chronic immune responses.
For instance, decreased levels of NA were observed in the
spleens of mice challenged with staphylococcal enterotoxin B
superantigen (29). In the same way,MRL-lpr/lpr male and female
mice -lacking functional Fas expression and prone to develop
lymphoproliferative autoimmune diseases- presented decreased
levels of splenic NA prior to the onset of splenomegaly (30–32).
Decreased levels of splenic NA were also observed in acute
Trypanosoma cruzi-infected mice (33), in a murine AIDS model
induced by the LP-BM5 mixture of murine retroviruses (34), and
in Lewis rats with adjuvant-induced arthritis (35). More recently,
a marked loss of sympathetic noradrenergic nerves in patients
who died from sepsis has also been shown (11). In fact, spleens
from half of septic patients lacked noradrenergic fibers whereas
presence of these nerves from the septic group was significantly
reduced as compared to control samples obtained from patients
with no inflammatory diseases.

Frontiers in Endocrinology | www.frontiersin.org 2 September 2019 | Volume 10 | Article 632

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Bottasso Sympathetic Fibers Plasticity in SLOs

Some of these studies also assessed the presence of
noradrenergic fibers, by fluorescence histochemistry for
catecholamines (28, 30), immunohistochemistry for TβH
(11, 32–34) or both (35). In all cases, there was a consistently
marked decrease in sympathetic fibers in the non-vascular areas
within the spleen during the IS activation. In some studies fibers
were only present around vascular structures whereas in other
samples only very rare positive fibers were found. Interestingly,
one of these studies (34) assessed total nerve fibers density
through immunohistochemistry for protein gene product 9.5
(PGP 9.5), a constitutive protein found in the cytoplasm of all
central and peripheral neurons, whose presence is independent
of neural activity. The PGP 9.5 staining pattern resulted to be
very similar to the TβH one, that is, a much less PGP 9.5 staining
in spleens from mice in the acute phase of the viral infection,
compared to control spleens. Also, PGP 9.5 positive nerve fibers
were rarely found once the IS was already activated.

Most researchers regarded this decreased sympathetic activity
as a pathological process, referred to as an “injury,” “damage,”
or even “destruction” of sympathetic fibers within the spleen
during immune activation. In this sense, different hypotheses
were postulated concerning possible toxic effects of the high
levels of NA released at the very onset of the response, prior to
full activation of the IS, or oxidative stress caused by the immune
response itself. The use of models of chronic inflammation led
other research groups to propose that the phenomenon was due
to the chronicity of the process. In this regard, Besedovsky and
del Rey interpreted this observation, from the very beginning, as
a part of a physiological mechanism, by which the “decrease in
noradrenergic activity late during the immune response” was “a
way of releasing immune cells from the inhibitory effects of NA,
favoring the take-off of the adaptive response” (36).

Based on currently available evidence, the existence of an
adaptive mechanism of neural plasticity involving sympathetic
terminals retraction during IS activation within SLOs can be
envisioned (Figure 1). In fact, activated immune cells can
produce different molecules likely to mediate axonal retraction
and/or segmental axonal degeneration of sympathetic fibers
innervating SLOs. On the other hand, in an inflammatory
milieu, cytokines can also stimulate the production of these same
molecules by other non-immune cells. Within this hypothetical
neural plasticity adaptive mechanism that may modify the way
by which the NS modulate the IS functioning, two major
compounds are quite likely to play a role, semaphorins and
neurotrophins (see Box 1 and Table 1).

On the Potential Role of Semaphorins and
Neurotrophins
There is reason to believe that semaphorins and their receptors
may be involved in potential changes in the innervation of
SLOs, i.e., in the spleen, during activation of the IS leading
to a retraction in sympathetic fibers. Plexin A3 and Plexin
A4 (receptors for 3A and 3F Semaphorins) are expressed in
sympathetic fibers together with Neuropilin-1 and Neuropilin-2,
which collectively are essential for the migration of sympathetic
neurons during the development of the ANS (105–107).

In vitro experiments showed that both Sema3A and Sema3F
can repel dissociated neurons from wild-type sympathetic
superior cervical ganglia (108). Apparently, Plexin-A3 would
be preferentially used in Sema3F/Neuropilin-2 signaling while
Plexin-A4 primarily signals downstream of Sema3A/Neuropilin-
1. Production of Semaphorin 3A during activation of the IS
(54) opens the possibility that this molecule could interact with
its canonical receptors Plexin A4 and Neuropilin 1, conceivable
expressed in the sympathetic fibers innervating the SLOs, and
hence mediating their retraction. On the other hand, in an
inflammatory milieu, semaphorins may not only be produced by
the immune cells themselves but by other cell types under the
influence of cytokines, as reported in other experimental settings
(109). Moreover, it cannot be excluded that cytokines induce
the expression of other types of plexins or neuropilins on the
sympathetic fibers on which other types of semaphorins may
act. Alternatively, semaphorins produced during an activation
of the IS may bind receptors different from the canonical ones
on sympathetic nerves, like the soluble form of 4D semaphorin
interacting with CD72 (110).

The proper mechanism by which semaphorins exert their
effects has not been fully clarified. It was first described that by
binding to plexins (using neuropilins as co-receptors for type 3
semaphorins), semaphorins induce a dramatic depolymerization
of the actin cytoskeleton, which normally forms lamellipodia
and filipodia (111, 112). A depolymerization of the fascin-
associated actin bundles may afford the substrate for actomyosin
contractions, thus mediating retraction. In addition, plexin
activation leads to a fast disassembling of integrin-based focal
adhesive structures, preventing cell adhesion to components of
the extracellular matrix (113). Thus, the neurite’s entire structure
collapses and retracts. The integrity of the actin cytoskeleton
is not only essential for the axonal growth cone, but also
indispensable at the synaptic terminal level for the maintenance
and regulation of vesicles pools, their attachment to the active
zone and their exocytosis, thus allowing neurotransmitters
release (114). Hence, it may be speculated that semaphorins
effects on sympathetic terminals within SLOs not only led to their
retraction and collapse but may also elicit a rapid interruption of
the release of different neurotransmitters.

Finally, the semaphorins and plexins/neuropilins system
can mediate both the retraction and the attraction of nerves.
It has already been mentioned the case of 3A and 7A
Semaphorins acting on Neuropilin-1 or on Plexin C1 from
hypothalamic gonadotropin releasing hormone neurons (43, 44).
Moreover, the repulsion elicited by 3D Semaphorin on
growth cones of cultured Xenopus spinal neurons can be
transformed into attraction upon pharmacological activation of
the guanosine 3′, 5′-monophosphate (cGMP) and adenosine
3′, 5′-monophosphate (cAMP) signaling pathways (115). In
the same way, studies in Caenorhabditis elegans with lowered
levels of specific RAC GTPases revealed a conversion of
cell movement responses to Semaphorin-1 and Plexin-1 from
attraction to repulsion (116). In another interesting study,
it was shown that Sema5A displays both attractive and
inhibitory guidance activities on the development of fasciculus
retroflexus, a diencephalon fiber tract from rat brains (117).
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Apparently, the type-1 thrombospondin repeats domain of this
semaphorin can mediate regulatory functional interactions with
different components of the extracellular matrix determining
how Sema5A affects neuronal growth cones. On the other
hand, in the zebrafish brain Sema3D seems to conduct axons
from the nucleus of the medial longitudinal fasciculus by
repulsion, acting through receptors containing Neuropilin-1A
(118). Unlike this, the same semaphorin seems to attract
telencephalic neurons that form the anterior commissure via
receptors containing Neuropilin-1A and Neuropilin-2B. Thus,
axons may respond differentially to a single semaphorin,
depending on their neuropilin composition. Hence, several
signals involving semaphorin and plexin/neuropilin interactions
may regulate actin polymerization and depolymerization causing
attraction (cytoskeletal growth) or repulsion (cytoskeletal
collapse), respectively. In this scenario, it may be assumed that
once the immune response is terminated, different signals may
concur to mediate sympathetic fibers attraction, thus favoring
the reconstitution of the innervation pattern from the steady
state. These may include changes in the cytokine environment,
changes in the type of semaphorins produced by the immune
cells themselves or by other cells under the influence of

cytokines, or changes in the type of receptors expressed on
sympathetic nerves.

However, regardless of their repelling or attracting action on
nerve fibers, semaphorins would not be mediating the physical
“disappearance” of sympathetic nerves by axonal degeneration
which seems to occur within SLOs during an IS activation
(11, 28, 30, 32–35). Therefore, other molecules may be acting
concomitantly (Figure 1).

In this regard, neurotrophins and pro-neurotrophins and
their receptors are likely to mediate a transient and segmental
axonal degeneration of sympathetic nerves -followed by
regeneration once the IS returns to a resting state. Importantly,
the expression of neurotrophins in lymphocytes and other
immune cells in basal conditions, along with a remarkable
increase in their production after their activation is well-
recognized. In 1999, activated human T cells, B cells and
monocytes were shown to secrete bioactive BDNF in vitro (82).
The same group demonstrated that in T cell lines specific for
myelin autoantigens, such as myelin basic protein or myelin
oligodendrocyte glycoprotein, BDNF production increased upon
antigen stimulation. Moreover, BDNF immunoreactivity was
also identified in inflammatory infiltrates in brain from patients

FIGURE 1 | Proposed adaptive mechanism of neural plasticity from STs innervating secondary lymphoid organs such as the spleen. The activation of the IS may

be accompanied by retraction and axonal degeneration of STs (red arrows). The activated immune cells are able to produce semaphorins and

pro-neurotrophins/neurotrophins, binding to their receptors -plexins/neuropilins and Trk/p75NTR, respectively- probably expressed on STs. In particular, p75NTR may

be re-expressed in a pro-inflammatory milieu. The action of these molecules may lead to an inhibition of STs integrin-mediated adhesion to ECM and depolymerization

of their actin cytoskeleton, thus favoring their retraction and axonal degeneration (dotted line). In addition, semaphorins and neurotrophins/pro-neurotrophins may be

produced by other non-lymphoid cell types as well (i.e., stromal cells), under cytokine influence. A direct action of cytokines as playing a role on STs retraction cannot

be disregarded. Once the immune response ceases, the IS returns to the steady state and STs may regenerate, recovering the usual splenic innervation pattern (blue

arrows). Neural and immunological phenomena are summarized on the left and right sides, respectively. STs, sympathetic terminals; IS, immune system; Trk,

tropomyosin-related kinase; p75NTR, p75 neurotrophin receptor; ECM, extracellular matrix.
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BOX 1 | Semaphorins and their receptors

Semaphorins are a family of soluble, transmembrane or cell-anchored proteins that contain a common “sema” domain of about 400 amino acids [reviewed in

(37–39)]. They were initially described as guiding molecules during the development of the NS, with capacity to attract or repel axonal growth cones so that

they could reach the appropriate targets. They have been grouped into 8 classes based on their structural characteristics. Semaphorins of class 1 and 2 belong

to invertebrates, those of class 3–7 to vertebrates and those of class 8 are coded by viruses. There are also subclasses that are designated with letters (for

example, Sema3A or Sema4D) and currently there are more than 30 different types of semaphorins. Class 1, 4–6 semaphorins are transmembrane proteins, class

7 members are glycosylphosphatidylinositol-linked, while class 2, 3 and viral semaphorins are soluble proteins. Class 4, 5, and 7 semaphorins can be cleaved and

released extracellularly.

Semaphorins bind receptors expressed in neurons called plexins. Plexins are grouped into four classes called A–D. Four types of plexin A, three types of plexin B,

one plexin C, and one plexin D have been described. There are also two types of plexins in invertebrates. In contrast to the remaining classes, class 3 semaphorins

require a co-receptor binding to signal through class A plexins (40). These co-receptors are transmembrane proteins called neuropilins. They have a short intracellular

domain devoid of intrinsic catalytic activity and functioning as a ligand-binding partner in co-receptor complexes for both plexins and vascular endothelial growth

factor receptors.

Beyond their role in the development of the NS (37–39, 41), these proteins continued to be expressed in the adult brain, where they are linked to processes

such as the modulation of synaptic activity in the hippocampus (42). As well as participating in the modulation of intrinsic NS functions, two elegant studies (43, 44)

demonstrated that the 65KDa isoform of Semaphorin 3A (produced by endothelial cells of the medial eminence of the hypothalamus) and Semaphorin 7A produced

by tanycytes (in both cases under steroid stimuli) can act on Neuropilin-1 or on Plexin C1. This is followed by an attraction or retraction, respectively, of the nerve

terminals of the gonadotropin releasing hormone neurons, thus favoring the release of the neurohormone toward the anterior pituitary in different phases of the

ovarian cycle.

Remarkably, it has also been shown that these proteins play a role in processes unrelated to axon guidance or to synaptic plasticity, such as organogenesis,

vascularization, angiogenesis, neuronal apoptosis and tumor progression (45, 46). Finally, it has been demonstrated that both semaphorins and plexins are expressed

in immune cells, where they interact and exert influences on functions as diverse and critical as cell-to-cell contact, modulation of immunological synapses, regulation

of immune cell activation (by serving as costimulatory molecules), proliferation, differentiation, cell migration or production of cytokines [(47, 48), reviewed in (49–51)].

For instance, a transmembrane semaphorin, 4D Semaphorin, is weakly expressed on T cells, B cells and antigen presenting cells such as dendritic cells (DCs). Its

expression increases radically after activation with different immunological stimuli and in these circumstances, 4D Semaphorin suffers a proteolytic cleavage resulting

a soluble form of it. 6D Semaphorin is present in T cells, B cells and NK cells, whereas 7D Semaphorin is found in activated T cells and in double positive thymocytes.

Sema4A is expressed on antigen-presenting cells and Sema4C is upregulated on follicular T helper cells (52, 53). Regarding plexins, Plexin-A1 is highly expressed by

mature DCs, while Plexin-A4 is located in T cells, DCs, and macrophages. Plexin-B1 is expressed on activated T cells and follicular dendritic cells. As to Plexin-B2,

its expression was found in macrophages, DCs, and plasmacytoid dendritic cells, being also highly expressed by germinal center B cells (53). Plexin-D1 is present

in CD4+ CD8+ double positive thymocytes (49, 51).

Current data on soluble semaphorins, which can be released into the extracellular medium and exert their action in the vicinity without any cell-to-cell contact, is

perhaps even more intriguing for the purposes of this viewpoint. For instance, 3A Semaphorin is produced by activated T cells and one of its functions would be to

inhibit the proliferation of T cells themselves and the production of cytokines (54). The same study shows that CD4+ T cells express higher levels of 3A Semaphorin

than CD8+ T cells. Expression of 3A Semaphorin has also been observed in human blood peripheral monocytes, further increasing when monocytes are differentiated

with macrophage colony-stimulating factor under conditions that promote a macrophage M2 phenotype (alternatively activated macrophages). DCs also express 3A

Semaphorin and their maturation induced by both TNF-α and IL-1β or by CD40L significantly increases the expression of Sema3A mRNA (55). More recently, T-cell

precursors in the thymus of humans were also found to express another soluble semaphorin, 3F Semaphorin (56).

Neurotrophins and their receptors

Since the discovery of nerve growth factor (NGF) by Rita Levi Montalcini (57), great advances have been made in the field of neurotrophins. These molecules, defined

primarily as neural survival stimulants during development in sympathetic neurons, constitute a group of soluble proteins produced by many different cell types. They

are called NGF, brain derived neurotrophin factor (BDNF), neurotrophin 3 (NT-3) and neurotrophin 4 (NT-4) [reviewed in (58–61)], acting on transmembrane receptors

expressed primarily on neural cells: the tropomyosin-related kinase (Trk) receptors and p75 neurotrophin receptor (p75NTR). NGF binds preferably to TrkA, BDNF

and NT-4 to TrkB and NT-3 to TrkC. All neurotrophins can interact with p75NTR. The interactions of neurotrophins with Trk receptors are of high affinity, whereas the

binding of neurotrophins to p75NTR has a very low affinity. However, the binding of NGF to TrkA and that of BDNF to TrkB are of low affinity. Furthermore, p75NTR

can act as a co-receptor by increasing the affinity of neurotrophins for Trk receptors.

The signaling systems of these receptors, mainly those of the p75NTR, are very complex and some controversies exist in this regard (62–65). Acting on Trk

receptors, the neurotrophins promote cell survival and growth, mostly by stimulating the activation of PI-3 kinase-AKT and Ras-ERK pathways. On the other hand,

p75NTR, a member of the tumor necrosis factor (TNF) receptor superfamily, lacks intrinsic catalytic activity and signals through a series of interactions with different

proteins through its intracellular juxtamembrane and death domains. This receptor contributes to cell survival or to neurite outgrowth (by activating or regulating the

NF-κB pathway and Rho activity, respectively), as well as cell migration. Nevertheless, when Trk receptors activation is reduced or absent, high levels of p75NTR

expression can mediate axonal degeneration or induce apoptosis through increased ceramide production and activation of c-Jun N-terminal kinase, caspases, and

p53 (66–68).

Since the binding affinity of neurotrophins to p75NTR is very low compared to their affinity for Trk receptors, the view that neurotrophins were just cell survival

promotors prevailed for a long time. However, it had been proven that during development NGF and BDNF exerted functionally antagonistic actions on sympathetic

neuron growth and target innervation, acting via TrkA or p75NTR to promote or inhibit growth, respectively (69). Even so, the high-affinity bona fide ligands of

p75NTR that may mediate cell death remained largely elusive. Finally, in 2001 Lee et al. (70), showed that pro-NGF was a high-affinity ligand for p75NTR. It was

also demonstrated that pro-NGF induces p75NTR-dependent apoptosis in cultured sympathetic neurons with minimal activation of TrkA-mediated differentiation or

survival. Like many other proteins, neurotrophins are synthesized as proforms that are further cleaved intracellularly by furin or other proconvertases to release their

mature form. Pro-neurotrophins had always been considered biologically inactive precursors until the work by Lee et al. (70) showed that neurotrophins may be

released as pro-neurotrophins into the extracellular medium and then undergo extracellular cleavage by extracellular proteases such as serine protease plasmin and

selective matrix metalloproteinases. Thus, the biological action of neurotrophins is regulated by proteolytic cleavage, with proforms preferentially activating p75NTR

to mediate apoptosis or axonal degeneration and mature forms conversely promoting survival, axonal and dendritic growth, via Trk receptors (71).

Neurotrophins and pro-neurotrophins not only act during development but also in the adult brain, for instance, mediating synaptic plasticity. Within the hippocampus,

mature BDNF facilitates long-term potentiation through TrkB, whereas long-term depression is facilitated by pro-BDNF through p75NTR activation (72–74). At the

Frontiers in Endocrinology | www.frontiersin.org 5 September 2019 | Volume 10 | Article 632

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Bottasso Sympathetic Fibers Plasticity in SLOs

BOX 1 | Continued

peripheral level the application of pro-BDNF induces a dramatic decrease in synaptic efficacy in the neuro-muscular plaque followed by a retraction of the presynaptic

terminals, this effect being mediated by p75NTR (75). This lend support to the view that post-synaptic secretion of pro-BDNF may stabilize or cause retraction of the

presynaptic terminal depending on the proteolytic conversion of this molecule to its mature form, or not.

On the other hand, vascular endothelial cells are able to synthesize BDNF (76), whereas platelets store and release it upon activation, predominately through

proteinase-activated receptor-1 stimulation by thrombin, and plasmin, among other mediators (77, 78). Hemostasis and the IS are linked in different physiological

and pathological conditions, mainly via the complement system. Then, some authors have proposed that these interactions are particularly relevant in adaptive and

maladaptive neural plasticity within the central nervous system, at the level of the neurovascular unit (the blood-brain barrier on the one side, and neurons, glia,

and extracellular matrix on the other side). Such interactions are thought to be quite influential in the development of different conditions, like Alzheimer’s disease,

neuro-inflammation, stroke, neoplastic, and psychiatric disorders (79–81).

Beyond these considerations, it is important to highlight the well-recognized expression of neurotrophins in different inflammatory milieu and unstimulated immune

cells, further increasing upon their activation (82–95). This will constitute a central issue as to the view proposed in the present work.

TABLE 1 | Summary of different types of semaphorins and neurotrophins, along with their receptors, actions and presence in immune cells.

Molecules Types Receptors on neural cells Activities Expression on immune cells

Semaphorins Class 1 and 2 in

invertebrates; class 3, 4, 5,

6, and 7 in vertebrates;

class 8 in viruses

Subclasses designated with

letters (i.e., Sema3A or

Sema4D, etc.)

Class 1 and 4–7

semaphorins are

transmembrane proteins;

class 2, 3 and viral

semaphorins are soluble

proteins

Sema4D has a soluble form

Plexins: grouped into four

classes (A–D), and

presenting many different

subtypes

Neuropilins: co-receptors

for class 3 semaphorins

Axon guidance molecules with

capacity to attract or repel

axonal growth cones

Modulation of synaptic activity in

the hippocampus

Plasticity in uterine sympathetic

nerves

Modulation of hormone release

in the pituitary

Organogenesis, angiogenesis,

neuronal apoptosis and tumor

progression

Many immune functions:

cell-to-cell contact, modulation

of immunological synapses,

regulation of immune cell

activation (by serving as

costimulatory molecules),

proliferation, differentiation, cell

migration, and cytokine

production

4A Semaphorin: expressed on

antigen-presenting cells (52)

4C Semaphorin: upregulated on

follicular T helper cells (53)

4D Semaphorin: expressed on T

cells, B cells and dendritic cells (DCs),

markedly increased upon activation

[reviewed in (49–51)]

6D Semaphorin: present in T cells, B

cells and NK cells (49–51)

7D Semaphorin: seen in activated T

cells and in double positive

thymocytes (49–51)

3A Semaphorin: produced by

activated CD4+ and CD8+ T cells,

human blood peripheral monocytes,

macrophages and DCs (54, 55)

3F Semaphorin: present in T-cell

precursors in the human thymus (56)

Neurotrophins (all of them

are soluble proteins)

Nerve growth factor (NGF)

Brain derived neurotrophin

factor (BDNF)

Neurotrophin 3 (NT-3)

Neurotrophin 4 (NT-4)

Pro-forms and mature forms

are released. Pro-forms can

be cleaved intra

or extracellularly

Tropomyosin-related kinase

(Trk) receptors A, B and C,

high-affinity receptors for

mature forms of

neurotrophins

p75 neurotrophin receptor

(p75NTR), “low-affinity

receptor,” showing high

affinity for pro-forms

p75NTR is specifically

re-expressed under cytokine

influence and during injury

[reviewed in (96–104)]

Mature forms promote cell

survival, axonal and dendritic

outgrowth, mainly via Trk

receptors

Neurotrophins (mainly their

pro-forms) can also mediate

axonal degeneration or

apoptosis via p75NTR, when Trk

receptors activation is reduced

or absent

Synaptic plasticity within the

hippocampus

Plasticity in uterine sympathetic

nerves

Immune functions: modulation of

immune cells apoptosis,

proliferation and

cytokine production

BDNF: in vitro on activated human T

cells, B cells and monocytes (82)

NT-3, BDNF, TrkB, and TrkC: human

immune cells (83)

NGF, BDNF, NT-3, and NT-4/5: rat T

cells, significantly increased upon

antigen activation (84)

BDNF, pro-BDNF, and Trk receptors:

human B cells (92)

TrkA: human monocytes (95)

p75NTR: murine and human

plasmacytoid dendritic cells (94)

p75NTR and pro-BDNF: murine

innate immune cells (93)

Elevated levels of neurotrophins found

in many different inflammatory

scenarios (85–91)

These molecules are widely expressed in many different cell types, in some cases under the influence of cytokines in an inflammatory milieu.

with acute disseminated encephalitis and multiple sclerosis. By
the same time, another group observed that human immune
cells also produced NT-3 mRNA, secreted BDNF, and expressed
their specific receptors TrkB and TrkC (83). The Th1 cytokine

IL-2 stimulated the expression of TrkB mRNA but not of TrkC,
whereas the Th2 cytokine IL-4 enhanced NT-3 but not BDNF
mRNA expression. Following that, it was shown that rat T cells
expressed NGF, BDNF, NT-3, and NT-4/5 and that the secretion
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of neurotrophins by T cells was significantly increased by antigen
activation (84). By then the dual role of neurotrophins and pro-
neurotrophins acting on Trk receptors and p75NTR facilitating
antagonistic processes was unknown (70, 71), therefore there was
no interest in assessing whether immune cells released mature
forms of neurotrophins or pro-neurotrophins. Moreover, since
neurotrophins were thought to stimulate only neuronal survival
and most of these experiments were conducted in animal
models of central nervous system (CNS) inflammatory diseases,
inflammatory infiltrates in conditions like multiple sclerosis were
supposed to exert a “neuroprotective” role (119, 120).

The relationship between neurotrophins and immune-
mediated phenomena was initially envisioned by Aloe et al. (85)
and Bracci-Laudiero et al. (86) who reported elevated levels
of NGF in the synovial fluid of patients with chronic arthritis
and in sera from patients with systemic lupus erythematosus
(SLE), in the latter case positively correlated with disease severity.
More recently, it was also demonstrated that circulating levels
of NGF and BDNF are increased in SLE patients, with severe
lupus flares showing augmented NT-3 levels (87). Other studies
also demonstrate increased values of neurotrophins in the
cerebrospinal fluid of children with viral meningoencephalitis
(88), in plasma from rheumatoid arthritis patients (89) as
well as in many other inflammatory and autoimmune states
[reviewed in (90)], including the bronchoalveolar lavage fluid
of patients with pulmonary sarcoidosis (91). In this study,
immunohistochemistry revealed the expression of NGF, BDNF
and NT-3 in sarcoid granulomas. Again, no characterization
on whether it corresponded to pro-forms or the mature ones
was attempted.

Further work led to envisage different immunological
functions for neurotrophins. Apparently, they would act
primarily in autocrine loops on immune cells by virtue of the
expression of both neurotrophins and Trk receptors on these
cells. In this sense, B lymphocytes have been shown to produce
and release both the mature form of BDNF and pro-BDNF to the
extracellular medium that may modulate apoptosis on the same
B cells (92). On the other hand, neurotrophin signaling has also
been shown to regulate immune cell proliferation and cytokine
secretion, via the p75NTR and TrkA receptors (93–95).

Independently of the type of neurotrophins produced and
released by immune cells during activation, analyzing the
expression of their receptors in neural cells in an inflammatory
context is critical to support the above-stated neural plasticity
hypothesis. As regards p75NTR, this receptor is widely expressed
in the developing NS, including sympathetic neurons, while
most cells no longer express it at adult stages. Surprisingly,
many different types of injury and cellular stressors are potent
inducers of p75NTR re-expression in neuronal and glial cells
[reviewed in (121)]. For instance, p75NTR is up-regulated in rat
dorsal root ganglion neurons after peripheral nerve transection
(96), in corticospinal neurons after axotomy in mice (97), in
rat retina following ischemic injury (98), in ischemic stroke in
rat striatal interneurons (99), in hippocampal neurons during
rodent seizures (100), in spinal cord motor neurons in murine
and human amyotrophic lateral sclerosis (101), as well as in glial
cells in multiple sclerosis plaques (102) and in basal forebrain
neurons of patients with Alzheimer’s disease (103). Interestingly,

inflammatory cytokines such as IL-1β and TNF-α have been
shown to up-regulate p75NTR in neurons and glial cells of the
CNS (104). In this study IL-1β induced p75NTR expression via
p38MAPK in hippocampal neurons, and via p38MAPK andNF-
kB in astrocytes, whereas TNF-α induced p75NTR expression via
NF-kB both in hippocampal neurons and in astrocytes. Hence,
a pro-inflammatory cytokine milieu, common to some of the
pathological conditions reproduced in these models of neural
injury, may regulate the re-expression of p75NTR on neural
cells. Whether sympathetic fibers innervating SLOs react by up-
regulating p75NTR upon cytokine signals during an immune
response remains and intriguing possibility.

It is worth noting that, p75NTRmediated axonal degeneration
should not always be regarded as a pathological process, but
as a physiological mechanism, in some cases. In vitro models
of sympathetic axon competition revealed how winning axons
release BDNF, further interacting with p75NTR on losing axons
to promote their degeneration. This mechanism is essential
for the normal development of neuronal circuits (122, 123).
Moreover, axonal degeneration takes place in the intact rodent
adult brain via a p75NTR and myelin-dependent mechanism
(124), thus precluding septal cholinergic axons (where the
expression of p75NTR is maintained in adult life), from an
abnormal growth onto myelinated tracts, in the corpus callosum.
In the same vein, transient loss of sympathetic nerves in SLOs
should not be necessarily regarded as harmful but as part of a
neural plasticity adaptive mechanism (Figure 1).

Accordingly, the pro-inflammatory cytokine environment
present during the IS activation may lead to the re-expression of
p75NTR in the sympathetic nerves innervating the SLOs, with
neurotrophins produced by lymphocytes mediating a segmental
and transient physiological axonal degeneration of those fibers,
and hence explaining some of the former observations (11, 28,
30, 32–35). On the other hand, released cytokines may also
induce the expression of neurotrophins in other non-immune
cell types, further contributing to this mechanism (Figure 1).
For instance, IL-1β, IFN-γ, and IL-4 were found to regulate
NGF and BDNF expression in human culture bronchial smooth
muscle cells (125) whereas NGF was significantly increased in
keratinocytes during different skin inflammatory diseases, with
TNF-α probably mediating this effect (126–129). As seen with
semaphorins eliciting both attraction and retraction of nerve
fibers, neurotrophins may promote antagonistic effects being
able to mediate either degeneration or axonal growth. In this
way the restoration of the innervation pattern of SLOs once the
immune response is over, may be explained by modifications
in different signals (i.e., changes in the cytokine environment
leading to possible alterations in the expression of Trk receptors
and p75NTR in sympathetic nerves, changes in the production
of neurotrophins and pro-neurotrophins, or changes in factors
favoring their intracellular or extracellular cleavage).

Sensitive and Parasympathetic Innervation
of SLOs
Concerning sensory spleen innervation, the presence and
distribution of positive fibers for substance P -SP-, one of the
main neurotransmitters of sensitive fibers, was described in rats
(130). In this study, SP positive nerve fibers entered the spleen
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with the splenic artery in the hilar region, arborized along the
venous sinuses, and extended from these larger plexuses into
trabeculae and the surrounding red pulp. In the white pulp, SP
positive nerve fibers were found in the marginal zone, and in
the outer regions of the PALS among T lymphocytes. SP positive
nerve fibers were observed in association with the splenic capsule,
the central arteries of the white pulp, or the follicles. However,
retrograde tracing studies were unable to find the neuronal cell
bodies of such fibers in dorsal root ganglia or nodose ganglia in
the rat (10). So, no definitive evidence was found for the sensory
input to the spleen and according to the more influential authors
in this issue, sensory neuropeptide-positive fibers identified in the
spleen would not be involved in providing sensory feedback from
this immune organ (4).

Although there are only a few studies on this subject, one
report did obtain neuroanatomical evidence in the sense that
lymph nodes may receive a sensory afferent supply (131) because
retrograde tracing studies in the tracheobronchial lymph nodes
of guinea pigs identified neurons in cervical dorsal root ganglia.
According to some authors this may have a functional sense,
since unlike the spleen, lymph nodes play fundamental roles in
local immune responses of the organism (4). On the other hand,
careful search of the literature revealed no studies as to possible
changes in the sensitive innervation of lymph nodes, and density,
quantity or distribution of SP positive fibers within the spleen
during an immune activation.

In relation to cholinergic fibers, neuroanatomical evidence for
a parasympathetic input to the lymph nodes or to the spleen
is lacking (4, 132, 133). Nevertheless, a particular subset of
splenic memory T cells has been shown to produce acetylcholine
(ACh), able to elicit anti-inflammatory responses via α7 nicotinic
ACh receptors on macrophages (134). Apparently, vagal nerve
stimulation may result in splenic sympathetic release of NA,
stimulating β2-adrenergic receptors on cholinergic T cells and
thus provoking ACh release (134, 135).

AN INTEGRATIVE VIEW

The adaptive branch of the IS has the impressive capacity to
produce a specific response against a given non-self-antigen upon
its encounter. This response involves antigen recognition, the
activation and clonal expansion of specific lymphocytes, followed
by the production of cytokines or other molecular mediators, the
synthesis of specific antibodies, and migration of immune cells to
specific sites; collectively implying a huge energetic andmetabolic
cost. Provided the response eliminates the triggering insult, the
entire storm ceases and the system recovers its steady state.

As stated, many observations from the last four decades have
shown that, after an initial increase in sympathetic activity at
the very onset of the immune response (21–24), a significant
decrease of noradrenergic transmission within the SLOs occurs
once the IS becomes activated (11, 25–35). Expanding the view
of a physiological mechanism (36), it can be now hypothesized
that such phenomena reflect the existence of an adaptive
neural plasticity program of the sympathetic fibers innervating
SLOs. Thus, retraction and segmental and transient axonal

degeneration would occur during an ongoing immune response,
with further regeneration once the response achieves its goal and
the system returns to a resting state (Figure 1).

Axonal degeneration does occur in a physiological manner, as
it was found in certain areas of the brain during development and
adult life (122–124). P75NTR up-regulation was also induced by
IL-1β and TNF-α, two of the major pro-inflammatory cytokines
released during immune activation (104). Moreover, in different
neural stress/injury situations and inflammatory scenarios, a
re-expression of p75NTR was observed in diverse types of
neurons and glial cells (96–103). Considering current knowledge
about the p75NTR-mediated effects, many neuroscientists have
wondered why the system would respond to neural injury by
up-regulating a receptor capable to mediate axonal degeneration
and even neuronal apoptosis. While seeming initially unsound,
Ibáñez et al. (121) suggested that injury and inflammation
induction of p75NTR in cells that expressed the receptor
earlier in development may mirror the existence of neural
plasticity programs in those situations that to some extend
recapitulate a developmental mechanism. Whether sympathetic
nerves innervating SLOs react by up-regulating p75NTR during
an activation of the IS remains to be established. If so, the
existence of a neural plasticity program working in this context
would be strengthened.

Although neurotransmitters of the ANS released from
the axonal terminals and varicosities are thought to act
on the immune cells in a paracrine fashion [non-synaptic
neurotransmission (19)], it can be speculated that the neuro-
immune interface within the SLOs constitutes a sort of synapse.
Therefore, the immune post-synaptic component may generate
positive and negative signals that further modify, retrogradely,
the structure and function of the pre-synaptic component. The
existence of such post-synaptic signals has long been described,
like those from the neuro-muscular plaque (136–138).

It is now clear that the NS possesses a remarkable and
unexpected plasticity, allowing to modulate critical physiological
functions. As above-mentioned, steroid-stimulated endothelial
cells from the hypothalamic medial eminence and tanycytes
produce and release different semaphorins. These molecules
cause attraction or retraction of the nerve terminals of the
gonadotropin releasing hormone neurons, regulating the release
of the neurohormone toward the anterior pituitary in different
phases of the ovarian cycle (43, 44). Another impressive
example of neural plasticity, of currently unknown significance,
occurs in the uterus, in which sympathetic axons degenerate
or regenerate depending on whether estrogen levels rise or
decline, respectively (139–147). This phenomenon was found to
bemediated by differentmolecules produced by themyometrium
under estrogen’s influence, including neurotrophins and pro-
neurotrophins acting on Trk receptors and p75NTR, as well
as semaphorins.

The above-mentioned evidence suggests that semaphorins
and neurotrophins or pro-neurotrophins, and their respective
receptors, are quite likely candidates to mediate this hypothetical
neural plasticity phenomenon of sympathetic fibers innervating
SLOs. These molecules, essential during the development of the
NS, continue to be expressed in adult life, fulfilling fundamental
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and very different functions. For instance, the expression of
transmembrane and soluble semaphorins and neurotrophins by
activated immune cells and in different inflammatory settings
was widely documented (47–56, 82–95), as did their production
by non-immune cell types under the influence of cytokines in
an inflammatory milieu (109, 125–129). As stated, by acting
on their receptors expressed in axons, they can mediate both
the collapse, retraction and degeneration of neural processes
as well as their attraction and regeneration (70, 71, 115–118).
Changes either in the type of molecules produced by immune
cells or other cell types or in the receptor expressed in the
neural processes on which they act, along with modifications in
the local cytokine environment may explain such antagonistic
actions. Far from exerting their actions separately, neurotrophins
and semaphorins were shown to activate cellular pathways that
can interact downstream (148–150). Accordingly, neurotrophins
may be able, in some cases, to quickly modulate the response of
a given axon to semaphorins, so that the final response would be
dynamic, relying on the interaction of cytoplasmic signals elicited
concurrently by both types of molecules.

The possible participation of molecules other than
semaphorins and neurotrophins in this mechanism cannot
be excluded. There is evidence for inflammatory cytokines
to exert both positive and negative direct regulatory roles in
neurogenesis, neural stem cell proliferation, fate specification,
young neuron migration and neuronal maturation (151) as well
as synaptic plasticity (152). On the other hand, as happened
with semaphorins, netrin-1, a protein formerly described as
an axon guidance molecule (153), seems to be involved in
multiple physiological and pathological conditions, such as
organogenesis (154), angiogenesis (155), tumorigenesis (156),
and inflammation (157, 158). Netrin-1 is a bifunctional axonal
guidance cue, capable of attracting or repelling developing axons
via activation of different receptors (159). Interestingly, it has
been shown that netrin-1 is essential for the development of
arterial sympathetic innervation in mice. Netrin-1 is produced
by arterial smooth muscle cells and arterial innervation required
its interaction with one of its receptors on sympathetic growth
cones (160). A participation of this molecule in the proposed
mechanism is therefore possible.

Also, the existence of signals from de CNS contributing
to this hypothetical mechanism should be considered. Very
early, it was observed that the immune response elicits the
activation of different areas of the CNS, such as the hypothalamus
(161). In these circumstances the activation of the HPA and
gonadal axes is a well-known physiological response (162, 163).
Moreover, the activation of other centers within the cortico-
limbic region is involved in the so-called sickness behavior (164).
Hence, as different areas of the CNS become activated during an
ongoing immune response, central responses may be elaborated
in turn, thus affecting autonomic activity in the periphery and
probably contributing to the decreased sympathetic activity
during immune activation.

Much research is needed to properly demonstrate the
existence of this putative neural plasticity mechanism and the
processes accounting for it. Even when the intimate machinery

mediating changes in sympathetic innervation in SLOs were
unveiled, too many questions would remain unanswered.
Evidence for changes in lymph nodes innervation is less
abundant than that for the spleen. This may be due to the
technical advantages of this latter organ and to the characteristics
of the animal models used in these studies. Since the lymph
nodes apparently do possess sensory innervation, it would also
be interesting to know what happens to SP positive fibers during
an immune activation.

Another essential question is whether changes in the
sympathetic, sensitive and/or parasympathetic innervation
within peripheral non-lymphoid tissues accompany the
development of an inflammatory process, together with the
recruitment of activated immune cells at the site of phlogosis.
If molecules proposed to mediate changes in local innervation
-semaphorins and neurotrophins- are released by activated
immune cells or other cytokine-stimulated cell types, this may
be the case. If so, the emerging question deals with the potential
clinical consequences of this, considering the ANS regulates
many biological functions.

Perhaps the most intriguing matter is what would be the
physiological and immunological goal of this hypothetical neural
plasticity mechanism. Considering the accumulated evidence
on the broad relationship between the NS and the IS (1, 2),
this neural plasticity mechanism may ensure a differential
neural modulation of the IS in its diverse functional-associated
activation states. It was stated that decreased noradrenergic
activity during an ongoing immune response is “a way of
releasing immune cells from the inhibitory effects of NA”
for a proper adaptive response to be developed (36). This
interpretation is in line with the β-adrenergic-receptor-mediated
immunosuppressive effects of NA on such cells, particularly on
Th1-type responses (1, 2, 165–167); the most consistent view on
the immunomodulating effect of the ANS. Even if this turns out
to be true, current evidence also supports a proinflammatory role
of the SNS. In fact, SNS signaling has also been shown to play
an important role in the induction of proinflammatory cytokines
(168, 169), as well as in contributing to proliferation and
mobilization of myeloid lineage immune cells in the first steps
of inflammation [reviewed in (170)]. Moreover, two different
groups have reported that peripheral sympathectomy in mice led
to a significant increase in CD4+Foxp3+ Treg compartment in
SLOs (171, 172). Consequently, the physiological meaning of this
neural plasticity mechanism may be even more complex. Some
of these issues will be better addressed in the second part of
this work.
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