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Abstract: Since the seminal contribution of Rolf Huisgen to

develop the [3++2] cycloaddition of 1,3-dipolar compounds,
its azide–alkyne variant has established itself as the key step

in numerous organic syntheses and bioorthogonal processes
in materials science and chemical biology. In the present
study, the copper(I)-catalyzed azide–alkyne cycloaddition

was applied for the development of a modular molecular
platform for medical imaging of the prostate-specific mem-
brane antigen (PSMA), using positron emission tomography.
This process is shown from molecular design, through syn-
thesis automation and in vitro studies, all the way to pre-

clinical in vivo evaluation of fluorine-18- labeled PSMA-tar-

geting ‘F-PSMA-MIC’ radiotracers (t1=2
= 109.7 min). Pre-clinical

data indicate that the modular PSMA-scaffold has similar

binding affinity and imaging properties to the clinically used
[68Ga]PSMA-11. Furthermore, we demonstrated that target-
ing the arene-binding in PSMA, facilitated through the

[3++2]cycloaddition, can improve binding affinity, which was
rationalized by molecular modeling. The here presented
PSMA-binding scaffold potentially facilitates easy coupling
to other medical imaging moieties, enabling future develop-

ments of new modular imaging agents.

Introduction

The accelerating pace of modern science frequently depends
on breakthrough discoveries that reveal their true impact only

decades later, as is evident for the azide–alkyne 1,3-dipolarcy-
cloaddition that revolutionized syntheses ranging from materi-
als science to chemical biology. Recent progress in bioconjuga-
tions in vitro, bioorthogonal chemistry, in vivo transformations

and medical imaging, among others, has revealed a key role
for the azide–alkyne cycloaddition. Although reactions of 1,3-

dipolar compounds, such as ozones, nitrones or azides, were
already known at the time, it was Rolf Huisgen who changed
the face of heterocyclic chemistry by introducing the principle

of [3++2]cycloadditions using 1,3-dipolar compounds,[1, 2] in par-
ticular the reaction of azides and alkynes providing 1,4- and

1,5- disubstituted 1,2,3-triazoles (Figure 1 A).[3, 4] With the intro-
duction of the ‘click chemistry’ concept by Kolb, Finn and

Sharpless in 2001, the azide–alkyne [3++2] cycloaddition was

crowned to be the ‘cream of the crop’.[5] Inspired by Huisgen’s
seminal work, Sharpless and Meldal discovered the regioselec-

tive, CuI-catalyzed azide–alkyne cycloaddition (CuAAC) variant
(Figure 1 B).[4, 6] Ever since, the Huisgen azide–alkyne cycloaddi-

tion is known to be the prototypical click chemistry method: it
is a highly selective reaction, is performed under mild condi-
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tions, and proceeds with high yield while maximizing atom
economy.[5, 7] The resulting 1,2,3-triazole scaffold showed to

have biological activities[6, 8] and was identified to be a bioiso-
stere for esters,[9] aromatic rings, double bonds, and amides.[10]

Therefore, compounds bearing this motif are widely applied in
medicinal chemistry,[11, 12] whereas click chemistry inspired the
development of in vivo applications, such as the Staudinger-

Bertozzi ligation[13] and the copper-free, strain-promoted click
reaction (SPAAC).[14] The fastest bioorthogonal reaction known

at this moment is the inverse-electron demand Diels–Alder of
tetrazines with cyclooctenes.[15]

Gradually, CuAAC reactions were also used in clinics for the
production of imaging agents, which enable the non-invasive

diagnosis through various modalities including magnetic reso-
nance imaging (MRI),[16, 17] optical imaging[18] and positron emis-
sion tomography (PET).[19, 20] Additionally, these imaging tech-

niques were combined to obtain anatomical accuracy and as-
sociated physiological information, such as in the case of PET-

MRI imaging.[21] The applied imaging agents are designed to
unveil specific biomarkers that are targeted by ligands, such as

small molecules, antibodies, affibodies or peptides,[22] and vi-

sualized with a signaling moiety, for example, a complex of
paramagnetic metal, fluorescent moiety or a radionuclide.[23, 24]

Click reactions are ideal reactions for syntheses of imaging
agents, since they are highly specific and they do not require

protection-deprotection steps,[25] which simplifies purification
and further down-stream processing. The up to 107-fold higher

reaction speed of CuAAC compared to the thermal Huisgen
[3++2] cycloaddition[26] is particularly attractive for the synthesis

of radiotracers,[27] which is time-sensitive due to short half-lives
of PET-radionuclides (11C: 20.4 min, 18F: 109.7 min, and 68Ga:

67.9 min) that form the foundation of PET imaging due to their
main decay mechanism of b+ decay ( >99 % for 11C, 96.7 % for
18F, 88.6 % for 68Ga).[19, 27, 28] Since its first PET-application in

2006,[29] CuAAC found several applications in radiotracer prepa-
ration,[30–32] the triazole appending-agents (e.g. TAAG prosthetic

group) and multivalent or multimodal imaging agents.[33–35]

Facing the challenges to develop new molecular scaffolds to
be used as modular imaging agents for a broader range of
medical applications, we explore azide–alkyne cycloadditions

for quick assembly of imaging agents. Our key challenge is to
develop a flexible synthetic platform to access imaging agents
that are modular with respect to imaging modality and to the
degree of multivalency. Here we present a CuAAC-based radio-
tracer targeting prostate cancer (PCa), including automated

synthesis, molecular modeling, in vitro studies and data ob-
tained all the way to the in vivo evaluation in mice to show-

case its potential for a clinically relevant disease.
PCa is the third most frequently diagnosed cancer among

the male European population in 2018.[36] The high morbidity

constitutes a world-wide health problem.[37–40] The current de-
tection is based on the determination of prostate specific anti-

gen (PSA) levels in blood, a digital rectal exam, and biopsies.[41]

However, the varying etiopathology of PCa makes it difficult to

Figure 1. Overview of the [3++2] cycloadditions, clinically used prostate cancer radiotracers and the molecular platforms presented in this study. (A) Thermal
azide–alkyne Huisgen [3++2] cycloaddition.[4] (B) The copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC).[4] (C) Structure of [68Ga]PSMA-11 with the chelator
HBED-CC and the glutamate-urea-lysine (Glu-urea-Lys) motif (highlighted in blue) that binds to the prostate-specific membrane antigen (PSMA).[50] (D) Struc-
ture of [18F]PSMA-1007.[48] (E) Principle of a modular imaging agent consisting an alkyne-functionalized Glu-urea-Lys motif that can be ‘clicked’ to a selected
signaling moiety with azide-functionality. The signaling moiety is chosen out of the range of different moieties, represented as the star, that is required for
the aimed medical imaging application. The here presented study is showcasing its application in PET imaging. (F) The same principle of modular imaging
agents using an azide-functionalized Glu-urea-Lys motif[52] to cover various suitable functionalized medical imaging moieties.
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define the correct critical limit of PSA-levels.[39] For efficient di-
agnosis, a PCa-specific non-invasive diagnosis supported by

medical imaging was urgently needed. In the 90’s, the discov-
ery of the prostate-specific membrane antigen (PSMA), overex-

pressed in PCa, improved the clinical assessment of PCa by nu-
clear medicine imaging.[39, 42–44] Next to the presence in primary

tumors, PSMA is expressed in metastases and primary lymph
nodes, as well as in the recurrent disease.[45–47] Hence, three
PSMA-targeting tracers have been clinically introduced for this

purpose: [68Ga]PSMA-11, [18F]PSMA-1007 and [18F]DCFPyL.[48, 49]

They all are using the glutamate-urea-lysine (Glu-urea-Lys)
binding motif (Figure 1 C and D).[50] Realizing that this small
motif binds specifically and with high affinity to PSMA and

lends itself to further modifications, we envisioned that it pro-
vides a privileged scaffold for the development of click-based

PSMA-targeted imaging agents.[51] This was further supported

by the key observation that a 1,2,3-triazole attached to an oxy-
ethylene-linker compels PSMA to rearrange by molecular inter-

actions and leads to improved binding.[51]

In the present study, we introduce a versatile, CuAAC-based

modular molecular platform for development of PSMA-target-
ing imaging agents. In particular, we present a novel, fluorine-

18 based PSMA-targeting radiotracer designated [18F]PSMA-

MIC01. To reduce radiation burden for the radiochemist and
allow a robust and reproducible synthesis, [18F]PSMA-MIC01

production was automated in a FlowSafe radiosynthesis
module (see Supporting Information for more detail), which

combines 18F-fluorination in continuous-flow microfluidics with
a versatile CuAAC reaction performed in-batch mode. After

synthesis, optimization and characterization in terms of radio-

tracer stability, lipophilicity and in vitro binding affinity, the
imaging potential of [18F]PSMA-MIC01 was evaluated in vivo

and compared to [68Ga]PSMA-11. Additionally, aiming to in-
crease the binding affinity, a second generation of click-based

PSMA-targeting radiotracers was developed based on compu-
tational design, by introducing an additional aromatic ring in

the side chain. Due to the ability to engage in the Huisgen
[3++2] cycloaddition, the PSMA-binding scaffold presented here

can potentially be easily modified for other medical imaging
modalities (Figure 1 E and F).

Results and Discussion

Design of F-PSMA-MIC01

PSMA is a well-characterized target in structure–activity-rela-

tionship (SAR) studies.[53] The natural function of this mem-
brane zinc-metallopeptidase is to cleave glutamate from N-

acetyl-l-aspartyl-l-glutamate. This antigen has a glutamate-fa-
voring S1’-pocket[54–56] and SAR analysis revealed an adaptive,

hydrophobic-favoring S1-pocket, created by an arginine patch
formed by Arg463, Arg534 and Arg536 that can accommodate

a variety of inhibitors.[57] PSMA-targeting compounds with the

Glu-urea-Lys motif bind to the S1-hydrophobic pocket and the
S1’-pocket, as well as to the zinc ions.[57] Interestingly, it was

found that the presence of a 1,2,3-triazole motif in PSMA inhib-
itors enables binding to an additional arene-binding site,

which has inspired us to use this moiety in developing PSMA-
targeting radiotracers with high affinity.[57] For this purpose, we

designed a modular synthesis approach for PSMA-targeting ra-

diotracers, which can potentially be applied to different imag-
ing modalities, by adapting the existing Glu-urea-Lys motif[57]

so that it is able to undergo the Huisgen [3++2] cycloaddition.
We introduce the radiotracer [18F]PSMA-MIC01 (Figure 2 A),
which is formed by the alkyne-Glu-urea-Lys motif and PET-radi-
onuclide 18F, spaced from the 1,2,3-triazole by a diethylene-

glycol-linker, which was shown to display the right linker
length.[51]

Figure 2. Synthesis and binding affinity of F-PSMA-MIC01. (A) Synthesis route of the alkyne-Glu-urea-Lys motif and the reference compound F-PSMA-MIC01.
(B) Radiolabeling towards radiotracer [18F]-PSMA-MIC01. a) Manual synthesis route of [18F]PSMA-MIC01. The final radiotracer was obtained in an overall radio-
chemical yield of 9 % in a total production time of 148 min, including purification of intermediate and product. b) The automated synthesis route using the
FlowSafe radiosynthesis module. (C–D) logIC50 determination of the F-PSMA-MIC01 (C) and the precursor of [68Ga]PSMA-11 (D) using the cell-based competi-
tive binding radioassay with [68Ga]PSMA-11 as competitor on the PSMA-positive LNCaP cell line. Mean values : SD (n = 3).
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Synthesis of precursors and F-PSMA-MIC01

The synthesis of amine-Glu-urea-Lys motif 3 was performed as
previously described.[58–60] The alkyne-functionality was intro-

duced by NHS-ester coupling to 4-[(trimethylsilyl)ethynyl] ben-
zoic acid 4, followed by reaction with amine 3. Deprotection

with trifluoroacetic acid gave alkyne-Glu-urea-Lys motif 7 (Fig-
ure 2 A). The fluorinated azide-reference 9 was obtained in
33 % yield by substitution reaction of tosylate 8 using tetrabu-

tylammonium fluoride (see Supporting Information for experi-
mental details). CuAAC of precursor 9 with alkyne-Glu-urea-Lys

motif 7 gave the compound F-PSMA-MIC01 in 81 % yield (Fig-
ure 2 A).

Radiolabelling of [18F]PSMA-MIC01

With a radiochemical yield (RCY)[61] of 21 %, the purified inter-

mediate [18F]9 was used for the CuAAC reaction with 7. Subse-
quently, the crude reaction mixture was purified by semi-prep-

arative HPLC and formulated into a 5 mL injectable solution of

10 % EtOH in phosphate-buffered saline (PBS). [18F]PSMA-MIC01
was manually produced in an overall RCY of 9 % with an overall

production time of 148 min (Figure 2 B).
Clinical translation requires higher amounts of radioactivity

than those manually achievable, which are limited by radiation
burden for the radiochemist. Therefore, the synthesis of

[18F]PSMA-MIC01 was automated on a FlowSafe radiosynthesis
module, a continuous-flow microfluidics platform (see Support-

ing Information for details). [18F]PSMA-MIC01 was produced in

an overall RCY of 21 % with an overall production time of
139 min (see Supporting Information for experimental details).

The higher RCY can be explained by the use of the microfluidic
set up for the [18F]fluorination towards intermediate [18F]9. Mi-

crofluidic systems have a higher surface-to-volume ratio which
results in an increased heat transfer capacity compared to in-
batch syntheses.[62] This enabled reduction of the effective re-

action time of the [18F]fluorination to 75 s with concomitant re-
duction of 18F-side-products and increased the intermediary

RCY of [18F]9 to 42 % and overall RCY to 21 %. The obtained
molar activity of [18F]PSMA-MIC01 (AM : 14.1:12 GBq mmol@1)
and high radiochemical purity (see Supporting Information for
UPLC chromatogram) was sufficient for evaluation of the in

vivo organ distribution (vide infra). The AM can be increased by
increasing the starting amount of 18F, which would improve
the binding potency of the tracer due to less competition. The

stability of the radiotracer [18F]PSMA-MIC01 in 10 % EtOH/PBS
was tested for 4 h with radio-HPLC. No degradation products

could be detected (chromatogram shown in the Supporting In-
formation), indicating that the radiotracer is stable. The mea-

sured lipophilicity (logD) in n-octanol/PBS was @3.01:0.22

(see Supporting Information). It has been indicated in literature
that for the detection of primary PCa and lymph node meta-

stasis, a logD value between @2 and @3 is ideal.[63] The here
obtained logD is therefore in this ideal range.

In vitro studies of F-PSMA-MIC01

The binding affinity of F-PSMA-MIC01 to PSMA was determined
in a cell-based competitive binding radioassay using
[68Ga]PSMA-11 (Figure 1 C) and the reference compound F-
PSMA-MIC01 as competitor on PSMA-expressing LNCaP cells.[64]

As expected, we discovered that F-PSMA-MIC01 was able to
block the binding of [68Ga]PSMA-11 and had a binding affinity
in the nanomolar range, as shown in Figure 2 C. To compare

the binding affinity of F-PSMA-MIC01 with „gold standard“
PSMA-tracers, the same assay was performed using the precur-
sor of [68Ga]PSMA-11 (Figure 2 D). To our delight, the obtained
logIC50 values for F-PSMA-MIC01 and the precursor of

[68Ga]PSMA-11 showed the same high inhibitory potency.

In vivo studies of [18F]PSMA-MIC01

The in vivo imaging potential of [18F]PSMA-MIC01 was evaluat-

ed using a murine animal model (see Supporting Information
for experimental details).[65] This was performed in a procedure

that involved the study of the tumor uptake, binding specifici-

ty and comparison to [68Ga]PSMA-11. Tumor uptake of
[18F]PSMA-MIC01 was assessed by performing a 90 min dynam-

ic PET scan. The time-activity curves (TAC, Figure 3 A) represent
the radiotracer kinetics of [18F]PSMA-MIC01, calculated by

image quantification using the Standardized Uptake Values
(SUVmeanBW).[66] The TACs reveal that, after 20 min, the uptake in

the PSMA-positive LNCaP tumor is increased compared to

heart/blood, liver, muscle and brain. This is also supported by
the increasing tumor-to-blood (T/B) and the tumor-to-muscle

(T/M) ratios (Figure 3 B and C).
After successful demonstration of the tumor uptake of

[18F]PSMA-MIC01, binding specificity to PSMA was evaluated
and compared to [68Ga]PSMA-11. For this purpose, three exper-

imental groups were defined: i) Comparison of tumor uptake

in LNCaP xenografts of [18F]PSMA-MIC01 and [68Ga]PSMA-11 in
the same animal. ii) A negative-control tumor model, in which

a PSMA-negative xenograft is used based on the PC3 cell
line,[64] to check whether the observed tumor uptake is caused

by specific interactions with PSMA or rather based on non-spe-
cific effects, such as the enhanced permeability and retention

(EPR) effect.[67] iii) Confirmation of binding specificity of radio-
tracer [18F]PSMA-MIC01, by blocking PSMA in LNCaP-xenografts

prior to radiotracer injection,[65] using the potent PSMA-inhibi-
tor 2-(phosphonomethyl)pentanedioic acid (2-PMPA, IC50 :
0.3 nm[68]). All groups were evaluated by visual assessment of

the PET image and the percentage injected dose per gram
(%ID g@1).

The PET images (Figure 3 D) visualize the organ distribution
of [18F]PSMA-MIC01 in different groups. In all four conditions,

tumor uptake was detected. Although the tumor uptake based

on visual assessment of the SUV-based PET image of
[18F]PSMA-MIC01 and [68Ga]PSMA-11 looks quite similar, the

uptake in the PC3- and blocked LNCaP-xenografts is clearly re-
duced. This is in agreement with the ex vivo organ distribution

of [18F]PSMA-MIC01, shown in Table 1, in which parts of the
organs were dissected after the PET scan and the radioactivity
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content was measured. The tumor uptake of [68Ga]PSMA-11
was 6.8:6.3 %ID g@1, whereas the uptake of [18F]PSMA-MIC01
was 11.8:4.2 %ID g@1 in LNCaP xenografts. Although

[18F]PSMA-MIC01 showed equivalent uptake compared to
[68Ga]PSMA-11 in terms of the probability value, the Cohen’s d
(d = 0.93, see Supporting Information for calculation) indicates

even a large effect size between these two groups. In litera-
ture, the LNCaP tumor uptake of [18F]PSMA-1007 is reported to

be 8.04:2.4 %ID g@1,[65] which is in the same range than the
values obtained in this study for [68Ga]PSMA-11 and [18F]PSMA-

MIC01. For non-specific binding of [18F]PSMA-MIC01 in the

PSMA-negative PC3 xenograft, an uptake value of 3.0:
1.8 %ID g@1 was measured. Compared to the LNCaP-xenografts,

this is significantly lower and indicates only minor non-specific
binding effects. In the blocking group, we observed tumor

uptake of 2.8:0.8 %ID g@1, which is a similar to the PSMA-neg-
ative PC3 xenograft.

[68Ga]PSMA-11 and other PSMA-binding tracers are known to
have a quite high accumulation in the salivary glands of pa-
tients[69] which is a limiting factor in its application as theranos-

tic agent due to the possible side-effect of xerostomia.[70] The
ex vivo organ distribution data show that the salivary gland
uptake is low in all groups (0.5 to 1.1 %ID g@1). In summary, the

in vivo data suggest that the tracer uptake of [18F]PSMA-MIC01
is comparable with [68Ga]PSMA-11.

Design of 2nd generation F-PSMA-MIC compounds

Encouraged by the good imaging performance of [18F]PSMA-
MIC01, we explored the application of CuAAC to introduce

structural changes that further improve the binding of
[18F]PSMA-MIC01 towards PSMA. It is known that the incorpo-

ration of 1,2,3-triazole and polyethylene-glycol linkers in PSMA-
targeting compounds induces a rotation of Trp541 towards

Figure 3. Organ distribution of [18F]PSMA-MIC01 in a murine model. (A) Time-activity curves in several organs during a 90 min dynamic PET scan, calculated
based on the body-weight corrected Standardized Uptake Value (SUVmeanBW). The values are represented as Mean (n = 6). SD is removed for readability (for
complete graphs, see Supporting Information). (B) Tumor-to-muscle (T/M) ratio. (C) Tumor-to-blood (T/B) ratio. (D) Representative PET images obtained during
a 30 min static PET scan, started 60 min p.i. The dotted lines highlight the tumors (LNCaP- or PC3- xenografts). The first two scans shown, [68Ga]PSMA-11 and
[18F]PSMA-MIC01, are performed in the same animals on consecutive days. The upper row shows the transversal view on mouse and the lower row the coro-
nal view.
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Arg511,[51] thus opening the arene-binding cleft and precluding
the closure of the entrance lid. It was shown that the combina-

tion of a 1,2,3-triazole, di- or tetra-ethylene-glycol linker and a
dinitro-phenyl group resulted in increase of the binding affini-

ty.[51] Based on this observation, we designed a second genera-
tion of tracers, F-PSMA-MIC02@F-PSMA-MIC04, for PET imaging

purposes (Figure 4). Their design was aimed at studying the

effect of the following modifications: i) the arrangement of the
triazole group, by functionalizing the PSMA-binding scaffold

with both alkyne- (F-PSMA-MIC01 and F-PSMA-MIC02) and
azide-motifs (F-PSMA-MIC03 and F-PSMA-MIC04); ii) the intro-

duction of an additional aromatic ring to target the arene-
binding site in F-PSMA-MIC02 and F-PSMA-MIC-04. To avoid

challenging nucleophilic substitutions on electron-rich aromat-

ics,[71] it was decided to add another ethylene-linker between
the benzene ring and the 18F-radionuclide. With this design, all
compounds could be radiolabeled by the same procedure,
using a tosylate moiety as leaving group.

Synthesis of 2nd generation F-PSMA-MIC compounds

Whereas the synthesis of F-PSMA-MIC01 employed alkyne-Glu-
urea-Lys motif 7, the design of molecules F-PSMA-MIC03 and

F-PSMA-MIC04 required the preparation of the previously re-
ported azide analogue 14 (Figure 4).[52] To this end, compound

3 was first deprotected and coupled to activated 4-azidometh-
yl benzoic acid 13 in a yield of 41 % (Figure 4 A) (see Support-

ing Information for experimental details). Azide- and alkyne-

precursors 8 and 18 were modified with 4-(2-hydroxyethyl)-
phenol 12 to introduce the benzene-ring, and were fluorinated

using tetrabutylammonium fluoride or diethylaminosulfur tri-
fluoride (DAST) in a yield of 81 % for azide-precursor 17 and

74 % for alkyne-precursor 21. F-PSMA-MIC02, F-PSMA-MIC03
and F-PSMA-MIC04 were obtained in CuAAC reaction in yields

of 33 %, 43 % and 9 %, respectively (see Supporting Information
for experimental details).

Molecular modeling studies of F-PSMA-MIC compounds

The influence of the structural modifications on the binding to-
wards PSMA was first evaluated in a molecular docking study

using previously reported crystal structures.[51] Crystal struc-
tures of PSMA with the Glu-urea-Lys motif coupled by a 1,2,3-

triazole either to methoxy tetra-ethylene glycol linker (MeO-P4)
or to a dinitrophenyl di-ethylene glycol linker (ARM-P2) were

used, to include the two distinct conformations of Trp54.[51]

This key residue is flipped when no interaction is occurring at
the remote arene-binding site[51] (Figure 5 A and B), whereas it

is flat when a stabilizing p@p interaction is formed (Figure 5 C
and D). All the inhibitors show similar docking poses to the
parent compounds, MeO-P4 and ARM-P2. The Glu-urea-Lys
motifs of all inhibitors interact with the protein active site resi-

dues Arg210, Asn257, Tyr552, Lys553, Lys699, Asn519 and
Arg536. For F-PSMA-MIC01 and F-PSMA-MIC03, the diethylene

glycol-linker is not involved in specific interactions, as it can be

expected due to its large flexibility. On the other hand, F-
PSMA-MIC02 and F-PSMA-MIC04 target the arene-binding site

and engage in a p@p interaction with Trp541 as ARM-P2, albeit
with suboptimal ring orientations. To assess the evolution and

the stability of this interaction, molecular dynamics (MD) simu-
lations were performed on the crystal structure of ARM-P2 and

the docked conformations of F-PSMA-MIC02 and F-PSMA-

MIC04 (Figure 6). Three 100 ns long MD simulations were car-
ried out for each compound (see Supporting Information for

computational details).
ARM-P2 features an electron-deficient ring designed to inter-

act with the electron-rich indole moiety of Trp541. In MD simu-
lations, we were able to reproduce this face-to-face p@p stack-

Table 1. Ex vivo organ distribution of the radiotracers [18F]PSMA-MIC01 and [68Ga]PSMA-11, radioactivity was corrected for the injected dose per gram
(%ID g@1).

LNCaP (PSMA +)
[18F]PSMA-MIC01

LNCaP (PSMA +)
[68Ga]PSMA-11

PC3 (PSMA-)
[18F]PSMA-MIC01

LNCaP (PSMA +) blocked
[18F]PSMA-MIC01

tumor 11.7::4.2 6.8::6.3 3.0::1.7 2.8::0.8
whole blood 1.6:1.3 2.2:3.8 3.4:1.8 1.8:0.6
plasma 0.9:5.2 1.0:0.5 6.0:3.5 3.8:1.3
urine 314:420 45.4:30.8 184:260 644:627
heart 0.6:0.4 0.2:0.0 1.0:0.6 0.7:0.5
lungs 1.3:0.5 1.1:0.4 2.1:1.1 1.1:0.3
spleen 5.8:3.4 15.9:7.3 3.1:1.4 1.0:0.2
liver 5.6:1.3 0.2:0.3 9.4:2.9 5.7:1.4
stomach 0.6:0.2 0.4:0.2 1.2:0.6 7.3:16.4
kidney 42.0:9.0 69.1:21.1 39.8:28.8 28.5:20.7
muscles 0.5:0.2 0.2:0.1 0.6:0.3 0.3:0.1
small intestine 1.6:2.1 0.5:0.6 1.3:0.6 1.2:1.5
large intestine 1.4:1.5 0.7:0.9 1.4:0.5 0.9:0.3
pancreas 0.8:0.7 0.6:0.6 0.8:0.3 0.5:0.2
bone 0.2:0.1 0.1:0.1 0.5:0.2 0.3:0.1
brain 0.1:0.0 0.0:0.0 0.2:0.1 0.1:0.0
salivary glands 0.5:0.3 0.9:0.4 1.1:0.6 1.0:0.8

The values are represented as Mean:SD %D g@1. (n = 6 mice for [18F]PSMA-MIC01 on LNCaP-xenografts, n = 5 mice for [68Ga]PSMA-11 and [18F]PSMA-MIC01
on PC3-xenograft).
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ing that was remarkably stable over the course of the simula-
tions (Figure 6 C). Examining molecules F-PSMA-MIC02 and F-

PSMA-MIC04, which for reasons of synthetic accessibility fea-
tured an electron-rich ring, revealed that this interaction is
present, albeit intermittent and at intervals is of an edge-to-
face nature (Figure 6 A and B), which is consistent with the

electrostatic view of the p@p interaction of two electron-rich
aromatics.[72] This electron-rich aromatic ring also forms cation–

p interactions with Arg511 in the arene-binding site (see Sup-
porting Information).

Overall, molecular modeling suggests that p@p contacts

with PSMA are enabled by the addition of an aromatic ring
and contribute to the binding affinity. However, the docking

simulations were not able to discriminate between the two dif-
ferent arrangements of the triazole group in compounds F-

PSMA-MIC01/MIC-02 and F-PSMA-MIC03/MIC04.

In vitro studies of the 2nd generation F-PSMA-MIC
compounds

During the pre-clinical evaluation of [18F]PSMA-MIC01, many
hospitals including the University Medical Center Groningen

changed from using [68Ga]PSMA-11 to [18F]PSMA-1007. There-
fore, the binding affinities for the 2nd generation PSMA-tracers-

tracers were determined in a radioassay using [18F]PSMA-1007
as radioactive competitor (Figure 1 D).

To determine the influence of the structural changes intro-
duced in the 2nd generation F-PSMA-MIC compounds, we first
evaluated the arrangement of triazole-ring by comparing F-
PSMA-MIC01 with F-PSMA-MIC03, yet we observed no signifi-

cant difference. However, in the case of targeting the arene-
binding site (F-PSMA-MIC02 and F-PSMA-MIC04), the rigid tria-
zole-benzene part of F-PSMA-MIC02 gives a lower logIC50

value, representing a higher binding affinity towards PSMA.
Binding affinities of the second generation PSMA-tracers

showed that F-PSMA-MIC02 has a higher binding affinity than
F-PSMA-MIC01. The positive influence of a hydrophobic, rigid

linker attached to the lysine part was already reported earli-

er.[73] This suggests that the strongest PSMA binding affinity of
F-PSMA-MIC02 is due to the rigid triazole-benzene part and as

the affinity observed for this compound was the highest, we
proceeded to radiolabel [18F]PSMA-MIC02 and fully automate

its synthesis.

Figure 4. Overview of the compounds used for the 2nd generation F-PSMA-MIC compounds.
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Radiolabeling of the 2nd generation radiotracer [18F]PSMA-
MIC02

The manual synthesis showed good conversion towards
[18F]PSMA-MIC02 and the procedure was implemented and op-

timized on the FlowSafe radiosynthesis module in an overall
RCY of 9 %, yielding a 5 mL injectable solution of 10 % EtOH in

PBS with an overall production time of 169 min. The obtained

logD value for [18F]PSMA-MIC02 is @3.22:0.10 and its stability
was tested for 4 h in 10 % EtOH/PBS (see HPLC chromatograms

in the Supporting Information). The logD value of [18F]PSMA-
MIC02 was slightly higher than the logD of [18F]PSMA-MIC01.

Figure 5. Molecular docking studies and binding affinities of the 2 nd generation F-PSMA-MIC compounds. A–D: Molecular docking poses. (A) F-PSMA-MIC01
(orange) and (B) F-PSMA-MIC03 (yellow), superimposed on the binding mode of MeO-P4 with PSMA (PDB ID: 2XEJ) ; (C) F-PSMA-MIC02 (purple) and (D) F-
PSMA-MIC04 (pink), superimposed on the binding mode of ARM-P2 with PSMA (PDB ID: 2XEI). Protein is represented as grey cartoon with key residues in
sticks, co-crystallized ligands in green, metal ions as dotted spheres. Hydrogen bonds and p@p stackings are depicted as yellow dashed lines. (E–H) LogIC50

determination. Mean values : SD (E,F and H: n = 3, G: n = 4). Competitive binding radioassays of the F-PSMA-MIC compounds on LNCaP cells using
[18F]PSMA-1007 as radioactive competitor.
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Conclusions and Outlook

We have established a flexible molecular platform showcasing
its potential for the development of prostate cancer imaging

agents based on the CuI-catalyzed Huisgen [3++2] cycloaddition
and showed the successful route from molecular design all the

way to in vivo evaluation. Pre-clinical analysis of [18F]PSMA-
MIC01 revealed similar imaging performance as compared to
the clinically used [68Ga]PSMA-11 radiotracer. Importantly, the

binding potential of the Glu-urea-Lys motif was maintained, of-
fering prospects for the use of clickable alkyne-PSMA-binding

motif 7 as a general modular platform.
Further investigation of the clickable PSMA-scaffold 7 led to

the design of a second generation of F-PSMA-MIC compounds.

Molecular docking and dynamic studies were conducted to an-
alyze the interaction of these compounds with PSMA. The in

vitro data indicate that targeting the arene-binding site only
partly improves binding affinity due to the electron-rich aro-

matic introduced to target the arene-binding site. The alkyne-
modified PSMA-scaffold revealed a robust and reproducible

binding affinity towards PSMA and is a useful scaffold for ‘click-
ing’ to imaging agents that enable other modalities, such as

chelators or fluorescent dyes or to increase the (multi)valency.
This modular click-based strategy would be applicable for
other molecular targets as well. It also demonstrates how fun-
damental discoveries in heterocyclic synthesis, as achieved by
Huisgen and colleagues, ultimately provides major perspec-

tives for early detection of life-threatening diseases.
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