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Abstract

Diseases of the preterm newborn such as bronchopulmonary dysplasia, necrotizing enterocolitis, 

cerebral palsy, and hypoxic-ischemic encephalopathy continue to be major causes of infant 

mortality and long-term morbidity. Effective therapies for the prevention or treatment for these 

conditions are still lacking as recent clinical trials have shown modest or no benefit. Stem cell 

therapy is rapidly emerging as a novel therapeutic tool for several neonatal diseases with 

encouraging pre-clinical results that hold promise for clinical translation. However, there are a 

number of unanswered questions and facets to the development of stem cell therapy as a clinical 

intervention. There is much work to be done to fully elucidate the mechanisms by which stem cell 

therapy is effective (e.g., anti-inflammatory versus pro-angiogenic), identifying important 

paracrine mediators, and determining the timing and type of therapy (e.g., cellular versus 

secretomes), as well as patient characteristics that are ideal. Importantly, the interaction between 

stem cell therapy and current, standard-of-care interventions is nearly completely unknown. In this 

review, we will focus predominantly on the use of mesenchymal stromal cells for neonatal 

diseases, highlighting the promises and challenges in clinical translation towards preventing 

neonatal diseases in the 21st century.
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Introduction

Infant mortality in the United States continues to be high (5.9/1000 live births in 2016 (1) 

compared to other civilized nations. Diseases affecting extremely premature infants such as 

bronchopulmonary dysplasia (BPD) and necrotizing enterocolitis (NEC), remain major 

contributors to infant mortality and morbidity. Continued efforts to prevent these diseases 

have met with only modest success in the last decade, mandating new therapeutic strategies 

to improve disease outcomes in the 21st century. Stem cell (SC) and SC-derived therapies 

have emerged as promising options with over 900 registered trials on clinicaltrials.gov. 

Given the plasticity and regenerative potential of developing organs, SC use represents an 

exciting therapeutic strategy. However, fundamental questions regarding mechanisms of 

action and optimal treatment strategies remain unanswered, restricting their broad clinical 

applicability (2). Focusing primarily on mesenchymal stromal cells (MSC), we will discuss 

aspects of SC therapy relevant to neonatal diseases including mechanisms of actions, 

sources, preclinical studies, and clinical trials herein. We highlight the promises and 

challenges of this novel therapy and provide a blueprint for successful clinical translation to 

prevent neonatal diseases in the 21st century.

MSC

SC-based therapies have received major attention over the past 20 years after the initial 

discovery that bone marrow-derived cells can regenerate infarcted myocardium (3). This 

observation ignited a new field of investigation into the capacity of various types of “stem” 

cells to repair damaged organs including the brain, heart, gut and lung. One cell type, first 

described in the 1960s as colony forming fibroblasts, has received particular attention (4). 

These cells had clonogenic capability, and were able to differentiate into chondrocytes, 

osteocytes and adipocytes, and therefore qualified as “stem” cells. These bone marrow-

derived cells, rapidly identified as important niche cells for the hematopoietic SC, were 

progressively investigated for their apparent repair functions. Since, similar cells have been 

isolated from adipose tissue (ADSC), and umbilical cord (UC) and umbilical cord blood 

(UCB) (Figure 1) (5,6). Since their initial description, these cells have received several 

names. As of today, the most accepted – yet still evolving – denomination is that of MSC 

proposed by the International Society for Cellular Therapy (ISCT) (7). MSC 

characterization is based on expression of cell surface markers, plastic-adherent growth, and 

differentiation potential into osteocytes, adipocytes, and chondrocytes (7). Although some 

features unique to the MSC secretome are known (8,9), tissue-specific definitions are 

lacking. MSC are attractive due to their wide therapeutic potential, low immunogenicity due 

to lack of MHC class II receptors, ease of isolation, self-renewing capacity, and rapid and 

extensive ex vivo expansion capacity (10). They exhibit multi-lineage differentiation and 

their secretome, consisting of a broad array of growth factors, cytokines, chemokines and 

extracellular vesicles, exhibits pluripotent effects (11).
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Other SC therapies

Some non-MSC stem cells can be similar, but are not identical to MSC; for example, 

amniotic fluid stem cells (AFSC) have the same cell surface markers and tripotent 

differentiation potential but also express stem cell embryonic antigen-4 (SSEA-4) (12), 

CD29 (13,14), CD49e, OCT-4 (13), and may be weakly MHC class II positive (15). Other 

SCs, such as decidual stromal cells (DSCs), express many of the MSC surface markers, but 

differentiate poorly into osteocytes, adipocytes, and chondrocytes (16). Similarly, cardiac 

progenitor cells (CPCs) can be isolated from myocardium during surgical palliation of 

congenital heart defects, but unlike MSC, express cardiac-specific transcription factors like 

GATA-4 (17) and critically, can be positive for the classical hematopoietic stem cell marker 

CD34 (18). Finally, umbilical cord blood mononuclear cells (UCB-MNC) refers to the cell 

fraction obtained by centrifugation which contain UCB-MSC in a small proportion and are 

mostly CD133 positive (19). Researchers have also administered minimally processed 

umbilical cord blood (UCB) without immunophenotyping or ex vivo expansion, to rapidly 

provide SC therapy (19–22).

Postulated mechanisms of action

It was initially believed that cell replacement at the site of injury by engraftment and 

differentiation was the key mechanism of MSC action (23). However, extremely low rates of 

engraftment (typically <1–5%), and recent evidence indicate that MSC exert their 

therapeutic benefits via cell-to-cell communication and the secretion of bioactive molecules 

capable of modulating reparative processes (24,25) (Figure 1). These paracrine mechanisms 

(26) include beneficial modifications of the host niche/tissue environment with production of 

factors important in inflammation/immune signaling [e.g., IL-1Rα (27), tumor necrosis 

factor-α-induced protein 6 (TSG6) (28), prostaglandin E2 (29), and IL-10 (30)), 

angiogenesis (e.g., vascular endothelial growth factor), fibrosis (e.g., stanniocalcin-1 (31) 

and adrenomedullin (32)], and cell death/repair [e.g., hepatocyte, insulin, and keratinocyte 

growth factors (25,33–35)].

The MSC secretome also includes extracellular vesicles such as exosomes, which are 

nanoparticle-sized, lipid-bilayer-enclosed vesicles that mediate the therapeutic benefit of 

MSC. Exosomes carry nucleic acids, including microRNAs, and proteins that, upon 

secretion into the extracellular space fuse with the cell membranes of host cells, effecting 

transcriptional and post-translational modifications (36,37). This discovery opens new 

exciting avenues towards cell-free therapy as in vitro (38) and in vivo (34,39–41) 

experiments demonstrate that the cell-free conditioned media or exosomes obtained from 

MSC exert the same therapeutic benefit as whole SC therapy. Administering the secretome/

exosomes confers advantages related to SC manufacturing, storage, and ability to provide 

“off-the-shelf” pharmaceuticals (42), while avoiding potential ethical, legal, and scientific 

challenges, including a concern for tumorigenicity (43,44). Their potential to modulate 

inflammation/immune signaling, angiogenesis, fibrosis and cell death/repair make them 

ideal candidates for therapeutic exploration in diseases affecting preterm infants.
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Homing & Engraftment

MSC (45,46) and AFSC (12,15) home to sites of injury including the lung in animal models 

of BPD and the intestinal villi in models of NEC. Administered SC are often undetectable 

after a few days from the site of implantation (38,40), but may home to remote sites such as 

the spleen and liver (16,47). Some animal studies suggest that up to 21% of administered 

UC-MSC differentiate into neurons in the 35 days after transplant (48) while others do not 

(49). Even without engraftment, the effect of SC appears to be long-lasting for up to 14 

months (50). This may be related to route of administration, as those given intra-arterially 

(21) and intra-nasally (51) engraft, and intravenously (49) administered SC do not, or related 

to SC type, as SC contained in intraperitoneally (19) or intravenously (20) administered 

UCB also fail to engraft. Therefore, while engraftment is not necessary for function, and the 

fate of transfused SC remain unclear, consideration of SC type, and administration near the 

site of action is important.

Inflammation

MSC were initially noted to be anti-inflammatory and more recent findings have confirmed 

their immunomodulatory ability. MSC have several anti-inflammatory effects, inducing a 

shift from pro-inflammatory cytokines such as IL-1β (52), IL-6 (52,53), TNFα (52–54), 

IFNγ (54), IL-1Rα (27), and prostaglandin E2 (29) to anti-inflammatory cytokines like 

IL-10 (30,54,55) and TNFα-induced protein 6 (TSG-6) (28). Increases in regulatory T-cells 

(54) and a switch from M1 to M2 macrophage polarization (51,56) also contribute to the 

anti-inflammatory signature.

Angiogenesis

MSC have pro-angiogenic effects, exerted primarily through the vascular endothelial growth 

factor (VEGF) family of pro-angiogenic growth factors essential for normal vascular 

development (57). MSC from placenta (53) and UCB (34), and AFSCs (12) secrete VEGF 

and induce endogenous VEGF secretion, improving lung vascular density in BPD models, 

and silencing MSC VEGF abolishes this effect (34). In vitro, UCB-MSC conditioned media 

induces endothelial cell proliferation and tubule formation similar to that induced by direct 

VEGF application (58).

Fibrosis

Fibrosis is a common feature of chronic diseases such as BPD where parenchyma is 

replaced with scar tissue putatively via TGF-β1/SMAD2/SMAD3 signaling (59). MSC often 

reduce fibrosis (53,60), MMP-9/TIMP-1 expression (60), connective tissue growth factor 

(53), elastin (61), and myofibroblast formation (61). They have also been reported to 

increase fibrosis (62) and TGF-β1 (46), and to decrease MMP-9 (63) in BPD. In cardiac 

disease, BM-MSC (64) and CPCs (17) reduce fibrosis and collagen I, perhaps via 

adrenomedullin (32). Overall, the anti-fibrotic impact of MSC is less well-established, but 

still a likely mechanism of action.
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Future Mechanistic Studies

While inflammation and regeneration are mechanisms relevant to all perinatal diseases, 

other MSC-functions may not be equally applicable to all diseases. Therefore, it is 

imperative that we further understand MSC function from a mechanistic perspective. 

Further, as disease processes are complex with pathogenic mechanisms that vary with stage 

of disease, consideration of best type of SC therapy and pre-conditioning is important for 

developing precision SC approaches to prevent or rehabilitate neonatal disease.

Disease outcomes

BPD and pulmonary hypertension

BPD, a chronic lung disease that develops in premature infants, remains a major cause of 

morbidity and mortality (65). BPD is a phenotype of disrupted lung growth arising from 

exposure of neonatal lung to chorioamnionitis and nosocomial infection, malnutrition, 

hyperoxia and positive pressure ventilation (66–70). The multifactorial nature of the disease 

has challenged development of novel therapies (71). The putative ability of MSC to sense 

their microenvironment and to modulate the repair response accordingly via pleiotropic 

secreted factors, makes them appealing for the treatment of BPD (24,72,73).

Proof-of-concept experiments suggested a single intravenous (39) or intra-tracheal injection 

(38) of BM-MSC was lung-protective in neonatal rodents exposed to hyperoxia, leading to 

improvements in survival, lung inflammation, pulmonary hypertension and alveolar 

structure. Similarly, extensive studies have shown that a single intra-tracheal administration 

of human UC-/UCB-MSC prevents and rescues neonatal rats from hyperoxia-induced lung 

injury (74). They also have long-term efficacy and safety as exemplified by persistent 

improvement in lung structure and exercise capacity, with no evidence of tumor formation 

(40). Similar benefits on lung structure and inflammation in BPD models have been reported 

using human UCB-MSC (75). Cell-free therapy has considerable promise in BPD, as MSC-

derived exosomes administered intravenously, intraperitoneally, or intratracheally prevent 

oxygen-induced lung injury in neonatal rodents via the modulation of macrophage activity 

and secretion of miRNA and TSG-6 (56,76).

The extensive pre-clinical evidence regarding MSC therapy in experimental neonatal lung 

injury was recently confirmed in a systematic review including 25 studies (26). MSC 

significantly improved alveolarization irrespective of timing of treatment, source, dose, or 

route of administration, except for one study using the intra-nasal approach. MSC also 

significantly ameliorated secondary endpoints including pulmonary hypertension, lung 

inflammation, fibrosis, angiogenesis, and apoptosis. Notably, numerous risks of bias were 

identified, highlighting the need for more rigorous experimental design and reporting of pre-

clinical studies as set forth by the ARRIVE guidelines for animal studies (77). Furthermore, 

all 25 studies were performed in the neonatal hyperoxia-induced rodent model of BPD and 

models of sepsis-induced remodeling in BPD (66), indicating the need for studies in large 

animal models that allow the study of more complex disease pathology and in-depth 

physiologic assessments. Despite these shortcomings, first-in-human trials with MSC have 

been initiated (Figure 2).
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The first phase I trial used a single intra-tracheal injection of allogeneic UCB-MSC in nine 

preterm infants born between 23 and 29 weeks gestation requiring mechanical ventilation 

between 5 to 14 days of age (78) (Table 1). This dose escalation study testing 107 or 2×107 

SC/kg suggested that the procedure was feasible and well tolerated with no serious adverse 

events reported (78). The follow-up study at 2 years of age indicates no adverse growth, 

respiratory or neurodevelopmental outcomes (79). Similarly, a phase I/II trial at Rush 

University Medical Centre () and phase I trial in Spain () are pending (Table 2), the latter of 

which will test the safety and feasibility of up to 3 doses of intravenous UC-MSC in infants 

born at less than 28 weeks gestation still requiring mechanical ventilation at 14 days. Finally, 

a phase II double-blinded, multicenter, randomized controlled trial administering 107 

MSC/kg is ongoing () with a planned long-term follow-up ().

Hypoxic-ischemic encephalopathy

Hypoxic-ischemic encephalopathy (HIE) is caused by an acute reduction in cerebral blood 

flow and ischemia with necrosis, followed by inflammatory reperfusion injury (80). SC can 

reduce these phases of injury through anti-inflammatory, pro-angiogenic, anti-oxidant, and 

anti-apoptotic mechanisms. Pre-clinical studies indicate that when given within hours to 

days of hypoxia-ischemia, BM-MSC, UC-MSC, and UCB-MSC improve behavioral and 

motor outcomes (81–83), BM-MSC decrease the size of injured brain (84), and adipose-

derived MSC and placenta-derived MSC reduce inflammation (52,54). Similar effects are 

found with administration of minimally processed UCB (85,86), endothelial colony forming 

cells (85), and neural stem cells (87), potentially making it difficult to investigate 

mechanisms of action.

Results of one clinical trial suggests that volume- and erythrocyte-reduced umbilical cord 

blood is safe and benefits neurodevelopmental outcome, although significant differences in 

gender, severity and attrition at follow-up between the intervention and control groups could 

have biased results in favor of SC therapy (88). The future of SC therapy for HIE lies in its 

past and present: identifying the target group of patients (mild, moderate, or severe and term 

or preterm) and the appropriate timing of intervention (within a certain time-frame), and 

conducting well-designed clinical trials to answer these fundamental questions.

Cerebral palsy

Cerebral palsy (CP) is a non-progressive motor disorder suffered by both preterm and full-

term infants, associated with intellectual disability, impaired mobility, and epilepsy (89). 

MSC may modulate resident host progenitor cells to enhance plasticity, survival, and 

differentiation (90,91). Administering MSC in animal models of intraventricular hemorrhage 

improves behavioral outcomes, fosters growth of oligodendrocytes, and reduces 

inflammation (92,93). Brain-derived neurotrophic factor (BDNF) and IFNγ appear to be 

important mediators of this effect as BDNF knockdown eliminates the beneficial effects of 

MSC (94) and the secretome of IFNγ-treated MSC, but not untreated MSC, restores 

myelination defects (95).

In human studies of CP, administration of minimally processed UCB into the cerebrospinal 

fluid has been generally safe (96), as adverse effects reported relate to lumbar puncture (e.g., 
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headache, vomiting) or mild immunologic reaction (e.g., fever). UCB administration 

improves motor symptoms (97–99), with UCB-MSC also showing benefit to gross and fine 

motor function for up to two years after administration (100). There may be a genetic basis 

of response, as twins are more likely to respond or not respond as a pair (101), and not all 

participants improve, suggesting that unrecognized variables that impact SC therapy efficacy 

exist.

Necrotizing enterocolitis

Necrotizing enterocolitis (NEC) is a major cause of morbidity and mortality among 

premature infants with mortality remaining between 20–30% in the last two decades (102). 

Although the exact pathogenesis of the disease is unknown, infants who develop NEC 

typically are born prematurely and have low birth weight (103). Additionally, alterations in 

the intestinal microbiome (104), genetic factors (105,106), and exaggerated inflammatory 

responses (107) are associated with NEC pathogenesis. Survivors of NEC frequently have 

long term sequelae including short gut syndrome and neurodevelopmental delays (102). SC 

therapy has been investigated as a possible treatment for NEC due to their ability to reduce 

inflammation, differentiate, and self-replicate, and they therefore have the potential to 

improve tissue health, function, and regeneration (108–110).

Recent studies have investigated the ability of several types of SC and their secreted 

products to protect the intestines against experimental NEC. Bone marrow-derived MSC 

(BM-MSC), amniotic fluid-derived MSC (AF-MSC), amniotic fluid-derived neural stem 

cells (AF-NSC), and enteric neural stem cells (E-NSC) have similar effects on NEC in 

animal models (111). However, AF-NSC and E-NSC, compared to MSC, are challenging to 

isolate and culture (15,111), potentially limiting their clinical utility. AFSC administered 

intraperitoneally significantly reduce the incidence and severity of NEC in animal models 

(15), significantly decreasing histologic intestinal injury and improving gut barrier function 

(111,112). Furthermore, exosomes derived from MSC and NSC are just as effective in 

reducing the incidence and severity of experimental NEC as the SC from which they were 

derived (13). After intraperitoneal injection, AFSC migrate to bowel, liver, and spleen in 

healthy animals (113), and within 48–72 hours, to tissues with a high level of inflammation 

and injury in experimental NEC, decreasing ascites (114) and improving survival, intestinal 

function, and inflammation in a COX-2 dependent manner (15). AFSC in NEC-afflicted 

animals primarily localize in damaged tissue (15,113,115). Preliminary studies also suggest 

that extracellular vesicles from bovine milk-derived SC may be protective in NEC (116), 

preventing ileal injury and reduction in goblet cells via enhanced expression of the 

endoplasmic reticulum chaperone protein glucose-regulated protein 94. Although there have 

not yet been any clinical trials of SC in NEC, SC or their secreted products could be a 

promising, novel therapy for NEC and such trials may become a reality in the future (Figure 

3).

Heart disease

Congenital heart defects are the most common birth defects and are often repaired in a 

staged manner, allowing harvesting of autologous material (e.g., cardiac progenitor/stem 

cells) for ex vivo manipulation prior to direct myocardial administration (18,22) during 

Nitkin et al. Page 7

Pediatr Res. Author manuscript; available in PMC 2020 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subsequent surgical repair. Pre-clinical studies indicate that BM-MSC (64) and CPC (17) 

reduce RV dilation and RV strain and reduce cardiomyocyte apoptosis in mice undergoing 

left anterior descending artery ligation. A novel prenatal administration of CPC rescued 

mouse pups from heart failure and increased live births five-fold (117). Cell-free therapy 

may also be applicable as MSC-derived exosomes significantly alter CPC miRNA which 

promotes survival, long-term cardiac function, and reduced fibrosis in rats (118).

The first human clinical trial for infants with hypoplastic left heart syndrome (HLHS) has 

been performed and 36 month follow-up data are available. The TICAP (Transcoronary 

Infusion of CPC in Patients with Single-Ventricle Physiology) pilot trial administered CPC 

directly into the coronary arteries of fourteen children under six years or age before stage 2 

or 3 repair. At 36 months post-infusion, right ventricular function and somatic growth 

improved more in those who received CPC. Interestingly, responses were more favorable in 

infants with lower ejection fractions and those who were treated earlier (119). The stage I/II 

ELPIS trial (Allogeneic Human MSC Injection in Patients With HLHS) (120) follows up on 

this study but will administer BM-MSC rather than CPC. ELPIS is enrolling up to thirty 

patients with HLHS who will receive intramyocardial allogeneic BM-MSC, 2.5×105 

MSC/kg, at the time of stage 2 repair, with the primary outcome being need for emergent 

serious adverse event in the first month after infusion in the first ten patients, and the change 

in right ventricular ejection fraction in the next twenty patients.

Other diseases

Early studies of SC for congenital diaphragmatic hernia (CDH), retinopathy of prematurity 

(ROP), neonatal stroke, and sepsis show encouraging results. For example, MSC 

administration in rabbit CDH models improves pulmonary hypoplasia (121), and AFSC 

administration decreases pulmonary hypertension (14). Similarly, intra-vitreal administration 

of BM-MSC reduces neovascularization in a mouse model of ROP (122). As these disorders 

often co-occur with BPD, IVH, and NEC, the first clinical studies may in fact be from 

coincident findings in studies in which MSC therapy are further developed. Neonatal stroke 

treatment with MSC reduces infarct size, improves neurodevelopmental outcomes, promotes 

angiogenesis, and reduces inflammation (123,124). Interestingly, BDNF-overexpressing 

MSC appear to be more effective than non-transfected SC in reducing injury size and motor 

deficits in the short-term (125,126), again highlighting the need for understanding 

mechanism of action in addition to simply observing clinical outcomes. Inflammation from 

infections and sepsis can be targeted by MSC, improving survival and lung inflammation, 

though pre-conditioning with IFNγ does not improve efficacy in a model of neonatal sepsis 

in rats (127).

Moving MSC to the bedside – Need for a tiered, evidence-based, pragmatic 

approach

Due to enthusiasm for novel SC therapeutics, and relative safety, at least of MSC, early 

phase clinical trials are already underway (Figure 2). While these will provide some degree 

of information about the safety and feasibility of this approach, more needs to be learned 

about the mechanisms of action of MSC in order to harness their full therapeutic potential 
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(Figure 3). Translation of adult SC studies directly to children and babies without 

consideration of neonatal physiology and pathogenesis is likely to limit success. Side-by-

side comparisons of MSC and their secretome (i.e., exosomes, microvesicles, or conditioned 

media) are especially important to determine if cell-free therapies are an effective and 

potentially safer option. Although it is tempting to consider MSC as a universal therapy for 

any and all patients and diseases, several technical and fundamental aspects must be 

addressed. Relating MSC therapy to traditional, single-chemical pharmacologic therapies 

offers a useful framework for considering translation into clinical practice. The core 

pharmacokinetic principles can be extended, relating Absorption to route, Distribution to 

homing, and Metabolism to dose and co-treatment interactions, recipient factors and timing. 

Pharmacodynamically, receptor agonism/antagonism and drug potency relates to MSC pre-

conditioning and secretome manipulation. The concepts of additive, antagonistic, or 

synergistic interactions are important when considering MSC as just one of many therapies 

an infant may be receiving. Until these factors are better understood, moving forward into 

large-scale, advanced phase clinical trials requiring years of long-term follow-up may be 

premature.

Donor

The first step to translation is to identify appropriate donors. Donor age impacts the SC 

phenotype, with neonatal MSC having greater anti-inflammatory capacity (128) and 

exosomes from preterm UC-MSC being better able to repair ischemic injury compared to 

exosomes from term UC-MSC (129). Donor sex may impact the MSC secretome as 

discussed above (55), but has typically been understudied because many studies use male 

donors and female hosts to identify engraftment. Also to be considered is that early studies 

show that the health status of donors can impact MSC phenotype and function (130), but 

studies of this type are in their infancy.

SC type

Numerous tissues sources have been investigated (Figure 1) with BM-MSC the most well-

studied, but collection requires invasive procedures, making them difficult to obtain. 

Similarly, ADSC are typically obtained from liposuction aspirates (131). MSC from fetal 

membrane tissues (UC and UCB, placenta and amnion/chorion) and AFSC are especially 

appealing in the neonatal setting due to accessibility. Efficacy of autologous versus 

allogeneic SC is unknown, but the former are more likely to be accepted by families (132), 

and the latter have the advantage of being an “off-the-shelf” product readily available on-

demand.

Culture methods

Once the appropriate SC type is identified, the optimal methods of isolation and culture are 

not yet known (9,133). In addition, traditional SC culture requires fetal bovine serum, which 

is undesirable for human administration and can change SC phenotype due to batch-to-batch 

variation (134). Xenobiotic-free culture methods utilizing human plasma or recombinant 

growth factors exist, but differences between products can alter MSC immunomodulatory 

capacity (135) and cytokine production (136).
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Quality control and long-term follow up

A lack of in vitro potency assays to predict in vivo efficacy (137) is a major challenge to 

improving the manufacturing of a clinical-grade cellular therapies. Indeed, the “product” is 

the process” in SC therapy, i.e., the process determines SC phenotype and function. 

Microarrays and genome sequencing may also be helpful once genetic profiles of various SC 

types and phenotypes are established. Safety is a critical factor, particularly the concern of 

carcinogenic transformation, as observed in induced pluripotent stem cells (138). Long-term 

cultures from higher-passage UC-MSC (139) can acquire chromosomal aberrations and 

proliferative advantage. Therefore, long-term follow-up is required and will rely on phase IV 

and post-marketing surveillance, but registries of MSC recipients may also foster such 

monitoring. MSC represent a radical new type of therapy, especially for fragile neonates, so 

recipients will likely need to be followed into adulthood.

Pre-conditioning

There are a wide variety of chemical agents that could optimize MSC efficacy (140), but the 

mechanisms of action and improvements in efficacy are incompletely understood. 

Preliminary studies of pro-inflammatory stimulation with factors like IFNγ (95,127) have 

found this promotes regeneration and anti-inflammatory effects, but pre-conditioning can 

also decrease efficacy (141). Oxidative stress may also be important, as the usual 

environment of MSC is relatively hypoxic (142) and some neonatal diseases are caused 

excessive (e.g., BPD) oxygen. For example, hyperoxia pre-conditioned enhances MSC 

efficacy in preventing pulmonary hypertension and alveolar simplification (41). These 

experiments also provide insight into how the MSC may respond when placed into the 

complex in vivo environment. Translating such findings to the bedside will require 

confirmation of these phenotypic changes with quality control assays as above and 

consideration of the technical and logistical challenges of pre-conditioning.

Co-treatments

Neonates in the intensive care unit receive many pharmaceuticals (143), as well as many 

non-pharmacologic treatments such as phototherapy and hypothermia, making it unlikely 

that MSC will be administered as a single agent. Some treatment-SC therapy interactions 

will probably be discovered, but studies of such interactions have thus far been limited. For 

example, inhaled nitric oxide and erythropoietin are synergistic with MSC therapy (60,63), 

enhancing pro-angiogenic and anti-fibrotic effects in models of BPD. Studies for HIE are 

more varied, showing therapeutic hypothermia and MSC can be synergistic (82) or 

antagonistic, producing increased brain inflammation (144). These unexpected findings 

indicate the need for caution as MSC treatment moves from the controlled laboratory setting 

to the complex and highly variable clinical setting.

Clinical trial design

Clinical trials require definition of appropriate clinical and surrogate endpoints, and should 

aim to clarify optimal timing, dose, and route of administration; this is especially important 

for diseases such as HIE which exhibit “critical windows” of susceptibility. Additionally, 

current therapeutic modalities must be incorporated into study protocols which may be 
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considered by appropriate target patient population or statistical analyses to control for 

patient heterogeneity. Dose is a potentially limiting factor because of the challenges in 

manufacturing sufficient quantities of MSC from limited donor sources. Generally, higher 

doses of MSC are more effective, as observed in models of stroke (49) and sepsis (145). The 

therapeutic ceiling of MSC is not yet defined and the dose in pre-clinical experiments can 

vary by several orders of magnitude. Route of administration affects dosing, as lower doses 

given directly into the site of injury are as efficacious as higher doses given intravenously by 

as much as five-fold (146). However, providing higher doses in a less invasive manner may 

be more acceptable to clinicians and families. Finally, the timing of administration must be 

investigated. One unique feature of SC-based therapy is its ability to affect initiation, 

propagation, and repair of disease, whereas conventional single agent therapies typically 

target one aspect of each phase. It is unclear whether SC should be used in a preventative or 

therapeutic manner, but efficacy may be diminished with later treatment in models of BPD 

(40,75) and HIE (86,147,148). Timing may also affect the ability to use autologous SC, as 

UC-MSC take up to three weeks to get to first passage (149).

Conclusions

Neonates with acute and chronic illnesses represent a unique clinical challenge, as these 

complex diseases encompass dynamic physiologic processes in immature developing organs. 

Current treatment strategies, including agents targeting single pathways, have resulted in 

small and only incremental improvements, since multi-organ, multi-pathway 

pathophysiology underpins these complex diseases. MSC and other SC may represent a 

paradigm shift in the treatment of these diseases as promising pre-clinical studies have led to 

early clinical trials. However, many challenges remain; including precise characterization of 

MSC and SC phenotypically, defining mechanisms of action, standardization across 

preparations and quality control, optimizing treatment protocols with due consideration of 

disease pathogenesis, and rigorous clinical trials. A systematic and coordinated approach by 

several teams looking at various aspects of SC therapy ranging from elucidation of 

mechanisms to clinical trial design, will likely deliver the promise of preventing neonatal 

disease in the 21st century using SC therapy.
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Figure 1: 
Sources and potential mechanisms of action of stem cells for treating neonatal diseases. 

Stem cells from various sources have advantages (+) and disadvantages (−). Our 

understanding of mechanisms of action will inform applicability to neonatal diseases. 

Abbreviations: BDNF, brain-derived neurotrophic factor; BPD, bronchopulmonary 

dysplasia; CP, cerebral palsy; CTGF, connective tissue growth factor; HIE, hypoxic-ischemic 

encephalopathy; IFN, interferon; IGF-1, insulin-like growth factor 1; IL, interleukin; 

MMP-9, matrix metalloprotein-9; NEC, necrotizing enterocolitis; TNF, tumor necrosis 

factor; PGE2, prostaglandin E2; SDF-1, stromal cell-derived factor 1; TIMP-1, TIMP 

metallopeptidase inhibitor 1; TGF-β1, transforming growth factor β1; TSG6, tumor necrosis 

factor-inducible gene 6; VEGF, vascular endothelial growth factor. Portion of figure made 

with resource from freepik.com.
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Figure 2: 
Current stage of clinical trial development for neonatal diseases. There is accumulating pre-

clinical evidence of stem cell efficacy for neonatal diseases, driving initiation of phase I-III 

clinical trials. No completed phase III or post-marketing phase IV trials have yet been 

completed for neonatal diseases.
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Figure 3: 
Blueprint for developing stem cell therapy for the 21st century. There are a variety of factors, 

both pre-clinical and clinical, that may impact stem cell efficacy that require further 

investigation, such as donor, culture methods, stem cell type, quality control, stem cell pre-

conditioning, co-treatments, clinical trial design, and long-term follow-up, all of which are 

centered around studies to elucidate the mechanisms of stem cell action.
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