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Abstract: Objectives: The aim of our study is to evaluate whether texture analysis of
68Ga-DOTATOC PET/CT images can predict clinical outcome in patients with neuroen-
docrine tumors (NET). Methods: Forty-seven NET patients who had undergone 68Ga-
DOTATOC PET/CT were studied. Primary tumors were localized in the gastroenteropan-
creatic (n = 35), bronchopulmonary (n = 8), and other (n = 4) districts. NET lesions were
segmented using an automated contouring program and subjected to texture analysis, thus
obtaining the conventional parameters SUVmax and SUVmean, volumetric parameters of
the primary lesion, such as Receptor-Expressing Tumor Volume (RETV) and Total Lesion
Receptor Expression (TLRE), volumetric parameters of the lesions in the whole-body, such
as wbRETV and wbTLRE, and texture features such as Coefficient of Variation (CoV),
HISTO Skewness, HISTO Kurtosis, HISTO Entropy-log10, GLCM Entropy-log10, GLCM
Dissimilarity, and NGLDM Coarseness. Patients were subjected to a mean follow-up period
of 17 months, and survival analysis was performed using the Kaplan–Meier method and
log-rank tests. Results: Forty-seven primary lesions were analyzed. Survival analysis
was performed, including clinical variables along with conventional, volumetric, and
texture imaging features. At univariate analysis, overall survival (OS) was predicted by
age (p = 0.0079), grading (p = 0.0130), SUVmax (p = 0.0017), SUVmean (p = 0.0011), CoV
(p = 0.0037), HISTO Entropy-log10 (p = 0.0039), GLCM Entropy-log10 (p = 0.0044), and
GLCM Dissimilarity (p = 0.0063). At multivariate analysis, only GLCM Entropy-log10

was retained in the model (χ2 = 7.7120, p = 0.0055). Kaplan–Meier curves showed that
patients with GLCM Entropy-log10 >1.28 had a significantly better OS than patients with
GLCM Entropy-log10 ≤1.28 (χ2 = 10.6063, p = 0.0011). Conclusions: Texture analysis of
68Ga-DOTATOC PET/CT images, by revealing the heterogeneity of somatostatin receptor
expression, can predict the clinical outcome of NET patients.

Keywords: texture analysis; 68Ga-peptide PET/CT; neuroendocrine tumors; prognosis

1. Introduction
Neuroendocrine neoplasms are an uncommon, complex, and heterogeneous group

of tumors originating from neuroendocrine cells, primarily affecting the gastroenteropan-
creatic district, but also the bronchopulmonary tract and other organs [1,2]. These tumors
can be classified based on their cell morphology and proliferation index (Ki-67) into well-
differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine
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carcinomas. Therefore, their clinical behavior is quite variable, ranging from indolent and
slow-growing to highly aggressive with poor prognosis [3,4]. Moreover, neuroendocrine
tumors can also be categorized as functional, with symptoms due to hormone secretion,
or non-functional, with asymptomatic presentation or non-specific symptoms that can
lead to diagnostic delay [5]. The combination of all these variables in terms of different
morphology, biological behavior, and clinical presentation makes the management of neu-
roendocrine tumors quite difficult, thus underlining the need for effective tools to examine
all the different aspects of these tumors. Therefore, the management of NET patients
requires a multidisciplinary approach that includes clinical evaluation, biochemical and
histopathological examinations, and multimodal imaging methodologies.

Imaging is fundamental in the complex management of NET patients, and among all
the available methodologies, receptor imaging with radiolabeled somatostatin analogues
has a primary role [6]. The use of this imaging methodology is based on the peculiar
characteristic of NETs to overexpress somatostatin receptors (SSTRs), especially if well-
differentiated. These receptors are G-protein-coupled transmembrane proteins that, on
binding with their specific ligands, modulate cellular proliferative and secretory activity.
Their expression can be influenced by several factors, such as the organ affected, tumor
differentiation, microenvironmental conditions, genetic mutations, and epigenetic modifi-
cations [7,8]. Among the five known somatostatin receptor subtypes, SSTR2 is the most
frequently overexpressed in NETs, followed by SSTR5 and SSTR3 [9,10].

Receptor imaging with radiolabeled somatostatin analogues performed by PET/CT
with gallium-labeled somatostatin analogues (68Ga-peptide PET/CT) has a pivotal role
in the management of NET patients, being of use in all phases of the disease [11]. In
fact, 68Ga-peptide PET/CT has a higher diagnostic accuracy than conventional imaging
methods [12]. Moreover, this imaging methodology is crucial for selecting patients as
candidates for therapy with labeled or unlabeled somatostatin analogues, for the prediction
of response to therapy, and for prognostic assessment [11,13,14]. Furthermore, in recent
years, the labeling of somatostatin analogues with β-emitting radioisotopes has allowed
the development of a theranostic approach in patients with NETs [15,16].

Over the years, various gallium-PET-based biomarkers have been developed to quan-
tify the amount of SSTRs or other characteristics, such as the heterogeneity of their ex-
pression for diagnostic, predictive, and prognostic purposes [17,18]. These biomarkers
include conventional parameters commonly used in clinical practice, such as Maximum
Standardized Uptake Value (SUVmax), which provides a measure of the focal point with
the highest SSTRs expression in a NET lesion. However, SUVmax may not represent the
receptor status of the entire lesion. To overcome this limitation, volumetric parameters such
as Gallium-PET-based Receptor-Expressing Tumor Volume (RETV) and Total Lesion Re-
ceptor Expression (TLRE), which is the product of the lesion RETV and the corresponding
Mean Standardized Uptake Value (SUVmean), were developed. These parameters provide
a global measure of SSTRs expression within single lesions and, by summing the values
of each lesion, in the entire body. Previous studies evaluated RETV and TLRE in therapy
monitoring and prognosis of NET patients [19–21].

In the last years, the radiomic approach and texture analysis have led to the develop-
ment of newer features that have the potential of revealing subvisual characteristics such
as tumor heterogeneity [22,23]. In fact, SSTRs are not uniformly distributed on NET cells,
and their expression can vary between different regions of the same lesion or between
different lesions in the same patient. Some studies used texture analysis to evaluate this
uneven SSTRs distribution, and how it may affect tumor response to therapy with labeled
or unlabeled somatostatin analogues and patient outcome [17,24,25].
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In the present study, a radiomic approach was adopted to test whether selected
variables derived from texture analysis of 68Ga-DOTATOC PET/CT images on primary
tumors, reflecting the heterogeneity of SSTR2 expression, may predict survival in patients
affected by neuroendocrine tumors.

2. Materials and Methods
2.1. Patients

A total of 47 patients (31 men, 16 women; mean age± SD: 62 ± 14 years; range 29–84 years)
with pathologically diagnosed NET were included in the study. All patients were subjected to
68Ga-DOTATOC PET/CT scan at our institution. The study was approved by the institutional
Ethics Committee, and an informed consent form was signed by all subjects. The anatomical
location of the primary tumor was the gastroenteropancreatic district in 35 patients, the bron-
chopulmonary district in 8, and other anatomical districts in 4 patients. Tumor grading and Ki67
proliferation index were available in 40 patients. These patients were classified as G1 (n = 13),
G2 (n = 21), and G3 (n = 6), while Ki67 was <3% in 13 patients, between 3 and 20% in 21 patients,
and >20% in 6 patients. Among the 47 patients studied, 19 patients had primary tumor only, 11
patients had also lymph node involvement, and 17 patients showed distant metastases with
or without lymph node involvement. Patient characteristics are shown in Table 1. Thirty-two
patients received no previous therapy before the 68Ga-DOTATOC PET/CT scan. Among the
remaining patients, previous treatments such as chemotherapy, temozolomide, or everolimus
were discontinued at least 6 months before the PET/CT scan. In patients under treatment
with somatostatin analogues using the standard regimen (30 mg i.m. once every 4 weeks),
therapy was discontinued one month prior to the Gallium scan, except when discontinuation of
therapy was not clinically recommended. OS was calculated as the time between the PET/CT
examination and the date of death.

Table 1. Clinical characteristics, grading, and staging of 47 patients with neuroendocrine tumors.

Characteristic N◦ (%)

Patients 47
Age

Mean ± SD 62 ± 14 years
Range 29–84 years

Gender
Female 16 (34%)
Male 31 (66%)

Type of NET
Gastroenteropancreatic 35 (74%)
Broncopulmonary 8 (17%)
Other 4 (9%)

Grading
G1 13 (27%)
G2 21 (45%)
G3 6 (13%)
Not determined 7 (15%)

Ki67 (%)
<3 13 (27%)
3–20 21 (45%)
>20 6 (13%)
Not Determined 7 (15%)

Staging Patients

Primary tumor only 19 (41%)
Primary tumor and metastatic lymph nodes 11 (23%)
Primary tumor and distant metastatic lesions (with or
without lymph node involvement) 17 (36%)
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2.2. 68Ga-DOTATOC Labeling

The SomaKit TOC (Novartis Farma s.p.a., Milan, Italy) was used to prepare the ra-
diopharmaceutical. The kit contained the somatostatin analogue DOTATOC (edotreotide),
which has a high affinity for SSTR2. The manufacturer’s instructions were carefully fol-
lowed for edotreotide labeling. In summary, 68Ga-chloride was eluted from a 68Ge/68Ga
generator (Eckert & Ziegler Radiopharma GmbH, Berlin, Germany). The radionuclide
obtained was then added to 40 µg of edotreotide. The solution obtained was buffered and
heated (95 ◦C, 7 min) and then cooled to room temperature before use. All the procedures
were performed under sterile conditions. Thin-layer chromatography was performed to
verify labeling efficiency. In all labelings, ≤2% of free 68Ga and ≤3% of colloidal 68Ga
were obtained.

2.3. 68Ga-DOTATOC Study

Patients underwent a PET/CT scan 60 min after intravenous administration of 68Ga-
DOTATOC (135 ± 25 MBq) using an Ingenuity TF scanner (Philips Healthcare, Best, The
Netherlands). The CT scan was acquired using the following parameters: 120 kV, 80 mA,
0.8 s rotation time, pitch of 1.5. The PET scan was acquired in 3D mode, from the top of the
skull to the upper thigh (3 min/each bed position) from 6 to 8 bed positions per patient,
depending on height. An ordered subsets/expectation maximization algorithm was used
for iterative reconstruction of images. Filtered back projection of CT reconstructed images
was used to obtain attenuation-corrected emission data. Ingenuity TF software (IntelliSpace
Portal V5.0, Philips Healthcare, Best, The Netherlands) was used to preliminarily examine
the resulting transaxial, sagittal, and coronal PET, CT, and fusion images.

2.4. 68Ga-DOTATOC Image Analysis

The PET/CT data in DICOM format were analyzed by LIFEx software (developed at
CEA, Orsay, France, http://www.lifexsoft.org, last accessed on 20 May 2025) [26], obtaining
a volume of interest (VOI) of each primary lesion. For this purpose, a three-dimensional
region was drawn around each lesion by using an automatic segmentation method that
groups all spatially connected voxels within a predetermined threshold. A threshold of
SUV > 2.5 was used, based on the mean SUVmax of the mediastinal blood pool plus 2 SD
(Figure 1).

In addition, the accuracy of tumor delineation was confirmed on the correspond-
ing CT images. PET variables, including conventional, volumetric, and textural fea-
tures, were extracted using the LIFEx package (developed at CEA, Orsay, France, http:
//www.lifexsoft.org, last accessed on 20 May 2025). VOIs that did not reach the minimum
number of 64 voxels were excluded from the analysis to avoid inaccurate quantification
of texture features inside small lesions. Tonal discretization of gray scale for PET images
was adjusted using 64 gray levels with an absolute scale bound between 0 and 100 SUV.
Therefore, by computed analysis of each VOI, 46 features (39 texture features and 7 conven-
tional parameters) were extracted. In particular, we included in the analysis conventional
parameters such as SUVmax and SUVmean and volumetric parameters such as RETV
and TLRE of the primary lesion and whole-body RETV (wbRETV) and whole-body TLRE
(wbTLRE) calculated by summing the RETV or TLRE of all lesions present in each patient.
Among texture features, we selected variables that, in previous studies [27–29], had shown
sufficient robustness and repeatability. We selected 4 first-order texture features (Coefficient
of Variation (CoV), Histogram Skewness (HISTO Skewness), Histogram Kurtosis (HISTO
Kurtosis), and Histogram Entropy-log10 (HISTO Entropy-log10)) and 3 higher-order tex-
ture features (Gray Level Co-Occurrence Matrix Entropy-log10 (GLCM Entropy-log10),
Gray Level Co-Occurrence Matrix Dissimilarity (GLCM Dissimilarity), and Neighborhood

http://www.lifexsoft.org
http://www.lifexsoft.org
http://www.lifexsoft.org
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Gray-Level Difference Matrix Coarseness (NGLDM Coarseness)) and included them in
the analysis.

Figure 1. Representative images of a 68Ga-DOTATOC PET/CT scan in a patient with NET of the
ileum. (A) Maximal intensity projection view showing the primary tumor in the ileum (pink arrow).
(B) Transaxial fusion image showing the segmentation (pink) of the primary tumor. (C) Corresponding
transaxial CT image.

2.5. Statistical Analysis

MedCalc software for Windows, version 10.3.2.0 (MedCalc Software, Mariakerke,
Belgium), was used to perform statistical analysis. A probability value < 0.05 was con-
sidered statistically significant. Pearson’s correlation coefficient was used to evaluate the
linear relationship between continuous variables. Student’s t-test was used to compare
means of unpaired data. Univariate and multivariate analyses of clinical and imaging
variables were performed using Cox proportional hazards regression. Variables that were
able to predict OS by univariate analysis were included in the multivariate analysis. The
best discriminative threshold of independent prognostic variables for OS was obtained by
receiver operating characteristic (ROC) curve analysis. Survival analysis was performed
using the Kaplan–Meier method and log-rank tests. Survivors were censored at the time of
the last clinical control.

3. Results
We evaluated by 68Ga-DOTATOC PET/CT image analysis 47 primary NET lesions

arising from the gastroenteropancreatic (n = 35), bronchopulmonary (n = 8), and other
anatomical districts (n = 4). In particular, conventional and volumetric imaging parameters
such as SUVmax, SUVmean, RETV, and TLRE, along with the first-order texture variable
CoV, were obtained from 47 primary lesions. The average values of these variables were
30.14 ± 28.65, 9.29 ± 7.30, 0.55 ± 0.24, 39.53 ± 66.32 mL, 425.30 ± 801.07 g, respectively
(Table 2).
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Table 2. Conventional, volumetric, and texture PET-based imaging features obtained by 68Ga-
DOTATOC PET/CT analysis of 47 primary tumors.

Parameters Mean ± SD Range

SUVmax 30.14 ± 20.65 4.78–157.23
SUVmean 9.29 ± 7.30 3.29–42.72
RETV (ml) 39.53 ± 66.32 1.5–387.84
TLRE (g) 425.30 ± 801.07 7.3–4776.19
wbRETV (ml) 106.04 ± 178.53 1.5–893.44
wbTLRE (g) 1588.19 ± 3954.70 7.3–21,534.20
CoV 0.55 ± 0.24 0.17–1.00
HISTO Skewness 1.17 ± 0.47 0.44–2.15
HISTO Kurtosis 4.07 ± 1.48 2.15–7.97
HISTO Entropy-log10 0.95 ± 0.35 0.31–1.60
GLCM Entropy-log10 1.76 ± 0.61 0.55–2.95
GLCM Dissimilarity 3.12 ± 2.66 0.36–10.91
NGLDM Coarseness 0.02 ± 0.01 0.001–0.069

Standard Deviation (SD); Receptor-Expressing Tumor Volume (RETV); Total Lesion Receptor Expression (TLRE);
whole-body RETV (wbRETV), whole-body (wbTLRE); Coefficient of Variation (CoV).

Three first-order texture variables (HISTO Skewness, HISTO Kurtosis, and HISTO
Entropy-log10) and three higher-order features (GLCM Entropy-log10, GLCM Dissimilarity,
and NGLDM Coarseness) were extracted from the analysis of 37 primary tumors. In fact,
10 lesions were excluded from analysis due to their volume; ≤64 voxels were too small
to allow the extraction of texture features. The average values of these features were
1.17 ± 0.47, 4.07 ± 1.48, 0.95 ± 0.35, 1.76 ± 0.61, 3.12 ± 2.66, and 0.02 ± 0.01, respectively
(Table 2). Moreover, wbRETV and wbTLRE were also determined. These parameters were
calculated by summing the RETV and TLRE of each lesion in the whole body of each
patient, respectively. Therefore, a total of 161 lesions were analyzed, including 47 primary
tumors, 29 metastatic lymph nodes, and 85 distant metastases. The mean ± SD of these
latter two variables was 106.04 ± 178.53 mL and 1588.19 ± 3954.70, respectively, as reported
in Table 2.

After a mean follow-up period of 17 months (mean ± SD: 17 ± 12; range: 1–40 months),
6 patients died and 41 were still alive. The univariate analysis for OS was performed by
including age, gender, grading of primary lesion, PET-derived conventional parameters
(SUVmax and SUVmean), volumetric variables (RETV and TLRE), whole-body volumetric
parameters (wbRETV and wbTLRE), and first- and higher-order texture features (CoV,
HISTO Skewness, HISTO Kurtosis, HISTO Entropy-log10, GLCM Entropy-log10, GLCM
Dissimilarity, and NGLDM Coarseness). The variables that significantly predicted OS
were age (χ2 = 7.0610, p = 0.0079), grading (χ2 = 6.1630, p = 0.0130), SUVmax (χ2 = 9.8830,
p = 0.0017), SUVmean (χ2 = 10.7180, p = 0.0011), CoV (χ2 = 8.4210, p = 0.0037), HISTO
Entropy-log10 (χ2 = 8.3500, p = 0.0039), GLCM Entropy-log10 (χ2 = 8.1250, p = 0.0044), and
GLCM Dissimilarity (χ2 = 7.4750, p = 0.0063), as shown in Table 3.

At multivariate analysis, only GLCM Entropy-log10 was retained in the model for
the prediction of OS (χ2 = 7.7120, p = 0.0055). A threshold for GLCM Entropy-log10 was
estimated by ROC curve analysis to discriminate patients who had died from survivors,
and a cut-off value of 1.28 (AUC = 0.86) was found (Figure 2).

Moreover, we evaluated the correlation between GLCM Entropy-log10 and other
significant variables and found that GLCM Entropy-log10 was significantly correlated with
SUVmax (r = 0.7382, p > 0.0001), SUVmean (r = 0.7005, p > 0.0001), and CoV (r = 0.7434,
p > 0.0001), while inversely correlated with grading (r = −0.4549, p = 0.0089). Finally, we
performed the Student’s t-test to compare means of GLCM Entropy-log10 between G1,
G2, and G3, and between survivors and patients who had died. A statistically significant
difference was found between the GLCM Entropy-log10 of G1 vs. G3 (2.09 ± 0.39 vs.
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1.2 ± 0.67, p = 0.0049) as well as between survivors and patients who had died (1.88 ± 0.55
vs. 1.05 ± 0.53, p = 0.0036).

Table 3. Predictors of overall survival by univariate analysis of clinical and imaging variables.

Variables
Overall Survival

χ2 p

Age 7.0610 0.0079
Gender 0.0329 0.8562
Grading 6.1230 0.0130
SUVmax 9.8830 0.0017
SUVmean 10.7180 0.0011
RETV 0.8030 0.3703
TLRE 3.2820 0.0700
wbRETV 0.0000123 0.9972
wbTLRE 0.7200 0.3962
CoV 8.4210 0.0037
HISTO Skewness 2.2160 0.1366
HISTO Kurtosis 1.5430 0.2142
HISTO Entropy-log10 8.3500 0.0039
GLCM Entropy-log10 8.1250 0.0044
GLCM Dissimilarity 7.4750 0.0063
NGLDM Coarseness 0.2210 0.6381

Receptor-Expressing Tumor Volume (RETV); Total Lesion Receptor Expression (TLRE); whole-body RETV
(wbRETV), whole-body (wbTLRE); Coefficient of Variation (CoV).

Figure 2. ROC curve analysis showing the optimal GLCM Entropy-log10 value for discriminating
between patients who had died and survivors. The threshold determined was 1.28 (AUC = 0.86).

Using Kaplan–Meyer analysis and log-rank testing, OS was significantly better in
patients with GLCM Entropy-log10 > 1.28 as compared to those with GLCM Entropy-log10

≤ 1.28 (χ2 = 10.6063, p = 0.0011) (Figure 3).
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Figure 3. Overall survival by Kaplan–Meier analysis and log-rank test at 17-month follow-up.
Statistically significant difference in OS between NET patients with GLCM Entropy-log10 values
lower or higher than the cut-off level of 1.28, as assessed by ROC curve analysis (p = 0.0011).

4. Discussion
In our study, we evaluated the heterogeneity of SSTR2 expression in NET patients by

analyzing 68Ga-DOTATOC PET/CT images using a radiomic approach in order to select
texture variables with prognostic significance. Among all clinical and imaging variables
tested, univariate analysis showed that age, SUVmax, SUVmean, CoV, HISTO Entropy-
log10, GLCM Entropy-log10, and GLCM Dissimilarity were predictive of OS, while at
multivariate analysis, only GLCM Entropy-log10 was an independent predictive factor of
survival. Indeed, Kaplan–Meier analysis showed that high entropy levels were significantly
associated with better OS compared to low entropy values.

In the latest years, radiomic analysis of PET/CT images has been used for various
purposes such as radiogenomics studies, identification of occult lesions, evaluation of
tumor staging and grading, differential diagnosis of tumor histotypes, and, finally, for
prognostic purposes [24,30,31].

In the daily routine, SUVmax is the most widely used parameter to evaluate PET/CT
exams. The biological significance of this conventional parameter varies depending on the
tracer; when using 68Ga-peptide PET/CT for the evaluation of NET tumors, SUVmax is
an index of SSTR2 expression, and its monitoring over time reflects the modulations that
receptor expression may undergo due to therapy or tumor progression. PET/CT image
analysis also allows obtaining volumetric parameters, which represent the tumor burden
in the primary lesion or in the entire body, by summing the volumes of all focal lesions [32].
However, these parameters do not provide information about the spatial distribution
of the tracer within a selected volume. Such spatial information that derives from the
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intensity ratios of the voxels included in the selected volume may reflect peculiar biological
characteristics of the tumor, which may influence the response to therapy or prognosis.

Texture analysis aims to determine the spatial variations in tracer distribution within
the tumor volume and to quantify the heterogeneity of tracer uptake within this vol-
ume [33,34]. The clinical significance of texture variables and how they may reflect specific
tumor biological characteristics or how they may influence the response to therapy or the
clinical outcome are still debated issues. Among the possible applications in the man-
agement of neoplastic patients, and NET patients in particular, texture analysis may also
potentially complement conventional clinical assessment and staging systems in discrimi-
nating between well and poorly differentiated tumors, in supporting diagnosis or therapy
decisions, or in risk-stratification of patients within the same stage of disease.

Previous PET/CT studies evaluated the prognostic value of texture features in patients
with different tumor types [34–38]. Some of these studies performed texture analysis of
68Ga-peptide PET/CT images in NET patients, showing that several texture variables,
including Correlation and SZE (Short Zone Emphasis) [39], Skewness and Kurtosis [40], and
entropy and homogeneity [39,41–43], were able to predict survival. In particular, Werner
et al. [39,43] analyzed 68Ga-peptide PET/CT images of NET patients prior to PRRT, finding
that entropy, along with other variables, was significantly correlated with survival. This
study, in agreement with our results, showed that higher entropy values were associated
with a better prognosis.

Furthermore, we found an inverse correlation between GLCM Entropy-log10 and
grading; indeed, lower GLCM Entropy-log10 values, reflecting poor prognosis, were signif-
icantly correlated with higher grading, an index of tumor aggressiveness, providing a hint
on the possible biological meaning of this second-order texture variable.

Finally, it is worth noting that the relatively small number of patients prevents valida-
tion of our findings on an independent dataset that would increase the statistical power of
the analysis. Therefore, our results may need confirmation in a multicenter study including
external validation. Moreover, the limited sample size does not allow the application of
more sophisticated methods such as machine learning and deep learning analyses. How-
ever, since neuroendocrine tumors are rare and heterogeneous, a critical issue may be the
recruitment of a sufficiently large and homogeneous number of patients to perform this
type of analysis. Despite the limited population and the use of a simple statistical approach,
our study may provide useful information for developing more sophisticated models that
may have a higher clinical impact in the future.

5. Conclusions
Our study showed that a second-order texture variable, such as GLCM Entropy-log10,

is an independent predictive factor of OS in NET patients, by allowing the evaluation of
the heterogeneity of somatostatin receptors expression, which reflects the tumor biological
characteristics. Therefore, entropy or other texture variables derived by PET/CT image
analysis may provide valuable additional information in assessing tumor stage, in evaluat-
ing the response to therapy with both cold and radiolabeled somatostatin analogues, and
in predicting the clinical outcome. Further studies are needed to consolidate the robustness,
standardization, and reproducibility of texture variables to allow their future use in the
management of cancer patients, contributing to the development of personalized medicine.
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68Ga-DOTATOC PET/CT
68Gallium-DOTATOC Positron Emission Tomography/
Computed Tomography

NET Neuroendocrine Tumors
SUVmax Maximum Standardized Uptake Value
SUVmean Mean Standardized Uptake Value
RETV Receptor-expressing Tumor Volume
TLRE Total Lesion Receptor Expression
wbRETV Whole-body Receptor-expressing Tumor Volume
wbTLRE Whole-body Total Lesion Receptor Expression
CoV Coefficient of Variation
HISTO Skewness Histogram Skewness
HISTO Kurtosis Histogram Kurtosis
HISTO Entropy-log10 Histogram Entropy-log10

GLCM Entropy-log10 Gray Level Co-Occurrence Matrix Entropy-log10

GLCM Dissimilarity Gray Level Co-Occurrence Matrix Dissimilarity
NGLDM Coarseness Neighborhood Gray-Level Difference Matrix Coarseness
OS Overall Survival
SSTRs Somatostatin Receptors
VOI Volume of Interest
SD Standard Deviation
ROC Receiver-Operating Characteristic
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