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Global-genome nucleotide excision repair (GG-NER) prevents genome instability by
excising a wide range of different DNA base adducts and crosslinks induced by
chemical carcinogens, ultraviolet (UV) light or intracellular side products of metabolism.
As a versatile damage sensor, xeroderma pigmentosum group C (XPC) protein initiates
this generic defense reaction by locating the damage and recruiting the subunits of
a large lesion demarcation complex that, in turn, triggers the excision of aberrant
DNA by endonucleases. In the very special case of a DNA repair response to UV
radiation, the function of this XPC initiator is tightly controlled by the dual action of
cullin-type CRL4DDB2 and sumo-targeted RNF111 ubiquitin ligases. This twofold protein
ubiquitination system promotes GG-NER reactions by spatially and temporally regulating
the interaction of XPC protein with damaged DNA across the nucleosome landscape of
chromatin. In the absence of either CRL4DDB2 or RNF111, the DNA excision repair of
UV lesions is inefficient, indicating that these two ubiquitin ligases play a critical role in
mitigating the adverse biological effects of UV light in the exposed skin.

Keywords: aging, cyclobutane pyrimidine dimer, DNA repair, genomic instability, photoproducts, sunburns, skin
cancer, UV radiation

INTRODUCTION

All organisms are constantly under attack by environmental and endogenous DNA-damaging
agents that endanger the sequence fidelity of their genomes. Many environmental mutagens
cause “bulky” DNA adducts that destabilize the complementary pairing of bases in the native
double helix (Straub et al., 1977; Knox et al., 1987). Base pair-destabilizing lesions also result
from internal by-products of cellular metabolism including oxygen radicals (Brooks et al., 2000;

Abbreviations: 6-4PP, (6-4) pyrimidine–pyrimidone photoproduct; BHD, β-Hairpin domain; CETN2, centrin 2; CPD,
cyclobutane pyrimidine dimer; CUL4A, cullin 4A; DDB, damaged DNA-binding; ERCC1, excision repair cross-
complementing 1; GG-NER, global-genome nucleotide excision repair; MPG, methylpurine-DNA glycosylase; NER,
nucleotide excision repair; NEDD8, neural precursor cell expressed developmentally down-regulated 8; Npl4, nuclear protein
localization 4 homolog; Oct4, octamer binding transcription factor 4; OGG1, 8-Oxo-guanine-DNA glycosylase; OTUD4,
OTU deubiquitinase 4; RAD23B, human homolog of RAD23, B; RNF111, RING finger protein 111; RPA, replication
protein A; ROC1 regulator of cullins 1; RPS27A, ubiquitin-40S ribosomal protein S27A; SMUG1, single strand-selective
monofunctional uracil-DNA glycosylase 1; Sox2, sex determining region Y (SRY)-box 2; Sumo, small ubiquitin-related
modifier; TC-NER, transcription-coupled nucleotide excision repair; TDG, thymine-DNA glycosylase; TFIIH, transcription
factor IIH; TG, transglutaminase-like; UBA52, ubiquitin A-52; UBB, ubiquitin-B; UBC, ubiquitin-C; USP7, ubiquitin-specific
processing protease 7; Ufd1, ubiquitin fusion degradation 1; UV, ultraviolet; VCP, valosin-containing protein; XP, xeroderma
pigmentosum.
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Kuraoka et al., 2000), but the most common type of bulky
DNA lesion arises from the UV spectrum of sunlight or
indoor tanning devices, generating covalent crosslinks joining
neighboring pyrimidines, i.e., CPDs and pyrimidine-pyrimidone
(6-4) photoproducts (6-4PPs; Brash, 1988). If not readily
repaired, these pyrimidine crosslinks and other bulky adducts
interfere with transcription, DNA replication or cell cycle
progression (Lopes et al., 2006; Brueckner et al., 2007), eventually
giving rise to mutations and chromosomal aberrations that
accelerate aging and culminate in cancer (Marteijn et al.,
2014). Unfortunately, the incidence of skin cancer continues to
increase and remains a public health concern despite widespread
knowledge that excessive exposure to sunlight is the major
risk factor for cutaneous neoplasms (Donaldson and Coldiron,
2011; Usher-Smith et al., 2014). This review is focused on
recent advances in our knowledge of how polypeptide modifiers
regulate the DNA repair response preventing sunlight-induced
skin cancer.

Excision of Bulky DNA Lesions
Nucleotide excision repair is a molecular cut-and-patch machine
that removes bulky base lesions by incising damaged DNA
strands on either side of the injury, thereby eliminating 24-
to 32-nucleotide long single-stranded segments (Huang et al.,
1992; Moggs et al., 1996). Depending on their location in
the genome, bulky lesions are sensed by two alternative
mechanisms. The TC-NER pathway is initiated when an RNA
polymerase II complex encounters obstructing base lesions
(Bohr et al., 1985). Such transcriptional roadblocks trigger
a stepwise reaction for the rapid removal of base lesions
from transcribed strands (reviewed by Hanawalt and Spivak,
2008; Vermeulen and Fousteri, 2013; Marteijn et al., 2014).
On the other hand, GG-NER activity is generally slower but
detects bulky lesions anywhere in the genome independently of
transcription (reviewed by Scharer, 2013; Puumalainen et al.,
2016). Genetic defects in the GG-NER pathway cause XP,
which is a severe cancer-prone syndrome presenting with
photosensitivity, extreme sunburns and an over 1,000-fold
higher risk of contracting sunlight-induced neoplasms of the
skin (Hollander et al., 2005; DiGiovanna and Kraemer, 2012).
Patients suffering from the XP syndrome are classified into
distinct genetic complementation groups (from XP-A to XP-
G) reflecting mutations in respective NER genes (Cleaver et al.,
2009). A variant form of this disease (XP-V) is caused by
mutations in a gene coding for DNA polymerase η that catalyzes
with high nucleotide sequence fidelity the replicative bypass of
UV lesions in S phase of the cell division cycle (Masutani et al.,
1999).

The initial detection of bulky lesions in the GG-NER pathway
is carried out by a three-subunit factor consisting of XP
group C protein (XPC; Sugasawa et al., 1998; Volker et al.,
2001) one of two human RAD23 homologs (predominantly
RAD23B; Ng et al., 2003) and (CETN2, (Araki et al., 2001;
Nishi et al., 2005; Dantas et al., 2011). The DNA-binding
activity of this heterotrimeric complex resides with the XPC
subunit itself. RAD23B and CETN2 contribute by supporting
the proper folding of XPC protein and by protecting this

DNA-binding subunit from degradation (Ng et al., 2003; Xie
et al., 2004; Krasikova et al., 2012). Although RAD23B stimulates
the recognition of damaged DNA by XPC protein (Sugasawa
et al., 1996), it is readily released once XPC associates with DNA
lesion sites (Fei et al., 2011; Bergink et al., 2012). Conversely,
CETN2 remains associated with target sites (Dantas et al., 2013)
where XPC provides a platform for the recruitment of TFIIH.
This 10-subunit complex contains an ATPase (XPB) and a DNA
helicase (XPD) that separate complementary strands to produce
an unwound configuration of about 25 nucleotides around the
lesion (Evans et al., 1997; Wakasugi and Sancar, 1998). Stability
to the resulting open intermediate or “bubble” is conferred by
XPA together with RPA, until the DNA strand containing the
damage is incised by structure-specific endonucleases exactly
at the double-stranded to single-stranded DNA transitions on
each side of the bubble (Evans et al., 1997; Missura et al.,
2001; Li et al., 2015). A protein heterodimer composed of XPF
and ERCC1 introduces the incision on the 5′ side, followed
by incision on the 3′ side by the endonuclease activity of
XPG (Staresincic et al., 2009). After this dual incision and
consequent release of the excised oligonucleotide carrying the
damage, the remaining single-stranded gap is filled by DNA
repair synthesis by the action of DNA polymerases η, ε, or κ

(Ogi et al., 2010). Ligation by DNA ligase I and DNA ligase IIIα
finally restores helix integrity (Araujo et al., 2000; Moser et al.,
2007).

Structure and Interactome of the XPC
Initiator
The human XPC polypeptide is made of 940 amino acids and
harbors domains for binding to DNA (Hey et al., 2002; Yasuda
et al., 2005; Trego and Turchi, 2006) and multiple protein
partners (Figure 1). Its molecular structure can be extrapolated
from that of Rad4 protein, the evolutionarily conserved homolog
in the yeast Saccharomyces cerevisiae (Min and Pavletich, 2007).
When undergoing co-crystals with a model bulky lesion in duplex
DNA, Rad4 protein deploys four adjacent domains for substrate
binding by two different modalities. One part makes use of a
TG domain and a BHD1, which cooperate in associating with
11 base pairs of duplex DNA flanking the damaged site. The
second part uses two further BHD2 and BHD3 to interact with
four consecutive nucleotides of the undamaged DNA strand
opposing the flipped-out bulky lesion. No interactions at all are
formed with the lesion itself. In human XPC protein, this β-
hairpin region (BHD1–3) interacting indirectly with damaged
sites encompasses amino acids 637–831 (Camenisch et al.,
2009).

In addition to mediating associations with substrate DNA, the
TG domain is required for the interaction between Rad4 and
Rad23 (Min and Pavletich, 2007), and between the corresponding
human homologs XPC and RAD23B. A fraction of the human
TG domain also interacts with XPA protein (Bunick et al.,
2006). Another partner, known as DDB2 does not exist in
lower eukaryotes like yeast. However, a transient association
between DDB2 and XPC is critical for the processing of CPDs
in mammals (Itoh et al., 2004) and the respective contact
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FIGURE 1 | STRING network view of XPC interactions with proteins. The connecting lines indicate proven or predicted interactions using the
http://www.string-db.org information source. The different colors of the protein nodes reflect their clustering in two groups according to the KMEANS algorithm
(Brohée and Helden, 2006). Blue nodes, ubiquitin-related proteins; red nodes, DNA repair proteins. Blue lines, interactions between ubiquitin-related proteins; red
lines, interactions between DNA repair proteins. The dashed lines highlight interactions between the two different clusters.

sites have been mapped to the TG and BHD1 regions (Fei
et al., 2011). Residues 847–863 in the carboxy-terminus of
human XPC form an α-helix that binds tightly to CETN2
(Nishi et al., 2005; Yang et al., 2006). Amino acid residues
816–940 located in this carboxy-terminus and a portion of
the amino-terminal region around amino acid position 334
make contacts with two members (p62 and XPB) of the 10-
subunit TFIIH complex (Yokoi et al., 2000; Uchida et al., 2002;
Bernardes de Jesus et al., 2008). These particular interactions
reflect the actual role of XPC in recruiting the XPD helicase,
another TFIIH subunit, which in turn detects lesions by scanning
DNA and sequestering damaged nucleotides in a dedicated
recognition pocket on its enzyme surface (Sugasawa et al.,
2009; Mathieu et al., 2010). In addition, XPC protein interacts
with the following base excision repair enzymes: MPG, (Miao
et al., 2000), TDG, (Shimizu et al., 2003), OGG1, (D’Errico
et al., 2007; Melis et al., 2011), and SMUG1, (Shimizu et al.,
2010). This crosstalk with multiple DNA glycosylases indicates
that XPC may adopt a more general function in recruiting
diverse repair enzymes to base pair-disrupted sites in the double
helix. Perhaps the most unexpected interaction of XPC protein
is with the Oct4-Sox2 transcriptional activator. Indeed, the
XPC complex was found to serve as a coactivator of the
Oct4-Sox2-dependent expression of the Nanog pluripotency
gene (Fong et al., 2011; Cattoglio et al., 2015; Zhang et al.,
2015). A two-hybrid screen, which used XPC protein as
the bait, revealed many further potential interaction partners
involved in DNA synthesis, transcription, post-translational
modification, proteolysis, signal transduction, and metabolism
(Lubin et al., 2014). To date, the biological consequence of these
putative associations is unknown. Finally, there are also proven
interactions of XPC protein with two different deubiquitinases,
i.e., OTUD4, (Lubin et al., 2014) and USP7 deubiquitinase (for

Ubiquitin-Specific-processing Protease 7; He et al., 2014). It
appears, therefore, that XPC upon ubiquitination becomes a
substrate for these two deubiquitinating enzymes.

Support for the XPC Initiator from a
Specialized UV Lesion Detector
Exposure of DNA to UV light results in the formation of CPDs
and 6-4PPs in a stoichiometry of approximately 3:1. These
two kinds of pyrimidine crosslinks differ in their biophysical
properties, genomic distribution, and biological effects. First,
CPD sites are characterized by a relatively minor destabilization
of base pairs compared to duplex DNA containing 6-4PPs (Kim
et al., 1995; Jing et al., 1998; McAteer et al., 1998). Second, CPDs
are evenly distributed across the chromatin landscape, whereas
6-4PPs are formed preferentially in linker DNA segments rather
than in nucleosome cores (Gale et al., 1987; Gale and Smerdon,
1990; Mitchell et al., 1990). Third, because CPDs are removed
at slower rates than 6-4PPs, they display a higher mutagenic
potential and are responsible for most adverse short- and long-
term effects of UV radiation such as sunburns, skin aging and
cutaneous cancer (Schul et al., 2002; Garinis et al., 2005).

Despite being the generic repair initiator for all bulky lesions
including the slowly repaired CPDs, XPC protein does not
bind CPDs in duplex DNA with any appreciable selectivity
(Sugasawa et al., 2001; Hey et al., 2002; Reardon and Sancar,
2003; Wittschieben et al., 2005). This lack of specificity for CPDs
is, however, compensated by DDB2 protein, which is the factor
mutated in XP-E patients (Nichols et al., 2000; Kulaksiz et al.,
2005). Unlike XPC, which functions as a non-specific sensor of
helix-disrupting bulky lesions, DDB2 is exclusively dedicated to
the detection of CPDs and 6-4PPs (Tang et al., 2000). Structural
analyses of DDB2 crystals revealed a recognition hole in its
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central β-propeller fold that only accommodates CPDs and 6-
4PPs while excluding larger base adducts (Scrima et al., 2008;
Fischer et al., 2011; Yeh et al., 2012; Osakabe et al., 2015).
Notably, the complete lack of functional DDB2 protein in XP-E
patients abolishes the repair of CPDs but the excision of 6-4PPs
is only marginally affected (Hwang et al., 1999; Moser et al.,
2005).

A generally proposed model is that DDB2 recognizes CPDs
and, thereafter, delivers them to the XPC partner for initiation
and execution of the GG-NER process (Tang et al., 2000;
Wakasugi et al., 2001; Fitch et al., 2003). It has been demonstrated
that XPC lends two of its previously mentioned DNA-binding
folds (TG domain and BHD1) to interact in a transient manner
with DDB2 associating with UV lesions. This dynamic DDB2-
XPC-DNA intermediate at the damage site allows for the
insertion, into the DNA double helix, of a β-hairpin extension
protruding from BHD3, eventually competing DDB2 away from
the damage (Fei et al., 2011; Mu et al., 2015). Thermodynamically,
this β-hairpin insertion by XPC takes place at a considerable
energetic cost for local breakage of stacking and hydrogen bond
interactions between the involved bases (Mu et al., 2015). The
6-4PPs, being more base pair-disruptive, facilitate this β-hairpin
insertion by reducing the helical stability at damaged sites, but
XPC protein depends on DDB2 to interact in a productive
manner with CPD sites. Thus, the different degree of local helical
distortion explains the specific defect of XP-E cells in eliminating
CPD lesions.

Polypeptide Modifiers Targeting XPC
Protein
In view of the manifold implications of XPC as a generic
DNA quality sensor in GG-NER that, in addition, associates
with several DNA glycosylases and is responsible for non-repair
functions in transcription (see above), it is not astonishing to
observe that the activity, cellular level and localization of XPC
protein is tightly controlled. For example, it has become clear
that various polypeptide modifiers regulate the action of this
versatile repair initiator during the cellular response to UV
damage.

In addition to its role as a specific UV lesion detector, the
DDB2 subunit cooperates with the adaptor DDB1 to recruit
the CUL4A scaffold and the RING finger protein ROC1, which
together build the CRL4DDB2 ubiquitin ligase. By mediating the
covalent attachment of one or more 8-kDa ubiquitin moieties
to target proteins (Groisman et al., 2003), this cullin-type
ligase is able to fine-tune GG-NER activity. Under steady-state
conditions, the CRL4DDB2 ubiquitin ligase is kept in an inactive
form thanks to an association with the COP9 signalosome, a
multi-subunit regulatory protease (Fischer et al., 2011). Following
the detection of UV lesions by DDB2, COP9 is released giving
way to a covalent modification of CUL4A with the ubiquitin-
like polypeptide NEDD8, thus activating the ubiquitin ligase
complex that, in turn modifies nearby located substrates with
Lys48-linked ubiquitin chains (Scrima et al., 2008). The principal
ubiquitination substrates include histones H2A, H3 and H4 as
well as DDB2 itself and its DNA recognition partner XPC (Nag

et al., 2001; Sugasawa et al., 2005; Kapetanaki et al., 2006; Wang
et al., 2006; Guerrero-Santoro et al., 2008).

It has been proposed that the CRL4DDB2-mediated
ubiquitination of histones in response to UV radiation helps
opening chromatin, thus facilitating access of the GG-NER
repair machinery to damaged DNA (Wang et al., 2006).
However, this view is contradicted by the finding that CUL4A
conditional-knockout mice show more proficient rather than
reduced GG-NER activity (Liu et al., 2009). There is, on the
other hand, general agreement that the self-ubiquitination of
DDB2 not only suppresses its binding to DNA but also promotes
its degradation by the 26S proteasome (Sugasawa et al., 2005).
The same CRL4DDB2 ligase also ubiquitinates XPC but, unlike
the fate of DDB2, XPC retains its DNA-binding property and is
shielded from proteasomal breakdown (Sugasawa et al., 2005;
Matsumoto et al., 2015). In addition, the XPC protein is modified
with Lys63-linked ubiquitin chains by another ligase complex
referred to as RNF111 or Arkadia (Poulsen et al., 2013). This
extra ubiquitination reaction is strictly dependent on the prior
UV-dependent modification of XPC protein with sumo, defining
RNF111 as a sumo-targeted ubiquitin ligase (Wang et al., 2005).

In summary, GG-NER activity upon UV damage is coordi-
nated by several polypeptide modifiers including NEDD8,
sumo, Lys48- and Lys63-linked ubiquitin chains. Sumo and
the two aforementioned ubiquitin chains decorate XPC protein
at multiple covalent modification sites. Interestingly, in situ
immunofluorescence studies indicate that a down-regulation of
CRL4DDB2 or RNF111 activity has opposite effects by inhibiting
and stimulating, respectively, the accumulation of XPC in
damage spots generated by UV irradiation through micropore
filters. This observation raises the possibility that Lys48-linked
ubiquitin chains (produced by CRL4DDB2) and Lys63-linked
counterparts (produced by RNF111) have distinct modulating
roles. The function of Lys48-linked ubiquitin chains in regulating
XPC is discussed in the next section below. With regard to
the accompanying sumo modification, this reaction has been
implicated in promoting the release of DDB2 once XPC is
bound to UV lesion sites. In the absence of XPC sumoylation,
both DDB2 and XPC are trapped together on damaged DNA
carrying the lesion, thus posing a block to downstream NER
steps (Akita et al., 2015). Since RNF111 is targeted to protein
substrates by sumo residues, it is tempting to propose that the
effect of sumoylation in releasing XPC may actually be executed
by a subsequent attachment of Lys63-linked ubiquitin chains by
RNF111. This functional link between sumo and Lys63-linked
ubiquitin would explain the persistence of XPC in UV lesion
spots observed by Poulsen et al. (2013) and van Cuijk et al. (2015)
following RNF111 depletion.

Dynamic Relocation of XPC in Damaged
Chromatin
The genome packaging in eukaryotic cells is imposed by two
very diverging needs. The DNA filaments must be compressed
to fit into the narrow cellular nucleus but nevertheless remain
accessible to the diverse nuclear transactions. To achieve
this double requirement, DNA is assembled with histones to
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generate a tight but dynamic array whose repeating unit is the
nucleosome (reviewed by Khorasanizadeh, 2004; Thoma, 2005).
Each individual nucleosome displays a core particle, where 147
base pairs of duplex DNA are wrapped around a core histone
octamer (two each of H2A, H2B, H3, and H4) and a DNA
spacer or “linker” of variable length. Also, in higher eukaryotes
histone H1 associates with linker DNA segments to induce
further packaging allowing for increased compaction of the DNA
double helix.

It is of paramount importance to address the possible
regulatory role of polypeptide modifiers in the GG-NER pathway
taking into account this chromatin context. New insights into
the function of CRL4DDB2-mediated ubiquitination came from
the enzymatic partitioning of chromatin by incubation with
micrococcal nuclease (MNase). This particular enzyme breaks
down DNA in the more accessible linker segments much faster
than in the less accessible nucleosome cores. As a consequence,
the incubation of chromatin with MNase produces a soluble
supernatant of mostly non-histone proteins that, before MNase
digestion, were associated with linker DNA segments spacing
the nucleosomal core particles (amounting to ∼35% of total
genomic DNA). Even when saturating enzyme concentrations
are used, however, MNase digestions of chromatin leave behind
the vast majority of nucleosome core particles (amounting to
∼60% of total DNA) in the form of an insoluble nucleoprotein
fraction (Telford and Stewart, 1989). Two previous findings led
us to predict that, in response to UV irradiation, CRL4DDB2

activity would not be uniformly distributed along nucleosome
arrays. First, DDB2 protein, the DNA-binding subunit of
CRL4DDB2, associates with > 10-fold higher affinity with 6-
4PPs (Ka = 1.5 × 109 M−1) relative to CPDs (Ka = 1 × 108

M−1; (Reardon et al., 1993; Wittschieben et al., 2005). Second,
6-4PPs are formed mainly in internucleosomal linker DNA
(Gale and Smerdon, 1990; Mitchell et al., 1990). Therefore, we
were not surprised to find that DDB2 associates preferentially,
although not exclusively, with 6-4PPs situated in accessible
MNase-sensitive internucleosomal segments (Fei et al., 2011).
Coversely, it was believed that XPC is unable to interact with
DNA assembled with histone octamers forming nucleosome
cores (Yasuda et al., 2005) but, against this prevailing notion,
MNase digestions of chromatin revealed that XPC protein
associates rather evenly with nucleosome core particles and
internucleosomal linker segments. Upon UV irradiation, this
interaction of XPC protein with nucleosome core particles is
stimulated (Fei et al., 2011). This latter finding is in line with
structural analyses of core particle crystals containing a site-
directed UV damage, which revealed that the tight wrapping
around histone octamers increases the DNA flexibility at lesion
sites (Osakabe et al., 2015). This higher flexibility may, in
turn, explain how XPC protein is able to carry out, even
in the nucleosome core context, its indirect damage sensor
function by binding to the undamaged strand opposing bulky
lesions.

In agreement with the selectivity of the DDB2 subunit for
UV lesions in internucleosomal linker DNA, following UV
radiation the whole CRL4DDB2 ubiquitin ligase is relocated
mainly to these highly amenable sites. Due to this distinctive

positioning of CRL4DDB2, the modification with Lys48-linked
ubiquitin chain takes place more efficiently on XPC bound
to internucleosomal DNA, whereas XPC molecules on core
particles are less prone to ubiquitination (Fei et al., 2011).
The role of CRL4DDB2 in this context was confirmed by the
following experimental manipulations: (i) depletion of either
DDB2 or CUL4A using RNA interference, (ii) depletion of the
nuclear ubiquitin pool by using the proteasome inhibitor MG132,
or (iii) suppression of the ubiquitin pathway using a small-
molecule E1 inhibitor. Alternatively, the ubiquitination of XPC
was inhibited in mouse cells expressing a temperature-sensitive
E1 mutant or with an XPC-green fluorescent fusion protein
that makes the XPC protein refractory to ubiquitination. After
each of these experimental manipulations, the XPC molecules
were devoid of ubiquitin moieties and, as a consequence, almost
completely relocated to nucleosome core particles (Fei et al.,
2011). These findings demonstrate that one of the functions of
CRL4DDB2-mediated ubiquitination is to retain XPC molecules
at internucleosomal sites, which constitute DNA repair hotspots
for the effective recruitment of TFIIH and further downstream
NER factors (Figure 2). In the absence of CRL4DDB2 activity,
more XPC binds to CPDs located in nucleosome core particles
representing a less permissive chromatin environment with poor
recruitment of downstream GG-NER factors. We concluded
that the CRL4DDB2-mediated ubiquitination serves to establish
a distinctive spatiotemporal distribution of the XPC sensor
during the UV damage response, in particular to optimize the
recruitment of NER factors in mammalian chromatin.

Ubiquitin-dependent Extraction of DDB2
and XPC from Chromatin
Although the DDB2 damage detector is required for efficient
recognition and excision of CPDs, Lys48-linked ubiquitin
moieties elicit its proteolytic breakdown within few hours after
exposure to UV light (Nag et al., 2001; Rapic-Otrin et al., 2002).
This precipitous self-ubiquitination and degradation of DDB2
provides a time switch that limits the CRL4DDB2 ubiquitin ligase
activity, and its regulatory effect on the XPC partner, to a
short period after acute UV pulses. Due to DDB2 degradation,
the proportion of ubiquitinated XPC diminishes progressively
and, therefore, XPC can relocate from internucleosomal DNA
segments to not yet processed residual UV lesions, essentially
CPDs, located within the less amenable nucleosome core
particles (Fei et al., 2011). These dynamic chromatin transitions,
involving degradation of DDB2 and relocation of XPC, are
triggered by the ubiquitin-selective p97 segregase, also known
as VCP, (Puumalainen et al., 2014). Hexameric assemblies of
p97 subunits convert ATP hydrolysis into mechanical activity
to liberate ubiquitinated proteins from diverse subcellular
substrates (Rouiller et al., 2000; Zhang et al., 2000). That
p97 hexamers recognize ubiquitinated DDB2 and XPC was
first demonstrated in situ on UV lesions spots in the nuclei
of human cells. Second, it was confirmed biochemically that
Lys48-ubiquitinated DDB2, XPC, and p97 are found in the
same multi-protein complex (Puumalainen et al., 2014). This
p97 recruitment to ubiquitinated DDB2 and XPC depends
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FIGURE 2 | Regulation of XPC localization in chromatin. After each UV
pulse, the cullin-type CRL4DDB2 ligase complex (comprising inter alia DDB1,
DDB2, and CUL4A) is recruited mostly to accessible internucleosomal sites in
chromatin. The ensuing modification of XPC with Lys48-linked ubiquitin (Ub)
chains leads to a temporary retention of XPC on internucleosomal DNA, thus
reducing its constitutive association with nucleosome core particles (Fei et al.,
2011). Subsequently, RAD23B is released and the XPC-CETN2 heterodimer
provides a platform for recruitment of the TFIIH complex. The UV radiation
damage is symbolized by a red star.

on adapter proteins (Meyer et al., 2000; Hänzelmann et al.,
2011) known to confer substrate specificity to the p97 segregase
(Figure 3).

Next, the p97 function was down regulated by RNA
interference or, alternatively, by expression of a dominant-
negative mutant (Ye et al., 2003) that still displays substrate-
binding but is unable to exert segregase activity and, therefore,
remains trapped on ubiquitinated proteins. The consequence of
this diminished p97 activity is an enrichment of DDB2 and XPC
in UV lesion spots, thus reflecting an excessive accumulation
of these factors in damaged chromatin. The down-regulation of
p97 inhibited the UV-induced proteolytic clearance of DDB2 and
also increased the level of ubiquitinated XPC. However, despite
their roles in the initiation of GG-NER activity, this induced
persistence of DDB2 and XPC impaired UV lesion excision.
Moreover, the compromised DNA repair efficiency resulting
from p97 down regulation caused hypersensitivity to UV light
and enhanced chromosomal aberrations after UV exposure.

The genome instability observed in UV-irradiated cells after
p97 depletion was reversed by concurrent down-regulation
of DDB2 or XPC (Puumalainen et al., 2014). These findings
suggested that the uncontrolled accumulation of DDB2 or
XPC is detrimental and that a tight regulation of their levels
in chromatin is essential for genome stability. Elaborating on
this hypothesis, one would expect that an excessive presence
of one of these factors should be sufficient to destabilize the
genome. In support of this hypothesis, it was found that under

FIGURE 3 | Extraction of DDB2 and XPC from chromatin. The p97
segregase coordinates GG-NER activity by removing Lys48-ubiquitinated
DDB2 and Lys48-ubiquitinated XPC from chromatin, thus promoting
downstream recognition (by the XPD subunit of TFIIH in conjunction with XPA
and RPA) and double DNA incision. The XPC subunit is thought to leave the
preincision complex after recruitment of TFIIH but before engagement of the
DNA endonucleases XPF-ERCC1 and XPG (Scharer, 2013; van Cuijk et al.,
2015). Ubiquitinated DDB2 is forwarded to the proteasome for degradation,
whereas XPC is recycled by de-ubiquitination (He et al., 2014; Lubin et al.,
2014; Puumalainen et al., 2014). Lys63-linked ubiquitin chains on XPC may
further enhance these dynamic relocations at UV lesions by favoring the
dissociation of DDB2 from XPC. See text for further details on the postulated
dual role of CRL4DDB2 (generating Lys48-linked ubiquitin chains) and RNF111
(generating Lys63-linked ubiquitin chains) in regulating GG-NER activity.
Npl4-Ufd1, adaptor complex that confers specificity to the p97 segregase; the
UV radiation damage is symbolized by a red star.

conditions of normal p97 activity, overexpression of wild-
type DDB2 but not overexpression of a DNA-binding mutant,
compromised UV lesion excision and increased the frequency of
chromosomal aberrations following UV irradiation. Importantly,
double overexpression experiments generating abnormally high
levels of both DDB2 and p97 confirmed the expectation that
the negative effects of DDB2 overexpression are reversed by
concomitantly increasing p97 levels. Thus, a surplus of DDB2
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enhances chromosomal aberrations only as long as its chromatin
level exceeds the turnover capacity of the p97 segregase. Taken
together, these findings point out that a strict spatial and temporal
regulation of the chromatin homeostasis of DDB2 and its XPC
partner by the p97 segregase is crucial for GG-NER activity
(Figure 3).

CONCLUSION

The XPC complex provides the generic initiator of GG-NER
activity on the basis of its ability to sense the damage-
dependent disruption of base pairs in double-stranded DNA
and recruit the XPD scanner for bulky lesion recognition. An
intriguing peculiarity of the XPC complex is that its function
in initiating the excision of UV lesions is tightly regulated by
NEDD8, sumo and ubiquitin modifiers. This special regulation is
apparently not needed for the recognition and excision of other
bulky lesions induced by chemical carcinogens or endogenous
metabolic byproducts. An evolutionary perspective may help
to understand the unique need for polypeptide modifier-
dependent regulation of GG-NER activity in response to UV
irradiation.

Evolution of life on our planet would have failed without
the emergence of an effective DNA repair function dealing with
UV lesions. Indeed, a vast majority of living organisms exposed
to sunlight display rapid, efficient and secure molecular tools
for the repair of UV lesions consisting of DNA photolyases.
By visible light-driven catalysis, these DNA photolyases revert
pyrimidine dimers (CPDs and 6-4PPs) to pyrimidine monomers
without excision of bases, nucleoside or nucleotide residues
(Sancar, 2003; Weber, 2005). Unlike other animals, however,
placental mammals are devoid of this light-dependent DNA
repair reaction, possibly because they originated from nocturnal
ancestors (Essen and Klar, 2006). While returning to a diurnal
life under sunlight, placental mammals were left with the
GG-NER pathway (also known as “dark repair”) as the only
means to process UV lesions in the exposed skin. In principle,
many potential problems arise with this upgrade of GG-
NER activity as the unique DNA repair defense against UV
lesions. First, CPDs would escape repair because the XPC
initiator is not able to detect this prevalent type of UV
lesion. Second, once exposed to sunlight, skin cells would be
faced with the simultaneous and uncontrolled cleavage of their
genomic DNA at thousands or more chromosomal sites, which
constitutes a striking threat to genome stability. Third, CPDs are
formed evenly across the genomic DNA, including compacted

chromatin sites that are poorly amenable to the GG-NER
machinery.

The present review highlights NEDD8-, sumo- and ubiquitin-
dependent mechanisms by which these problems related to “dark
repair” by the GG-NER machinery are mitigated in human skin
cells. First, the dedicated UV damage sensor DDB2 recruits
its XPC partner to CPD lesions that, without DDB2, would
remain undetected. Second, the GG-NER-initiating activity
of XPC undergoes a tight spatial regulation. By recruitment
of the CRL4DDB2 ligase responsible for XPC ubiquitination,
the GG-NER reaction is in the beginning directed to highly
amenable internucleosomal DNA segments that are accessible to
downstream excision factors, thus protecting more compacted
chromatin sites from premature incisions that might favor
the fragmentation of chromosomes. Third, the repair-initiating
activity of XPC undergoes a tight temporal regulation. By means
of proteolytic breakdown triggered by the CRL4DDB2 ubiquitin
ligase, the repair-stimulating action of DDB2 is self-limiting after
an acute pulse of UV damage. Fourth, the physical interaction
between DDB2 and XPC is counter-regulated by sumo and,
presumably, the sumo-dependent RNF111 ubiquitin ligase. It
is still an enigma how DDB2 and the XPC complex take
advantage of histone-modifying enzymes as well as chromatin
remodelers to relax chromatin regions and initiate the repair
of compacted DNA substrates in a coordinated manner. It
has, however, become clear that p97-mediated extraction of
a surplus of ubiquitinated DDB2 and XPC is necessary to
achieve optimal GG-NER activity and avoid molecular collisions
with concomitant nuclear processes like transcription or DNA
replication. Through addition of these NEDD8-, sumo- and
ubiquitin-dependent control circuits, it has become possible
during mammalian evolution to upgrade the GG-NER system
as the only available DNA repair reaction protecting from UV-
induced skin mutagenesis and carcinogenesis.
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