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Abstract

Recently, a new generation of devices have been developed to record neural activity simultaneously from hun-
dreds of electrodes with a very high spatial density, both for in vitro and in vivo applications. While these ad-
vances enable to record from many more cells, they also challenge the already complicated process of spike
sorting (i.e., extracting isolated single-neuron activity from extracellular signals). In this work, we used syn-
thetic ground-truth recordings with controlled levels of correlations among neurons to quantitatively bench-
mark the performance of state-of-the-art spike sorters focusing specifically on spike collisions. Our results
show that while modern template-matching-based algorithms are more accurate than density-based ap-
proaches, all methods, to some extent, failed to detect synchronous spike events of neurons with similar ex-
tracellular signals. Interestingly, the performance of the sorters is not largely affected by the spiking activity in
the recordings, with respect to average firing rates and spike-train correlation levels. Since the performances
of all modern spike sorting algorithms can be affected as function of the activity of the recorded neurons, sci-
entific claims on correlations and synchrony should be carefully assessed based on the analysis provided in
this paper.
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Significance Statement

High-density extracellular recordings allow experimentalists to get access to the spiking activity of large
neuronal population, via the procedure of spike sorting. It is widely known that spike sorters are affected by
spike collisions, i.e., the occurrence of spatiotemporally overlapping events, but a quantitative benchmark
is still lacking. In this contribution, we perform systematic comparisons on the performance of many differ-
ent spike sorters against spike collisions, showing that modern spike sorters, to different degrees, are still
affected by synchronous events. Our results suggest that scientific claims on neuron correlations and syn-
\chrony should be carefully assessed as they could result from spike sorting errors. /

Introduction

Accessing the activity of large ensemble of neurons is a
crucial challenge in neuroscience. In recent years, multie-
lectrode arrays (MEAs) and large silicon probes have
been developed to record simultaneously from hundreds
of electrodes packed with a high spatial density, both in
vivo (Jun et al., 2017; Angotzi et al., 2019) and in vitro
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(Berdondini et al., 2009; Frey et al., 2009). With these de-
vices, each electrode records the extracellular field in its
vicinity and can detect the action potentials (or spikes)
emitted by the neighboring neurons in the tissue. In con-
trast to intracellular recording, extracellular recordings do
not give a direct and unambiguous access to single
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neuron activity and one needs to further process the re-
corded signals to extract the spikes emitted by the differ-
ent cells around the electrodes. This complex problem of
source separation is termed “spike sorting.” While various
solutions for small number of channels (tens at max) can
be found in the large literature on spike sorting algorithms
(Quiroga et al., 2004), these new devices with thousands
of channels challenge the classical approach to perform
spike sorting.

Recently, a new generation of spike sorting algorithms
have been developed to be able to deal with hundreds (or
even thousands) of channels recorded simultaneously (for
recent review, see Lefebvre et al.,, 2016; Hennig et al.,
2019). The extent to which these modern spike sorting al-
gorithms recover all the spikes from a neuronal population
is still under investigations, and might differ depending
on the species, tissue, cell types, activity level. While
most of the real ground truth recordings (Neto et al.,
2016; Yger et al., 2018) are assessing the performance
at the single cell level, to obtain an exhaustive assess-
ment of the spike sorting performance at the population
level, one must turn to use fully artificial or hybrid data-
set (Buccino and Einevoll, 2020; Magland et al., 2020)
to properly compare and quantify the performances of
the algorithms. But even with such dataset, in most of
the studies, errors are only measured as false positive
(FP)/false negative (FN) rates, and the reasons behind
failures of the algorithms are often overlooked.

In this study, we focused on a key property of the
spike trains, at the core of most of these failures, i.e.,
their fine temporal correlations. Indeed, temporal cor-
relations are ubiquitous in the brain, and the higher the
number of recorded cells because of the increased
density of the probes, the more prominent they are.
Correlations might have an important role in popula-
tion coding (for review, see Averbeck et al., 2006), but
correlated activity for nearby cells results, in the ex-
tracellular signals, in overlapping activities and thus
are harder to identify than isolated spikes. While pio-
neering work (Pillow et al., 2013) claimed that tem-
plate-matching-based algorithms were more suited to
recover overlapping spikes (either in space and/or
time), the extent to which they are is not properly de-
fined. In this work, our aim is to estimate how good (or
bad) modern spike sorters are in recovering colliding
spikes. What are the limits of the sorters, and what are
the key parameters of the recordings and/or of the
neurons that could influence these numbers?
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Materials and Methods
All the code used to generate the figures is available at
https://spikeinterface.github.io/.

Simulated datasets

We used the MEArec simulator (Buccino and Einevoll,
2020) to generate 30-min-long synthetic ground truth re-
cordings. In brief, MEArec uses biophysically detailed multi-
compartment models to simulate the extracellular action
potentials, or so called “templates.” For this study, we used
13 cell models from layer 5 of a juvenile rat somatosensory
cortex (Markram et al., 2015; Ramaswamy et al., 2015) to
get a dictionary of biologically plausible templates. Given
this database, we took the layout of a NeuroNexus probe
(A1x32-Poly3-5 mm-25s-177-CM32 with 32 electrodes
in three columns and hexagonal arrangement, a x-pitch
and y-pitch of 18 and 22 um, respectively, and an elec-
trode radius of 7.5 um), and randomly positioned 20 cells
in the vicinity of the probe, so that every simulated neu-
ron has a unique template (i.e., average extracellular ac-
tion potential). Templates are then combined with spike
trains and slightly modulated in amplitude to add physio-
logical variability. Additive uncorrelated Gaussian noise
is finally added to the traces. We generated simulated re-
cordings with 20 neurons randomly positioned in front of
the probe, a noise level of 5uV and a sampling rate of
32 kHz. To obtain more robust results, we generated five
recording per conditions with various random seeds.
The spike times were kept unchanged, but the positions
and the templates of the 20 neurons were changed in
each of the individual recording. This allowed us to pop-
ulate the distribution of cosine similarities between pairs.

Generating spike trains with controlled correlations

To generate the recordings with various firing rates
and correlations levels, we used the mixture process
method described in (Brette, 2009). Since by default
the method generates controlled cross-correlograms
with a decaying exponential profile, we modified it to
generate cross-correlograms with a Gaussian profile,
to have more synchronous firing for small lags. By setting
three different rate levels (5, 10, and 15 Hz) and three differ-
ent correlation levels (0%, 10%, and 20%) this gave rise to
nine conditions, so to 45 recordings in total (five recordings
per conditions; see above).

Template similarity

We define the template for neuronjas T; € R™C, with T
representing the number of samples and C the number of
channels. After flattening the template by concatenating
the signals from different channels (T}r € R7C), the similar-
ity between two neurons i and j is quantified via the cosine
similarity defined as follows:

f f

__ — cos(h), (1)

similarity = % =
T

where 6 is the angle between the two (T - C)-dimension-
al vectors T/ and T]. The cosine similarity is therefore
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bounded between —1 (templates are anti-parallel) and 1
(templates are parallel). A cosine similarity of 0 means
that the templates are orthogonal.

Spike sorters

All the spike sorters used in this study were run using the
Spikelnterface framework (Buccino et al., 2020), with default
parameters. The following are the exact versions that we
used for the different spike sorters: Tridesclous (1.6.4),
Spyking-circus (1.0.9; Yger et al., 2018), HerdingSpikes
(0.3.7; Hilgen et al., 2017), Kilosort (v1, 2, or 3; Pachitariu et
al., 2016), YASS (2.0; Lee et al., 2020), IronClust (5.9.8;
Chung et al., 2017), and HDSort (1.0.3; Diggelmann et al.,
2018). The desktop machine used has 36 Intel Xeon(R) Gold
5220 CPU @ 2.20 GHz, 200Go of RAM and a Quadro RTX
5000 with 16 Gb of RAM as a GPU.

Spike sorting comparison

All the quantitative metrics between the results of the
spike sorting software and the ground-truth recording
were made via the Spikelnterface toolbox.

When comparing a spike sorting output to the ground-
truth spiking activity, first an agreement score between
each pair of ground-truth and sorted spike trains is com-
puted as:

#nmatches
)
+ #n/sorreu - #nmatches

score; = .-

igt
where #nj,, and #n;_ . are the numbers of spikes in the i-
th ground-truth spike train and the j-th sorted spike trains,
respectively. #nm,atches iS the number of spikes within
0.4 ms between the two spike trains.

Once scores for all pairs are computed, a Hungarian as-
signment is used to match ground-truth units to sorted
units (Buccino et al., 2020). All spikes from matched spike
trains are then labeled as: true positive (TP), if the spike is
found both in the ground-truth and the sorted spike train;
FP, if the spike is found in the sorted spike train, but not in
the ground-truth one; and FN, if the spike is only found in
the ground-truth spike train.

After labeling all matched spikes, we can now define
these unit-wise performance metrics for each ground-
truth unit that has been matched to a sorted unit:

accuracy = #TP 2
Y= TP + #FP + #FN
recision = __H#TP (3)
P T TP+ #FP
#TP

The global accuracy, precision, and recall values shown
in Figure 2D are the average values of the performance
metrics computed by unit.

Using the unit metrics and the output of the matching
procedure, we can further classify each sorted unit as:

Well detected: sorted units with an accuracy >0.8;
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False Positive: sorted units that are not matched to any
ground-truth unit and have a score <0.2;

Redundant: sorted units that are not the best match to
a ground-truth unit but have a score >0.2;

Overmerged: sorted units with a score >0.2 with more
than one ground-truth unit.

In order to generate the spike lag versus recall fig-
ures (e.g., Figs. 3-6) we expanded the Spikelnterface
software with several novel comparison methods and
visualization widgets. In particular, we extended the ground-
truth comparison class to the CollisionGTComparison, which
computes performance metrics by spike lag. In addition
to the agreement score computation and the matching
described in the previous paragraphs, this method first
detects and flags all “synchronous spike events” in the
ground-truth spike trains. Two spikes from two separate
units are considered to be a “synchronous spike event” if
their spike times occur within a time lag of 2 ms. The syn-
chronous events are then binned in 11 bins spanning the
[-2, 2] ms interval, and the collision recall is computed
for each bin. With a similar principle, we implemented
the CorrelogramGTComparison to compute the lag-wise
relative errors in cross-correlograms between ground-
truth units and spike sorted units.

Results

Generation of the ground-truth recordings

To test how robust the recently developed spike sorting
pipelines are against spike collisions (Pachitariu et al.,
2016; Chung et al., 2017; Hilgen et al., 2017; Yger et al.,
2018; Lee et al., 2020), we generated synthetic datasets
using the MEArec simulator (Buccino and Einevoll, 2020;
see Materials and Methods). More precisely, we took the
layout of a NeuroNexus probe with 32 electrodes in three
columns and hexagonal arrangement, and randomly posi-
tioned 20 cells in the vicinity of the probe (see Fig. 1A), so
that every simulated neuron has a unique template (i.e.,
average extracellular action potential). Figure 1B shows
three sample templates with, respectively, low, almost
null, and high similarity. The similarity between templates
is computed as the cosine similarity of the flattened sig-
nals (see Materials and Methods) and the random genera-
tion of the positions and cell types of the simulated
neurons (and thus of the templates) gives rise to the simi-
larity matrix displayed in see Figure 1C. This similarity, as
expected, decreases with the distance between the neu-
rons, computed either from the ground-truth positions of
the cells from the simulation or estimated as the barycen-
ters of the templates (Fig. 1D). The more negative the sim-
ilarity is, the more templates are “in opposition”; the more
positive it is, the more templates are “similar.” A similarity
close to 0 means that templates do not overlap and are
strongly orthogonal, i.e., dissimilar. Importantly, the simu-
lations allowed us to cover rather uniformly the space of
cosine similarities between templates, which will be used
to assess the performance of spike sorters during colli-
sions (Fig. 1E).

To generate the spike trains, we first used a simple ap-
proach that forced all the neurons to fire as independent
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Figure 1. Generation of the synthetic recordings. A, A total of 20 cells are randomly placed in front of a 32-channel NeuroNexus
probe layout. The plot shows the location of each cell for one recording. B, Sample template pairs generated by neurons with differ-
ent cosine similarity values. C, Cosine similarity matrix between all pairs of templates for a sample recording. D, Cosine similarity as
function of the distance between the neurons, either using the real position from the simulations (orange circles), or the estimated
barycenter of the templates (blue circles). E, Histogram of the cosine similarity distribution from one of the simulated recordings. F,
Cross-correlograms and auto-correlograms for three sample spike trains. G, Average auto-correlograms of all units (red line, gray
area represents the SD). H, Average cross-correlogram over all pairs of neurons (red line, gray area represents the SD around the
mean). I, Sample traces from 10 channels of one synthetic recording.

Poisson sources at a fixed and homogeneous firing rate
of 5Hz. To make the simulation more biologically plausi-
ble, we pruned all spikes breaking a refractory period vio-
lation of 4 ms. The resulting auto-correlograms and cross-
correlograms for three sample units are shown in Figure
1F (auto-correlograms are in green on the diagonal), while
Figure 1G,H display the average (red line) and standard de-
viation (SD) (gray shaded area) auto-correlation and cross-
correlation among all units, respectively. A sample snippet
of the generated traces from one recording is shown in
Figure 1/, for a subset of 10 channels out of 32. Because of
the independence of the Poisson sources, both the average
cross-correlograms (Fig. 1G) and auto-correlograms, out-
side the =4 ms used as refractory period (Fig. 1H), are flat.

Global performance of the spike sorters

In order to assess the global performances of the sort-
ing procedure on our synthetic datasets, we generated
five recordings with various random seeds and averaged
the results. Figure 2 summarizes the main findings. First,
we noticed that, as seen in Figure 2A, the run time was
roughly constant across sorters, except for HDSort, with
its higher run time. The number of well detected units is
similar among sorters, as shown in Figure 2B, but it is
worthwhile noticing that Kilosort 3 is the only sorter pro-
ducing many FP and redundant units (see Materials and
Methods for classification of units). Kilosort 2 and HDSort
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also identify more FP than well detected units.
Importantly, we did not perform any curation of the spike
sorting output, but we consider the raw output of each
sorter as is.

To check whether all sorters correctly discovered all
templates, we computed the cosine similarity between
the ground-truth templates from the simulations and the
ones found by the sorters, comparing such a metric with
the accuracy. By doing so, we wanted to rule out the fact
that the sources of the errors could primarily be because of
problems in the clustering. Indeed, if the spike sorting algo-
rithms are properly behaving, they should find templates
very similar to the ground-truth ones. As it can be seen in
Figure 2C, all sorters are on average finding the correct
templates, with the notable exception of YASS (in gray)
and to some less extent HDSort (in red). The average co-
sine similarity between found and ground-truth templates
is larger than 0.97 for most template-matching-based sort-
ers (Spyking-circus, Kilosort 1/2/3, IronClust, Tridesclous),
so we can safely assume that most of the errors are not be-
cause of the clustering step. Moreover, the overall accu-
racy of most of the spike sorters is relatively high (~0.95),
except for HDSort and HerdingSpikes which yield lower
scores (Fig. 2D). However, this averaged number does not
tell us anything regarding the nature of these errors. While
this error rate might seem low, it is likely that it is crucial,
since it can potentially originate from the collisions, and
thus from the correlations among neurons.

eNeuro.org



eMeuro

A
600
500 -
0
V) 400
()
S |
B 300 A
c
S
= 200
100 -
o C
SN G AR R P
C 1.00
1.00 7
o B
0.95 S 1
' 0.9 : {
0.98 1.0
0.90
[ ]
>
v 085 ® hdsort
© . . .
. ° ® herdingspikes
3 0.80 )
[v] ® ironclust
U .
S 0.75 1 ® k!Iosort
® kilosort2
0.70 - kilosort3
® spykingcircus
0.65 tridesclous
® yass

0.60

cosine similarity

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Theory/New Concepts 50f 10

704 Well Detected
I False Positive
601 Redundant
50 Overmerged

40

# units

30 A

S Y I I

101

0o{ Sl

D Il Accuracy
Il Precision
I Recall

1.0 4
0.8 1
0.

0.4
0.2
0.0

P ECegesF e

metric

Figure 2. Spike sorting performance. A, Average run times over five different recordings (see Materials and Methods) for all the
tested sorters. Errors bars indicate the SD over multiple recordings. B, Average number of cells found by the sorters that are either
well detected, redundant, overmerged, or considered as FP (see Materials and Methods). Error bars indicates SD over multiple re-
cordings. C, The average cosine similarity between templates found by the sorters and ground-truth templates, as function of the
accuracy for the given neurons. Ellipses shows standard error of the means in cosine similarity (x-axis) and accuracy (y-axis). D,
Average metrics (accuracy, precision, recall; see Materials and Methods) for all the sorters. Error bars show SD over multiple

recordings.

Spike sorting performance is affected by spike
collisions

Using fully synthetic recordings with exhaustive ground
truth, we can look at how good individual spike sorters per-
form specifically with respect to spatiotemporal collisions.
To do so, we computed the collision recall (see Materials
and Methods) as a function of the lag between two spikes,
for a given pair of neurons. By averaging over multiple pairs
of ground-truth neurons with similar template similarity
(and over multiple recordings; see Materials and Methods),
we can obtain a picture of how accurate the sorters are
specifically with respect to the spike time lags and the simi-
larities between templates. Figure 3 displays the collision
recall per sorter as a function of the lag (x-axis), colored by
the similarity between templates. Each panel shows the
performance of a different spike sorter. One can immedi-
ately see that only few sorters are able to accurately
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resolve lag correlations that are close to zero, even when
templates are strongly orthogonal (low cosine similarity).
This is the case for Kilosort 1 and 2, and for Spyking-circus,
all of which use a template-matching procedure that
should theoretically explain this behavior. It is worthwhile
noting that the decrease in performance for Kilosort 3 is
surprising, since the authors confirmed the software is
using the exact same template-matching procedure than
in previous versions. This means that errors are likely origi-
nating either from subtle variations in the preprocessing
steps, and/or in the clustering that has been changed and
thus might lead to slight differences in the templates.
However, while performances are still good for Kilosort
1 and 2 even when the average cosine similarity between
pairs is increased, they slightly degrade for Spyking-circus.
Density-based sorters (HerdingSpikes and IronClust),
on the other hand, do not have a spike collision

eNeuro.org
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Figure 3. Collision recall per sorter. Error (quantified as the collision recall; see Materials and Methods) for various sorters and for all
possible lags (between —2 and 2 ms), as function of the similarity between the pairs of templates (color code). All curves are aver-
aged over multiple pairs and multiple recordings (see Materials and Methods).

resolution strategy and this is reflected by their overall
poorer performance. It is interesting to notice that
Tridesclous, HDSort, YASS, and Kilsort 3, also using a
template-matching-based procedure to resolve the
spikes, are not properly resolving the temporal corre-
lations even for dissimilar templates. Different tem-
plate-matching strategies are probably the cause of the
differences among sorters. For example, HDSort does
not implement any strategy for spike collision resolu-
tion (Diggelmann et al., 2018), and that is reflected in the
quick degradation of performance as template similarity in-
creases. Kilosort uses a GPU-based implementation of the
k-SVD algorithm (Aharon et al., 2006), used in matching
learning as a dictionary learning algorithm for creating a
dictionary for sparse representations. By doing so, it
performs a reconstruction of the extracellular traces by
optimizing both the templates and the spike times,
which is an enhancement compared with what is done
in Spyking-circus and Tridesclous. This might explain
the boost in performance especially striking for tem-
plates with high similarity (similarity > 0.8).

Generation of controlled spike collision simulated data
The results shown in the previous section have been
obtained only in a particular regime of activity, with all
neurons firing independently as Poisson sources with an
average firing rate of 5 Hz. However, neurons usually do
not fire independently of each other, but rather have intrin-
sic correlations, also depending on different brain areas,
brain states, and species. In addition, the average firing
rates can also largely vary depending on brain areas. As
an example, it is well known that Purkinje cells in the cere-
bellum have a very high firing rate (Sedaghat-Nejad et al.,
2021), that networks tends to synchronize their activity ei-
ther in slow waves during sleep (Steriade, 2004), or during
pathologic activity [such as epileptic seizures (Truccolo et
al., 2011)]. Therefore, assessing how performances may
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vary during different conditions is important to generalize
our observations.

In order to study how spike sorting is affected by corre-
lations and firing rates, we used a mixture procedure
(Brette, 2009) that allowed us to control precisely the
shape of the auto-correlograms and cross-correlograms
for the injected spike trains. More precisely, we decided
to explore in a systematic manner three rate levels (5, 10,
and 15Hz), and three correlation levels (0%, 10%, and
20%). Note that the 5Hz firing rate with 0% correlation
corresponds to the scenario displayed in Figures 2 and 3.

Figure 4 shows the average of cross-correlograms and
auto-correlograms and the spike trains of a recording
where cells are firing as independent Poisson sources at
5Hz in panels A-C (and thus with 0% correlation, as
shown by the flat average cross-correlograms in Fig. 4A)
and at 15Hz with 20% correlation (Fig. 4D-F). Although
experimental recordings would contain a broader spec-
trum of firing rates and correlations, here we focus on as-
sessing how different firing regimes affect spike sorting
performance in a controlled setting. By varying these con-
ditions, we wanted to challenge the internal clustering
step of the spike sorting algorithms and see how general-
izable are the results we observed in the previous section.
One would expect that the increased density of spikes
(both in terms of firing rates and of synchrony) should de-
grade the performance of the spike sorters by affecting
both the clustering step and the template-matching step,
which in turn would degrade the resolution of spike colli-
sions. It is worthwhile noting that all the rates and correla-
tion levels are homogeneous among neurons and only the
templates are different.

Do correlations and firing rates affect spike sorting of
spike collisions?

To assess whether firing rate and spike train correlation
affect spike sorting performance, we selected all unit

eNeuro.org
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Figure 4. Controlling spike trains correlations and firing rates. A, Average cross-correlograms between all pairs of distinct neurons
firing as independent Poisson sources at 5Hz (red curve, gray area represents the SD). B, Same as A, but for auto-correlograms. C,
Raster plot showing the activity of the uncorrelated neurons firing at 5 Hz. D-E, Same as A-B, but for a rate of 15Hz and 20% corre-
lation. F, Raster plot showing the activity at 20% correlation and 15 Hz rate.

pairs with a similarity >0.5. We first averaged the recall
curves for all template similarities (i.e., we averaged the
curves with similarity >0.5 shown in Fig. 3).

In Figure 5A, we show the recall with respect to the
spike lags averaged over all nine configurations (three fir-
ing rates x three correlations) for each sorter. The thick
line represents the mean recall and the shaded area is the
SD over different rate-correlation configuration. All sort-
ers, except YASS, appear to have a very consistent curve
(low SD) over different configurations and do not seem af-
fected by changes in average firing rates and correlations
in the spike trains. YASS’ large SD can be explained by
looking at individual recall curves at different rate-correla-
tion regimes (Fig. 6, yellow lines): the spike sorting per-
formance degrades with increasing firing rates, but it

does not seem to be strongly affected by increased corre-
lation rates. However, we should stress that since the col-
lision recall is a relative measure, the same value for a
larger number of spikes (when firing rate is increased)
means that overall, there are more misses for all sorters.
Similar considerations can be done by looking at the av-
erage recall with respect to template similarity (Fig. 5B). To
construct these plots, we integrated the curves in Figure 3
over lags for different cosine similarities. Also in this case,
the curves appear consistent (low SD) with the exception
of YASS, for which recall is reduced with increased firing
rate regimes (Fig. 7, yellow lines). It is worth noticing that
when the cosine similarity becomes negative, all the sorters
perform very poorly in properly resolving the overlaps. This
could be explained by the fact that when a pair of
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Figure 5. Spike sorting performance for different conditions. A, Average collision recall over the nine conditions shown in Figure 6
(8 firing rate levels and 3 correlation levels) as function of the lag between spikes, for pairs of cells with cosine similarity higher than
0.5. The shaded area shows the SD over the conditions. B, Similarly as A, the average collision recall as function of the cosine simi-
larity between pairs of cells. C, Mean relative error between the ground-truth cross-correlograms and the estimated ones, for all
sorters, averaged over all pairs with a similarity higher than 0.5.
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templates is anti-parallel (Fig. 1A, left panel), a subset of
electrodes might show a negative signal for one template
and a positive signal from the other (because of return cur-
rents in the dendritic signals; Gold et al., 2009). Effectively,
when a spike collision between the two spikes occurs, this
would lower the amplitude of the negative peak, which
could reduce the detectability of the spike.

The collision recall metric is mostly useful to obtain a
quantitative insight on the behavior of the spike sorting al-
gorithms, but how do these errors transpose in practical
situations? To assess this, we measure the relative error
(in percentage) between the ground-truth cross-correlo-
grams and the ones computed from the spike sorting out-
puts. We then averaged these error curves among all
recordings and experimental conditions (firing rates and
synchrony levels). As shown in Figure 5, the error in the
estimated cross-correlogram can be as large as >50%
for small lags, and for some spike sorting algorithms
such as HDSort, HerdingSpikes, or IronClust. Moreover,
it is also worth noticing the baseline error rate is not the
uniform across sorters. From this metric, we can again
conclude that template-matching-based spike sorting
algorithms such as Kilosort (1, 2, and 3), Spyking-circus,
or Tridesclous are much better to resolve fine temporal
correlations among neurons.

Discussion

In this study, we showed in a systematic and quantita-
tive manner how spatiotemporal correlations can be
underestimated during spike sorting. Using synthetic da-
tasets, we compared a large diversity of modern spike
sorters and showed how they behaved as function of the
similarity between the templates and the temporal lags
between spikes. As expected, the closer the spikes are
in time, the harder is it, for all sorter, to properly resolve
the overlaps. However, more interestingly, the more similar
the templates are, the higher the failures are. These failures
are striking especially for spike sorters that are not relying
on template-matching-based approaches (HerdingSpikes,
IronClust). For the ones using a template-matching-based
approach (Kilosort, Spyking-circus, Tridesclous, HDSort),
the problem is less pronounced (with the exception of
HDSort) but still present, and therefore this phenomenon
should be taken into account when making claims about
the synchrony.

To our surprise, the global behavior of the spike sorters
did not depend much on the overall firing rate and/or the
correlation levels. This allows us to generalize the findings
and we think that the quantitative results shown here could
be translated to various in vitro or in vivo recordings from
different brain regions and species. As shown in Figure 5,
while the variability over different conditions is rather high
for some algorithms, template-matching-based algorithms
tend to be rather robust and overall better in resolving
spike collisions. This is a very encouraging sign toward a
unified and reproducible automated solution for spike sort-
ing (Buccino et al., 2020; Magland et al., 2020), agnostic of
the recording conditions.

The results shown in the paper were obtained with
purely artificial recordings, since we need exhaustive

September/October 2022, 9(5) ENEURO.0105-22.2022

Theory/New Concepts 9 of 10
information on the ground-truth spiking activity of all neu-
rons to quantitatively compare and benchmark different
spike sorters. However, it would be interesting to general-
ize these observations with real recordings, assuming one
would have a proper ground truth at the population level.
Indeed, such a ground truth is needed to compute the col-
lision recall and see how sorters behave as function of
lags and similarities between templates. To our knowl-
edge, such a ground truth does not exists (Neto et al.,
2016; Diggelmann et al., 2018; Yger et al., 2018). While
one could try to generate an “approximated” ground truth
by combining the output of several spike sorters with an
ensemble spike sorting approach (as in Buccino et al.,
2020), the disagreements among sorters are currently so
high that this process is hard if not impossible, if one want
to sample from a large number of pairs.

While missing spikes for very dissimilar templates and
small lags is problematic, the errors made for very simi-
lar templates may be less frequent depending on the
probe layout and neuronal preparation. Indeed, such er-
rors strongly depends on the distribution of template
similarities between all pairs of recorded cells, and this
distribution might differ from recording to recording.
For example, in the retina (Wassle, 2004) one would ex-
pect highly synchronous cells, of the same functional
type, to be far apart from each other because of an in-
trinsic tiling of the visual space. Such properties are un-
known in vivo or in cortical structures, but might bias
the distribution of template similarities between nearby
neurons, and thus modify the estimation of collision
recalls.
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