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Protein S-nitrosylation (SNO) is a process of covalent modification of nitric oxide (NO) and its derivatives and cysteine residues.
SNO plays an essential role in reversible posttranslational modifications of proteins. The accurate prediction of SNO sites is crucial
in revealing a certain biological mechanism of NO regulation and related drug development. Identification of the sites of SNO in
proteins is currently a very hot topic. In this review, we briefly summarize recent advances in computationally identifying SNO
sites. The challenges and future perspectives for identifying SNO sites are also discussed. We anticipate that this review will
provide insights into research on SNO site prediction.

1. Introduction

Protein S-nitrosylation (SNO) is one of the most important
and common posttranslational modifications (PTMs), as
shown in Figure 1, incorporating the covalent modification
of nitric oxide (NO) and its derivatives and cysteine residues
[1]. Numerous studies have shown that S-nitrosylation regu-
lates multiple physiological and pathological processes, such
as the immune response [2], cellular senescence [3], tran-
scription, and posttranslational regulation [4]. In addition,
abnormalities in protein S-nitrosylation and other posttrans-
lational modifications can also lead to many diseases, such as
Alzheimer’s disease [5–7] and breast cancer [8]. In recent
years, through molecular recognition and labelling of SNO
sites in proteins, many large-scale proteomics experimental
screenings have been completed, and the number of SNO
proteins verified by experiments is also increasing [9, 10].
As to other protein posttranslational modification sites [11–
18], the predicted SNO sites are time-wasting, strenuous,
and extortionate through large-scale experimental screening
methods. With continuous breakthroughs in sequence and

structural biology, computational biology using machine
learning has become an indispensable part of drug develop-
ment [19–36].

As an alternative to biochemical experiments, identifying
SNO sites in biological sequences with the least cost and effi-
ciency in recent years is a focus of current research. To help
researchers understand the development of this field, this
review will use Chou’s five-step rule as the literature selection
criteria [37]: (1) how to select or construct an effective
fiducial marker dataset subcellular location to train and test
predictors, (2) how to express the sample with an effective
formula that can truly reflect the intrinsic correlation
between the sample and predicted target, (3) how to intro-
duce or develop powerful algorithms to make predictions,
(4) how to correctly conduct cross-validation tests to
objectively evaluate the expected prediction accuracy, and
(5) how to build a user-friendly web server for forecasters.
In addition, to help researchers overcome the overall devel-
opment of this field, this review briefly introduces early
research on the identification of SNO sites using biochemical
methods.
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2. Materials

High-quality datasets are the cornerstone of scientific
research [38, 39]. With the development of proteomics and
the advancement of research by scientists, the number of
experimentally identified SNO sites is also increasing. In
the process of predicting S-nitrosylation sites, the dynamic
changes of the database and the dataset are sorted in this part.

2.1. Database. UniProt [40] (Universal Protein Resource) is a
high-quality, extensive, and open-access database of protein
sequences and functional annotations created and main-
tained by the UniProt Consortium, namely, EBI, SIB (Swiss
Institute of Bioinformatics), and PIR (Protein Information
Resource), an association of three institutions. It mainly
includes three parts: the UniProtKB knowledge base, Uni-
Parc archive library, and UniRef reference sequence set.
The UniProt database collects cysteine SNO sites from
different species. With the continuous addition of a large
number of experimentally verified SNO sites, the dataset
used by scientists to predict SNO sites is also updated accord-
ingly [41, 42].

dbSNO [43] (database of cysteine S-nitrosylation) is the
first database specifically designed to integrate experimen-
tally determined SNO sites and their structure or function
information. SNO peptide sequences collected from different
sources are heterogeneous, so dbSNO maps the identity of
these sequences to UniProtKB protein entry. In addition,
the dbSNO database also provides powerful structural and
functional analysis functions to help researchers better
understand the structural correlation and shared motifs of
these SNO peptide sequences. The dbSNO database is
divided into two versions: the first version ended in April
2012, and this version contains 43,000 experimentally veri-
fied SNO peptide sequences collected in numerous published
studies using text mining methods; the second version is
dbSNO2.0. In this version, dbSNO2.0 is also expanded to
explore the structural environment of low SNO sites and
the regulatory network resources of S-nitrosylation proteins.
In SNO site prediction experiments, many scientists have
also used the S-nitrosylation peptide sequence of the dbSNO
database [41, 44].

PRISMOID [45] is a newly established database focusing
on posttranslational modification and mutations with func-
tional impact. Compared with traditional databases that
focus on protein sequences, PRISMOID has added the real
3D structure of proteins and is equipped with various
friendly operation interactions for information visualization.
This database is the first version and contains 37 kinds of
PTM annotation data (323 nitrosylation sites) manually
compiled and is expected to be updated at least every 6
months. In addition, PRISMOID also integrates information
such as the protein secondary structure and protein disor-
dered regions to facilitate researchers to carry out scientific
research.

2.2. Datasets. With the continuous in-depth understanding
of the characteristics of S-nitrosylation, an increasing num-
ber of SNO peptide sequences have been identified, and the
datasets used to predict SNO sites are based on previous
studies. Dynamic changes are taking place. Therefore, the
datasets commonly used by researchers for the detection of
S-nitrosylation sites are chronologically explained in this
section.

SNOSID, the first bioinformatics tool for predicting
S-nitrosylation sites, was developed by Hao et al. [46]. In this
study, they used S-nitrosoglutathione-treated rat cerebellar
lysates. In 56 of the proteins, 68 cysteine sites were desig-
nated, and the initial limited 65 positive and negative samples
were selected in the random sampling process. Xue et al.
[47] also developed a predictor GPS-SNO for predicting
SNO sites. They collected 363 experimentally verified S-
nitrosylation sites published on PubMed using nitrosylated
or nitrosylation as keywords and then integrated the public
database SysPTM [48] and two large-scale S-nitrosylation
site surveys [46, 49]. Finally, 504 positive sites and 2581 neg-
ative sites were obtained through sequence identity threshold
setting [50] and protein sequence alignment [51]. A year
later, Li et al. [52] used GPS-SNO datasets to develop a
method for predicting SNO sites using SVM. Before long,
Lee et al. [53] also developed a tool for predicting SNO sites,
SNOSite. In this study, the training set and test set are from
Chen et al. [54] and GPS-SNO data, respectively. Chen
et al. used a high-throughput S-alkylating biotin conversion
method in SNAP/L cysteine-stimulated mouse endothelial
cells to obtain 586 positive sites and 2728 negative sites. In
addition, since the data came from different datasets, the test
set and training set may have the same homology. Therefore,
they first defined SNO sequences with more than 30% iden-
tity as homologous sequences and then used BLAST 2 [55]
to compare the fragment sequences. A test set containing
479 positive sites and 2501 negative sites was finally obtained.

In 2012, Li et al. [56] developed a method to predict and
analyse SNO sites using minimal-redundancy-maximal-
relevance and incremental feature selection. The dataset used
in this experiment had three sources. The first source of SNO
sites was the UniProt database [57] (version 2011_07) and
the second from GPS-SNO and the third from large-scale
S-nitrosylation site surveys [58–61] at that time to obtain
the remaining two datasets. Finally, a training set (784 posi-
tive sites and 1568 negative sites) and a test set (43 positive
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Figure 1: A schematic diagram of protein S-nitrosylation sites.
Protein fragments have many residues, of which C (cysteine) is
depicted as a circle. When NO and cysteine residues are covalently
modified, SNO is formed, which is represented by a warm color,
and the rest is gray.
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sites and 121 negative sites) were obtained. In 2013, Xu et al.
[41] developed iSNO-PseAAC, a tool for predicting S-
nitrosylation sites. They randomly selected 438 proteins from
the dbSNO database, and the sequence identity of these
proteins was less than 40%. After comparison with the anno-
tations in the dbSNO database, 731 positive sites and 810
negative sites verified by experiments were collected in the
UniProt database [62] (version 2012_08). Xu et al. [63]
improved on the basis of iSNO-PseAAC and developed
iSNO-AAPair. This experiment used the original data of
S-nitrosylation sites from dbSNO (version 1.0) and the
UniProt database (version 2012_08). By using Chou’s pep-
tide formula [64–67], sequence identity setting, and random
selection, 2300 SNO-positive and SNO-negative sites verified
by experiments were obtained as training sets, and 81 posi-
tive and 100 negative sites were obtained as test sets.

In 2014, Jia et al. [68] developed a bioinformatics tool
named iSNO-ANBPB used to predict SNO sites. In this
experiment, they used the dataset constructed by Li et al.
[52] and iSNO-PseAAC and obtained 1229 positive sites
and 1223 negative sites by sequence identity setting and
clustering. Soon, Zhang et al. [44] also developed the experi-
mental tool PSNO. To reach a consensus assessment with
previous experiments, they first constructed a training set
containing 731 positive and 810 negative loci and a test set
containing 53 positive and 103 negative sites from the
dbSNO database. In addition, the 2302 positive sites selected
from the GPS-SNO dataset and the 81 positive sites and 100
negative sites selected from the iSNO-PseAAC dataset were
used as the test set.

After a brief stagnation, Xie et al. [69] used deep learning
technology to develop a bioinformatics tool, DeepNitro, to
predict SNO sites. They searched the relevant literature
published before June 30, 2015, from PubMed and obtained
a training set containing 20862 sites (3409 positive sites and
17453 negative sites) through residue modification and
sequence clustering. To reach a consensus with previous
research, they collected the latest data and eliminated the
repeated sequences in previous work. Finally, an independent
test set was built (485 positive sites and 4947 negative sites).

In 2019, Li et al. [70] predicted S-nitrosylation sites by
multifeature fusion. In this study, they used 731 positive sites
and 810 negative sites of iSNO-PseAAC and iSNO-AAPair as
the training set and 43 positive sites and 121 negative sites of
Li et al. as the test set. At the same time, Hasan et al. [71]
developed PreSNO and used the DeepNitro dataset. To avoid
overestimation of the prediction model, CD-HIT was used to
screen homology and eliminate SNO sequences with the
same window. Furthermore, to avoid prediction bias, they
adopted the method of randomly taking and merging the
sequences to balance the number of SNO-positive and
SNO-negative sites.

3. Research Review

For protein S-nitrosylation site prediction, the traditional
method is based on biochemical methods, but the SNO sites
predicted are time-wasting, strenuous, and extortionate.
With continuous breakthroughs in sequence and structural

biology, computing methods have gradually become the
mainstream of current research. This method is low cost
and efficient. This section focuses on computational methods
based on machine learning or deep learning to provide
researchers with a systematic understanding of the develop-
ment of this field. Traditional biochemical methods are also
briefly introduced.

3.1. Biochemical Methods. Jaffrey and Snyder [72] invented
biotin switch assay (BSA) technology. This method first
converts nitrosylated cysteine residues into biotinylated cys-
teine residues and then detects biotin or specific proteins by
Western blot [73] to detect the proteins labelled by biotin.
BSA not only greatly improves the feasibility of SNO protein
identification but also promotes the improvement of high-
throughput identification of SNO sites. In 2005, Gao et al.
[74] proposed using BSA and protein sequencing technology
to identify endogenous SNO sites. The method is simple and
rapid and can meet the needs of separation, purification, and
identification of SNO proteins.

In 2006, Hao et al. [46] extended the original biotin
method and proposed a new improved method, SNOSID.
SNOSID introduced a protein hydrolysis and digestion step
before capturing the antibiotin protein. This step was not like
the previous complete separation of the peptide fragment of
SNO protein but the selective separation of the residues con-
taining the SNO site before. SNOSID also introduced the
machine learning algorithm SVM for the first time. In addi-
tion, the original limited 65 positive samples and 65 negative
samples as training data, but the prediction results were not
ideal.

Although SNOSID technology can identify the target
proteins and target sites of S-nitrosylation, the degree of
protein nitrosamine cannot be accurately measured. With
the advancement of proteomics technology, Wu et al. [75]
and Fares (2014) developed a technology combining BSA
with an isotope-coded affinity tag (ICAT). This technique was
the first to achieve large-scale identification of S-nitrosylation
residues but is disadvantaged by its use of isotopes.

3.2. Computational Biology Methods. With the continuous
emergence of massive biological sequences in the postgene
era, traditional biochemical sequencing methods are far from
being able to meet the needs of development. However,
machine learning algorithms cannot directly deal with bio-
logical sequence data. Therefore, how to use discrete models
or a certain way to express biological sequences and fully
express their sequence information or key pattern features
has become the focus and content of research in compu-
tational biology [76–84]. Since Chou proposed the pseu-
doamino acid composition [85, 86] or PseAAC [87],
computational biology based on machine learning or deep
learning has also developed rapidly. The following introduces
the software and server based on Chou’s five-step rule to
predict protein S-nitrosylation sites through algorithms. See
Table 1 for details.

3.2.1. GPS-SNO. Xue et al. [47] developed GPS-SNO1.0, a
tool for predicting protein S-nitrosylation sites using the
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GPS3.0 algorithm. The software is developed on the basis of
the GPS2.0 algorithm [88] previously proposed. In this study,
they first used the amino acid substitution matrix to calculate
the nitrosylation peptide sequence and obtain the corre-
sponding score. Then, k-means clustering, peptide selection
(PS), weight training (WT), and matrix mutation (MaM)
were used to improve the performance. The accuracy of the
experiment under low threshold conditions was 75.80%, the
sensitivity was 53.57%, and the specificity was 80.14%. In
addition, the prediction ability of GPS-SNO on 485 potential
S-nitrosylation low positions was also tested, and 371 posi-
tions of these targets were successfully predicted. GPS-SNO
can be obtained for free from the website http://sno
.biocuckoo.org/.

3.2.2. CPR-SNO. GPS-SNO has initially explored its ability
on S-nitrosylated substrates. Although good results have
been achieved, there is still room for improvement. Li et al.
[52] developed CPR-SNO. In this study, they used SVM as
a classifier and used the coding scheme based on coupling
mode to realize the prediction system. In the performance
evaluation, the F-score is used to identify the effective coding
scheme, and referencing the work of Xue et al. [47], tenfold
cross-validation is used for verification. In addition, this
research solves the problem of existing coding schemes not
being able to provide enough information to predict SNO
sites. By using the F-score to identify effective coupling
modes, they proved that some coupling modes are not related
to S-nitrosylation. The CPR-SNO server is no longer in use.

3.2.3. SNOSite. Although traditional research on the charac-
teristics and mechanism of S-nitrosylation has made great
progress, the understanding of its substrate specificity is still
insufficient. In 2011, Lee et al. [53] made a breakthrough on
this issue and developed a new bioinformatics tool, SNOSite,
for predicting SNO sites. In this study, they used maximal
dependence decomposition (MDD) to serialize the nitrosyla-
tion sites into different subgroups and used SVM to generate
a prediction model for each MDD cluster motif. By using
fivefold cross-validation, the SVM using MDD clustering

achieves 90% accuracy. SNOSite can be used for free on the
website http://csb.cse.yzu.edu.tw/SNOSite/.

3.2.4. mRMR and IFS Method. Feature selection is useful for
machine learning-based biosequence analysis [22, 89–105],
including SNO prediction. Li et al. [56] developed a predictor
based on the nearest neighbour algorithm [106] (NNA),
which uses maximum relevance minimum redundancy
[107] (mRMR) for incremental feature selection [108–110]
(IFS). In this work, they generated 666 features from the pep-
tide sequences used in the experiment and then used mRMR
to rank the relevance and redundancy of these features in
order of importance. For the obtained feature rankings, the
best features are determined through IFS, and then, these fea-
tures are constructed into different feature sets. Finally, the
predictive evaluation performance of each feature set is gen-
erated by NNA. The best feature combination composed of
67 features is selected through the above method, and an
accuracy of 0.61607 is obtained in the test set. In addition,
this experiment also shows that the characteristics of the site
far from the central cysteine can help determine the S-
nitrosylation site. There is no online server for this predictor.

3.2.5. iSNO-PseAAC and iSNO-AAPair. Xu et al. [41] pro-
posed a new SNO site predictor iSNO-PseAAC. In this study,
they used PseAAC to represent protein sequence informa-
tion, constructed as a 21 × 20 position-specific amino acid
propensity (PSAAP) matrix, and finally used the conditional
random field (CRF) algorithm to construct a predictor for
predicting SNO sites. The cross-validation test of iSNO-
PseAAC on an independent dataset also achieved a success
rate of over 90%. iSNO-PseAAC can be obtained for free
on the website http://app.aporc.org/iSNO-PseAAC/. How-
ever, iSNO-PseAAC simply considers the positional orienta-
tion of each group of amino acids when predicting variables
but does not consider any correlation between them. The
amino acids in all proteins are processed individually. How-
ever, there must be some connection between them in phys-
iology or mechanism. To solve this problem, Xu et al. [63]
made improvements on the basis of iSNO-PseAAC, added
related influences when predicting protein SNO sites, and

Table 1: List of 13 predictors for predicting the SNO sites in protein sequences.

No. Name Link Time Refs

1 SNOSID Not provided 2006 [46]

2 GPS-SNO http://sno.biocuckoo.org/ 2010 [47]

3 CPR-SNO http://math.cau.edu.cn/CPR-SNO 2011 [52]

4 SNOSite http://csb.cse.yzu.edu.tw/SNOSite 2011 [53]

5 Li et al. Not provided 2012 [56]

6 iSNO-PseAAC http://app.aporc.org/iSNO-PseAAC 2013 [41]

7 iSNO-AAPair http://app.aporc.org/iSNO-AAPair 2013 [63]

8 iSNO-ANBPB Not provided 2014 [68]

9 PSNO http://59.73.198.144:8088/PSNO 2014 [44]

10 DeepNitro http://deepnitro.renlab.org 2018 [69]

11 PreSNO http://kurata14.bio.kyutech.ac.jp/PreSNO 2019 [71]

12 Li et al. Not provided 2019 [70]
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released a new SNO site prediction tool iSNO-AAPair. It
considers the coupling effects of all pairs formed by the clos-
est residues along the protein chain and the pairs formed by
the closest residues. The predictor was cross-validated on the
latest benchmark test set and achieved good performance.
iSNO-AAPair can be obtained for free on the website
http://app.aporc.org/iSNO-AAPair/.

3.2.6. iSNO-ANBPB. Jia et al. [68] proposed an iSNO-ANBPB
predictor based on support vector machines. In this study,
they constructed four feature extraction schemes and com-
bined Chou’s pseudoamino acid composition for model eval-
uation. The cross-validation of the basic SVM showed that
the combination scheme using ANBPB for feature extraction
obtained the best test results. In addition, studies [56] have
shown that examples of the static charge of amino acids in
cysteine residues and the secondary structure of amino acids
play a key role in the prediction of SNO sites. Therefore, in
addition to feature extraction, this study also considered the
physical and chemical information in the peptide sequence.
There is no online server for this predictor.

3.2.7. PSNO. In 2014, Zhang et al. [44] proposed a new bioin-
formatics tool, PSNO, for predicting SNO sites. In this study,
they studied various derived features of the experimental
sequence and integrated them into PseAAC to represent
the experimental sample. In addition, to prevent the increase
in the amount of information from increasing the difficulty of
feature dimensions and predictors [111], they used relative
entropy to discard noisy features from the high-level space
and then optimize the optimal feature subset. However, the
features of the optimal subset are different, so IFS is used here
to rank these features, and a classifier based on 10-fold cross-
validation is constructed for each of the optimal feature sub-
sets. Finally, the k-nearest neighbour algorithm is used to
predict the input sample and discriminate the prediction
samples. In 10-fold cross-validation, the accuracy of PSNO
was 75.67%, and the accuracy of MCC was 0.5119. With
the completion of the whole-genome sequencing project,
the gap in the sequence structure is rapidly expanding. In
the absence of a protein structure, sequence-based prediction
represented by PSNO can become a powerful supplement to
replace structure-based prediction. The server provided by
the software is now invalid.

3.2.8. DeepNitro. Since Hinton et al. [112] proposed the
hierarchical training strategy to solve the gradient diffusion
problem in 2006, deep learning technology has also been
widely used in computational biology [113–126] and drug
discovery [127–134]. In 2018, Xie et al. [69] used the deep
learning algorithm for the first time to develop the S-
nitrosylation site prediction bioinformatics tool DeepNitro.
DeepNitro is an eight-layer neural network. The first layer
is the data input layer, which is used to assign prediction
and training values to neurons; the second to seventh layers
are fully connected layers, of which the second to fourth
layers use the dropout algorithm to improve the generaliza-
tion ability of unknown data.

In the process of neural network design, to solve the
problem of gradient diffusion in the training process, the
ReLU function was used as the activation function, and the
log-likelihood probability was used as the loss function to
optimize the weights and other parameters in the neural
network. In the process of backpropagation, a minibatch
gradient descent algorithm is used to update the network
parameters. Compared with traditional optimization algo-
rithms, the momentum method is superior in optimizing
parameters such as weights, so the momentum method was
selected as the optimization function. In addition, L1 and
L2 regular terms are introduced as hyperparameters to pre-
vent overfitting. For the last layer, the softmax algorithm is
used to obtain the probability distribution of the prediction
results. Finally, through principal component analysis
(PCA), DeepNitro obtained an AUC value of 0.7437 on the
test set. DeepNitro uses deep learning algorithms, new
encoding algorithms, and a position-specific scoring matrix
[135] (PSSM) to greatly improve the accuracy of nitrosation
site prediction and provides a free website server (http://
deepnitro. http://renlab.org/) for academic research.

3.2.9. PreSNO. In 2019, Hasan et al. [71] proposed a predic-
tion tool, PreSNO, for predicting protein SNO sites by an
ensemble algorithm. The focus of the study was the use of
four different coding schemes, including the composition of
profile-based amino acids (CPA), K-space spectral amino
acid composition (SAC), tripeptide composition from the
PSSM (TCP), and physical-chemical properties of amino
acids (PPA). The four coding schemes use SVM and random
forest to calculate the probability score and then multiply it
by weight to calculate the prediction effect of PreSNO.
Through 5-fold cross-validation, PreSNO also achieved
excellent performance. The predictor can be obtained for free
on the website (http://kurata14.bio.kyutech.ac.jp/PreSNO/).

3.2.10. Multiple Features Combination Method. Soon, Li et al.
[70] proposed a method to predict protein S-nitrosylation
sites using multifeature mixing. This work improves predic-
tion performance by extracting nine sequence features, such
as parallel correlation pseudoamino acid composition (PC-
PseAAC), general parallel correlation pseudoamino acid
composition [136], and ANBPB. Then, the importance of
amino acids is evaluated by subtracting the given amino acids
from the information gain [137] (IG), and finally, the max-
relevance-max-distance [138] (MRMD) generates a feature
subset with lower redundancy and strong correlation with
the target category. In the cross-validation of the test set,
the ACC and MCC of this method were 73.17% and 0.3788,
respectively, which becomes a useful supplement to the exist-
ing SNO identification tools.

4. Concluding Remarks and Perspectives

Many physiological and pathological studies of SNO have
been reported in recent years. Therefore, accurate prediction
of SNO sites will pave the way to speed up related drug
development.
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Several exciting computational methods have been pro-
posed to predict SNO. Although these works promoted
research on SNO and facilitated the prediction of SNO sites,
the following challenges should be considered in future
works.

Although many predictors have been developed to pre-
dict SNO sites, some corresponding indicators have greatly
improved the space. This is because existing methods were
trained on the basis of an imbalanced dataset. To solve this
problem, it is necessary to collect many more positive SNO
sites to enlarge the number of SNO sites in the dataset and
balance it. In addition, the focus of future research in this
field is to use these new technologies and methods to predict
more nitrosylated target proteins and sites to reveal the
mechanism by which nitrosylation regulates various physio-
logical processes.
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