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Background: The aim of this study was to evaluate the effect of a model combining a 18F-fluorodeoxyglucose 
positron emission tomography/computed tomography (18F-FDG PET/CT)-based radiomics signature with 
clinical factors in the preoperative prediction of the International Neuroblastoma Pathology Classification 
(INPC) type of pediatric peripheral neuroblastic tumor (pNT).
Methods: A total of 106 consecutive pediatric pNT patients confirmed by pathology were retrospectively 
analyzed. Significant features determined by multivariate logistic regression were retained to establish 
a clinical model (C-model), which included clinical parameters and PET/CT radiographic features. A 
radiomics model (R-model) was constructed on the basis of PET and CT images. A semiautomatic method 
was used for segmenting regions of interest. A total of 1,016 radiomics features were extracted. Univariate 
analysis and the least absolute shrinkage selection operator were then used to select significant features. The 
C-model was combined with the R-model to establish a combination model (RC-model). The predictive 
performance was validated by receiver operating characteristic (ROC) curve analysis, calibration curves, and 
decision curve analysis (DCA) in both the training cohort and validation cohort. 
Results: The radiomics signature was constructed using 5 selected radiomics features. The RC-model, 
which was based on the 5 radiomics features and 3 clinical factors, showed better predictive performance 
compared with the C-model alone [area under the curve in the validation cohort: 0.908 vs. 0.803; accuracy: 
0.903 vs. 0.710; sensitivity: 0.895 vs. 0.789; specificity: 0.917 vs. 0.583; net reclassification improvement (NRI) 
0.439, 95% confidence interval (CI): 0.1047–0.773; P=0.01]. The calibration curve showed that the RC-
model had goodness of fit, and DCA confirmed its clinical utility.
Conclusions: In this preliminary single-center retrospective study, an R-model based on 18F-FDG PET/
CT was shown to be promising in predicting INPC type in pediatric pNT, allowing for the noninvasive 
prediction of INPC and assisting in therapeutic strategies.

Keywords: Peripheral neuroblastic tumor (pNT); 18F-fluorodeoxyglucose positron emission tomography/

computed tomography (18F-FDG PET/CT); radiomics; International Neuroblastoma Pathology Classification 

(INPC)

107

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-22-343


Quantitative Imaging in Medicine and Surgery, Vol 13, No 1 January 2023 95

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(1):94-107 | https://dx.doi.org/10.21037/qims-22-343

Introduction

Peripheral neuroblastic tumor (pNT) is the most common 
extracranial solid tumor to occur in childhood. The 
International Neuroblastoma Pathology Classification 
(INPC) describes 4 categories of pNT: neuroblastoma; 
ganglioneuroblastoma, intermixed; ganglioneuroma; and 
ganglioneuroblastoma, nodular (1). According to the INPC 
classification, morphological features (degree of neuroblast 
differentiation and mitotic nuclear division index) as well 
as the patient’s age at diagnosis are considered in the 
prognostic differentiation of pNT into favorable histology 
(FH) or unfavorable histology (UH) (1).

Pathology type based on the INPC is one of the most 
powerful prognostic factors for patients with pNT (2,3). 
For example, the 3-year event-free survival (EFS) rates of 
patients with FH and UH tumors have been reported to 
be 85% and 41%, respectively (2). The prognostic value 
of INPC type has also been validated in large collaborative 
group studies to identify specific groups of patients at 
risk who may benefit from improved treatment (4). In 
one study, patients with International Neuroblastoma 
Staging System (INSS) stage 1 and 2 diseases and FH 
had a significantly better prognosis than did patients with 
UH (EFS 90%±3% and 72%±7%, respectively; overall 
survival 99%±1% and 86%±5%, respectively) (5). The 
Children’s Oncology Group (COG) also stratifies patients 
by age, MYCN gene status, INSS stage, ploidy, and tumor 
histology using the INPC criteria (3,6). Therefore, INPC 
type is important not only for exact diagnosis and adequate 
histological subclassification, but also as an index of COG 
risk stratification. Moreover, the INPC type is essential 
for the precision treatment of pNT patients (7). However, 
INPC type is defined by multiple indexes, including age 
at diagnosis, grade of neuroblast differentiation, mitosis-
karyorrhexis index, and quantity of Schwannian stromal 
development (3), which may lead to a lack of complete 
agreement among different pathologists. Santiago  
et al. reported that the complete agreement rate between 
different pathologists was about 25.0% (7). Furthermore, 
the treatment of patients with neuroblastoma is based on 
preoperative risk stratification, and surgical treatment is not 
usually used first if the patient is at high risk preoperatively. 

Additionally, the patient’s risk stratification may change 
during the course of treatment. Therefore, the noninvasive 
and real-time assessment of INPC classification has become 
increasingly vital. The process of INPC categorization 
is complicated, expensive, and invasive. INPC type is 
paramount in terms of providing information about pNT, 
and there is potential for clinicians to assess pNT biology 
noninvasively by using imaging characteristics (8). Advances 
in imaging methods, such as in 18F-fluorodeoxyglucose 
positron emission tomography/computed tomography 
(18F-FDG PET/CT), may provide a new intersection 
between molecular oncology and radiology (9). 18F-FDG 
PET/CT is an integrated imaging modality of PET and CT 
and is used for evaluating tumor heterogeneity to reflect 
metabolism, hypoxia, cellular proliferation, vascularization, 
necrosis, receptor expression, or inter/intracellular signaling 
pathways (10). Common metrics that can be derived from 
PET imaging data include the maximum standardized 
uptake value (SUVmax), metabolic tumor volume (MTV), 
and total lesion glycolysis (TLG = SUVmean × MTV), 
among others. Although PET parameters based on SUV are 
helpful for the grading of malignant tumors, they cannot 
reflect intratumoral heterogeneity through the spatial 
distribution of metabolic activity in the whole tumor (10).

 Radiomics is an emerging field that has been successfully 
applied to cancer research. It involves the conversion of 
medical images into a high-dimensional mineable feature 
space through automated data characterization algorithms 
and has demonstrated its potential in identifying tumor 
phenotypes and the pathological grading of malignant  
tumors (11). Radiomics analysis of 18F-FDG PET/CT has 
proven capable of predicting TERTp-mutation status in high-
grade gliomas (12); microvascular invasion in hepatocellular 
carcinoma and intrahepatic cholangiocarcinoma (13); and 
hormone receptor distribution, proliferation rates, and lymph 
node and distant metastases in breast adenocarcinomas (14). 
However, there has been limited research in developing 
noninvasive machine-learning models to accurately 
predict INPC type in pNT preoperatively. Therefore, we 
hypothesized that radiomics features extracted from PET/
CT images can reflect cellular and molecular information 
and predict the INPC type. 

In this study, we collected 18F-FDG PET/CT images and 
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INPC data with the aim to create a prediction model based 
on 18F-FDG PET/CT radiomics features for predicting 
the INPC type and to verify whether the combination of 
clinical characteristics with the radiomics model can better 
predict the INPC type in pediatric pNT. We present the 
following article in accordance with the STARD (Standards 
for Reporting Diagnostic accuracy studies) reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-22-343/rc).

Methods 

Patient data

A retrospective analysis of 139 consecutive pediatric 
patients newly diagnosed with pNT between March 2018 
and November 2019 at Beijing Friendship Hospital, 
Capital Medical University, was conducted. The inclusion 
criteria were as follows: (I) pathologically confirmed 
pNT; (II) ≤18 years at first diagnosis; (III) complete 
PET/CT imaging data and clinical information (see 
below); and (IV) no cancer-related therapy (e.g., biopsy, 
radiotherapy, chemoradiotherapy, or surgery) before 
PET/CT imaging. Subsequently, 33 cases were excluded, 
including 20 cases without clinical information and  
13 cases who had undergone cancer-related treatment by 
the first diagnosis. A total of 106 patients were included 
in this study (Figure S1). These patients were randomly 
divided into the training cohort and validation cohort 
at a ratio of 7:3. Two pathologists with 15 and 20 years 
of pediatric experience independently participated in 
the review. According to the INPC type, morphological 
features, and patient age, pediatric patients were classified 
as FH or UH by preoperative biopsy. The pathologists 
were blinded to the prior pathology report. If there was 
any disagreement, the final pathological result would be 
decided by two pathologists via discussion. The study 
conformed to the provisions of the Declaration of Helsinki 
(as revised in 2013). This retrospective study was approved 
by the Institutional Ethics Committee of Beijing Friendship 
Hospital, and individual consent for this retrospective 
analysis was waived.

18F-FDG PET/CT imaging

All patients underwent PET/CT whole-body scans 
(Biograph mCT-64 PET/CT; Siemens) according to the 
European Association of Nuclear Medicine (EANM) 

guidelines (15,16). Prior to the scan, they were asked to fast 
for at least 6 h and to reduce high-intensity exercise for at 
least 24 h. 18F-FDG 0.10–0.15 MBq/kg (provided by Beijing 
Atomic Technology Co., Ltd.) was injected intravenously 
40–60 min before the PET/CT scan. A low-dose CT scan 
with anatomical reference and attenuation correction was 
first performed with a tube voltage of 120 kV and automatic 
tube current modulation. The CT imaging parameters were 
as follows: resolution 0.586 mm × 0.586 mm, slice thickness 
2 mm, and matrix size 512×512. The whole-body CT scan 
was immediately followed by a PET scan for 2 min in each 
bed. The ordered subset expectation maximization (OSEM) 
algorithm with time of flight (TOF) was used to reconstruct 
the PET images. The PET imaging parameters were as 
follows: resolution 4.07 mm × 4.07 mm, slice thickness  
3 mm, and matrix size 200×200.

Conventional clinical data

Clinical characteristics including patient age, gender, and 
serum levels of neuron-specific enolase (NSE), serum 
ferritin (SF), lactate dehydrogenase (LDH), vanillylmandelic 
acid (VMA), and homovanillic acid (HVA) were collected 
within 1 month of the FDG PET/CT scan.

PET/CT radiographic features: The International 
Neuroblastoma Risk Group Staging System (INRGSS) 
stage of each patient was evaluated according to the 
report published by the International Neuroblastoma 
Risk Group, and the largest lesion was analyzed in the 
presence of multiple lesions (14). Two experienced nuclear 
medicine physicians (with 10 and 5 years of experience 
in pediatric nuclear medicine), who were blinded to the 
histopathological diagnosis, independently reviewed the 
conventional images at a workstation (syngo.via, Siemens) 
and recorded the following lesion features: (I) INRGSS (17)  
L1, L2, stage M, and stage MS; (II) anatomical compartment; 
(III) infiltration across the midline (beyond the opposite side of 
the vertebral column, present or not); (IV) calcification (present 
or not); (V) and necrosis (present or not). The anatomical 
compartment of each tumor was classified as chest, abdomen, 
pelvis, or junction (tumor that extends into an adjacent 
compartment). All results were determined by consensus 
agreement between the two nuclear medicine physicians.

PET quantitative parameters and radiomics feature 
extraction and selection

The primary tumor delineation was performed using the 

https://www.equator-network.org/reporting-guidelines/stard/
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fixed SUV threshold method. According to the results of 
previous studies, 40% of SUVmax was set as the threshold 
for the images (18-20). In this method, 3D contours 
were drawn around voxels equal to or greater than 40% 
SUVmax. For a volume of interest (VOI) containing 
more than 1 cluster, the cluster which had maximum 
uptake intensity and volume was selected. Manual 
verification after automatic segmentation was performed, 
and special attention was paid to tumors located near 
the urinary bladder due to intense physiological urinary 
tracer activity. This step was negotiated by the 2 previous 
nuclear medicine physicians. It is common to perform 
preprocessing of the data to conform the voxel size of 
CT and PET data prior to feature extraction. Radiomics 
features of CT and PET images were calculated in the 
same VOI. In the above VOI, standard PET quantitative 
parameters  were measured [SUVmax,  MTV, and 
TLG (TLG = SUVmean × MTV)], and radiomics 
features were calculated by using LIFEx software  
(www.lifexsoft.org) (21), which only calculates radiomics 
features for VOIs of at least 64 voxels.

Establishment of the clinical and radiomics models

Univariate analysis was performed to compare the 
differences in clinical characteristics and PET/CT 
radiographic features between pNT patients with FH and 
UH in the training cohort. Significantly different variables 

were added to the multivariate logistic regression analysis. 
Based on the selected characteristics, a clinical model 
(C-model) was established. A total of 1,016 radiomics 
features were obtained from PET and CT images of the 
training cohort. To reduce overfitting or selection bias in 
our radiomics model, the feature selection procedure was 
performed as follows: (I) the Mann-Whitney U test retained 
features with P values less than 0.05; (II) correlation 
analysis was performed and features with a correlation 
coefficient greater than 0.9 were removed; (III) the least 
absolute shrinkage selection operator (LASSO) was used 
to explore the information features most relevant to the 
INPC type. Finally, the features with significant differences 
were screened to establish a radiomics model (R-model). A 
radiomics score (Rad-score) was calculated for each patient 
via a linear combination of selected features that were 
weighted by their respective coefficients. The workflow is 
presented in Figure 1.

Additionally, the selected clinical characteristics were 
combined with radiomics features to construct a combined 
model (RC-model).

Evaluating the performance of the models

The diagnostic performance of the C-model, R-model, and 
RC-model was assessed according to a receiver operating 
characteristic (ROC) curve and the area under the ROC 
curve (AUC) in both the training and validation cohorts. 
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Figure 1 Radiomics signature workflow. PET, positron emission tomography; CT, computed tomography; VOI, volume of interest.
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Accuracy, specificity, and sensitivity were calculated 
from the threshold values of the maximum Youden index. 
Decision curve analysis (DCA) was employed to investigate 
the 3 models through calculating the net benefit for a 
range of threshold probabilities in the whole cohort. The 
calibration curve was provided and the Hosmer-Lemeshow 
(HL) test was used to evaluate the agreement between the 
true and predicted outcomes of pathology type in pNT. 
The integrated discrimination improvement (IDI) and net 
reclassification improvement (NRI) were used to compare 
the differences in AUC values between different models.

Statistical analysis

All statistical analyses were performed using R (version 4.1.0, 
statistical computing base). Two-sided P values of less than 
0.05 were considered statistically significant. The R packages 
“glmnet” and “pROC” were used for LASSO binary logistic 
regression and to construct the ROC curves. The “rms” 
package was employed to create nomograms. PET/CT 
radiographic features and clinical parameters were compared 
between the FH type and the UH type using independent 
Mann-Whitney U tests and χ2 tests between the 2 cohorts.

Results

Patient characteristics and clinical model building

The clinical characteristics and radiographic features of the 
training and validation sets are summarized in Table 1. None 
of these clinical characteristics differed significantly between 
the training and validation sets. Meaningful characteristics 
including age, gender, NSE, SF, LDH, SUVmax, INRGSS, 
infiltration across the midline, and calcification were 
identified as P<0.05 by univariate analysis. The UH type 
patients were older; more likely to be female; had higher 
levels of NSE, SF, LDH, and SUVmax; and were more 
likely to have a higher INRGSS stage, infiltration across the 
midline, and calcification.

Three of these factors, age, LDH, and INRGSS stage, 
were selected using backward stepwise multivariate logistic 
regression analysis (Table 2). Except for MS stage patients, 
the risk of developing UH type increased with increasing 
INRGSS stage in all patients. The C-model was then 
developed based on the independent variables described 
above. The AUC was 0.856 [95% confidence interval (CI): 
0.769–0.944] in the training cohort and 0.803 (95% CI: 
0.624–0.981) in the validation cohort (Table 3 and Figure 2).

Construction of the radiomics signature

After univariate analysis, 50 radiomics features (CT: 15, 
PET: 35) with P<0.05 were retained. Finally, 5 features  
(4 PET texture features and 1 CT texture feature) used to 
predict INPC type were selected by LASSO regression 
(Figure 3). A comparison of these features is shown as a heat 
map in Figure S2. A selected value of λ was used to select 
features with nonzero coefficients from the coefficient 
profiles plot (Figure S3). After the number of features was 
determined, the most predictive subset of features was 
chosen, and the corresponding coefficients were calculated. 
Rad-score was calculated by linear combination of the 
selected features weighted by their coefficients. The Rad-
score for each patient was calculated using the following 
formula:

[1]

–0.6268
_ . _ _ 0.5267

_ _ _ 0.7287
_ . _ _ 1.0487
_ . _ _

Rad-score
CT wavelet LHL glszm
PET original shape flatness
PET wavelet LHH glszm gray level non uniformity
PET wavelet HLL glcm inverse varianc

size zone non uniformity normalized
=

× −
× +
× +
× – 0.6002

_ . _ _
e

PET wavelet HLH glszm size zone non uniformity normalized×

The AUC of the R-model was 0.877 (95% CI: 0.801–
0.953) in the training cohort and 0.868 (95% CI: 0.735–1.000) 
in the validation cohort (Table 3 and Figure 2). To illustrate 
the effectiveness of the R-model, the quantitative values of 
the models for each pNT patient using the classification of 
FH and UH type are presented in Figure S4.

After performing multivariate logistic regression analysis, 
the RC-model was constructed on the basis of age, LDH, 
INRGSS stage, and Rad-score. The AUC of the RC-model 
was 0.921 (95% CI: 0.855–0.987) in the training cohort 
and 0.908 (95% CI: 0.791–1.000) in the validation cohort  
(Table 3 and Figure 2).

Model comparisons

The IDI and NRI of the 3 models are shown in Table 4. 
According to the IDI index, the predictive ability of the RC-
model was better than that of the R-model and C-model, 
and there were significant differences in the training cohort 
and validation cohort (all P values <0.05). However, there 
was no significant difference between the R-model and 
C-model. According to the NRI index, the predictive 
performance of the 3 models had the same tendency.

The calibration curve showed that the RC-model 
and R-model were basically consistent in predicting the 
INPC type of pNT in the training and validation cohorts, 

https://cdn.amegroups.cn/static/public/QIMS-22-343-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-343-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-22-343-supplementary.pdf
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Table 1 Characteristics of patients with pediatric peripheral neuroblastic tumors in the training set and validation set

Characteristics
Training cohort (n=75) Validation cohort (n=31)

FH (n=28) UH (n=47) P value FH (n=12) UH (n=19) P value

Age (years), median [IQR] 1.600 [1.150, 2.700] 3.500 [2.600, 5.050] <0.001* 1.150 [0.950, 4.575] 4.200 [2.350, 5.250] 0.056

Gender (%) 0.039* 1.000

Male 19 (67.857) 19 (40.426) 9 (75.000) 15 (78.947)

Female 9 (32.143) 28 (59.574) 3 (25.000) 4 (21.053)

NSE (ng/mL), median [IQR] 61.300  
[28.700, 150.600]

337.900  
[164.100, 689.250]

<0.001* 35.850  
[18.600, 129.700]

205.970  
[93.400, 620.000]

0.004*

SF (ng/mL), median [IQR] 87.600  
[29.625, 113.337]

189.500  
[105.450, 327.150]

<0.001* 98.719  
[62.275, 113.337]

255.105  
[114.250, 388.350]

0.010*

LDH (U/L), median [IQR] 354.500  
[295.750, 556.250]

753.000  
[401.000, 1086.000]

0.005* 303.500  
[230.000, 341.000]

577.000  
[370.500, 661.000]

0.003*

VMA (μmol/L), median [IQR] 355.227  
[50.257, 419.808]

230.461  
[41.758, 469.764]

0.767 30.766  
[25.995, 355.126]

469.764  
[53.902, 469.764]

0.073

HVA (μmol/L), median [IQR] 63.309  
[10.476, 81.802]

48.040  
[16.310, 127.216]

0.504 7.393  
[3.760, 79.051]

127.216  
[32.372, 127.216]

0.004*

SUVmax, median [IQR] 4.150  
[3.100, 5.375]

5.400  
[4.250, 6.650]

0.014* 4.20  
[3.275, 5.000]

4.60  
[3.800, 6.350]

0.361

TLG, median [IQR] 237.100  
[142.925, 403.200]

253.600  
[81.050, 574.700]

0.322 182.900  
[37.825, 281.325]

294.900  
[138.500, 691.450]

0.062

MTV, median [IQR] 108.100  
[53.325, 143.875]

123.100  
[41.850, 235.400]

0.642 59.750  
[17.675, 143.450]

207.100  
[47.750, 254.750]

0.039*

INRGSS (%) <0.001* <0.001*

L1 8 (28.571) 5 (10.638) 8 (66.667) 2 (10.526)

L2 5 (17.857) 9 (19.149) 1 (8.333) 8 (42.105)

M 6 (21.429) 31 (65.957) 1 (8.333) 9 (47.368) 

MS 9 (32.143) 2 (4.255) 2 (16.667) 0 (0.000)

Anatomic (%) 0.761 0.148

Chest 4 (14.286) 5 (10.638) 0 (0.000) 4 (21.053)

Abdomen 19 (67.857) 35 (74.468) 8 (66.667) 12 (63.158)

Pelvis 2 (7.143) 1 (2.128) 2 (16.667) 0 (0.000)

Junction 3 (10.714) 6 (12.766) 2 (16.667) 3 (15.789)

Infiltration across midline (%) 0.004* 0.240

Yes 8 (28.571) 31 (65.957) 10 (83.333) 11 (57.895)

No 20 (71.429) 16 (34.043) 2 (16.667) 8 (42.105)

Calcification (%) 0.020* 0.012*

Yes 14 (50.000) 37 (78.723) 5 (41.667) 17 (89.474)

No 14 (50.000) 10 (21.277) 7 (58.333) 2 (10.526)

Necrosis (%) 0.823 0.447

Yes 20 (71.429) 36 (76.596) 7 (58.333) 14 (73.684)

No 8 (28.571) 11 (23.404) 5 (41.667) 5 (26.316)

*, statistical difference. FH, favorable histology; UH, unfavorable histology; IQR, interquartile range; NSE, neuron-specific enolase; SF, 
serum ferritin; LDH, lactate dehydrogenase; VMA, vanillylmandelic acid; HVA, homovanillic acid; SUVmax, maximum standardized uptake 
value; MTV, metabolic tumor volume; TLG, total lesion glycolysis; INRGSS, International Neuroblastoma Risk Group Staging System. 
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Table 2 Univariate and multivariate logistic regression analysis in the cohort

Characteristics
Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Age (years) 2.176 (1.418, 3.339) <0.001* 1.341 (1.004, 1.873) 0.062

Gender (male) 3.042 (1.151, 8.536) 0.024* NA NA

NSE (ng/mL) 1.003 (1.001, 1.005) 0.003* NA NA

SF (ng/mL) 1.004 (1.000, 1.008) 0.038* NA NA

LDH (U/L) 1.001 (1.000, 1.002) 0.033* 2.053 (0.757, 6.616) 0.188

SUVmax 1.199 (0.972, 1.478) 0.090* NA NA

INRGSS

L1 Ref Ref Ref Ref

L2 2.734 (0.573, 14.613) 0.211 2.471 (0.521, 12.122) 0.253

M 7.710 (1.905, 35.596) 0.004* 4.534 (0.976, 23.769) 0.060

MS 0.382 (0.040, 2.464) 0324 0.300 (0.026, 2.484) 0.287

Infiltration across midline 4.691 (1.732, 13.780) 0.002* NA NA

Calcification 3.610 (1.310, 10.417) 0.013* NA NA

Rad-score NA NA 2.066 (1.356, 3.440) 0.002*

*, statistical difference. OR, odds ratio; CI, confidence interval; NSE, neuron-specific enolase; SF, serum ferritin; LDH, lactate 
dehydrogenase; SUVmax, maximum standardized uptake value; INRGSS, International Neuroblastoma Risk Group Staging System; NA, 
not applicable; L1: localized tumor not involving vital structures as defined by the list of image-defined risk factors and confined to one 
body compart men; L2: locoregional tumor with presence of one or more image-defined risk factors; M: distant metastatic disease (except 
stage MS); MS: metastatic disease in children younger than 18 months with metastases confined to skin, liver, and/or bone marrow.

and were better than the C-model. The HL test yielded 
nonsignificant P values, suggesting no departure from the 
perfect fit (Figure 4). With a threshold probability of 10–
80%, DCA revealed that the RC-model was more clinically 
useful than were the C-model and R-model in the training 
and validation cohorts (Figure 5). To provide a visualized 
outcome measure, a nomogram figure was plotted for the 
RC-model (Figure 6).

Discussion

This present study demonstrates that 18F-FDG PET/
CT-based radiomics models have promising prospects for 
noninvasively predicting INPC type in pediatric pNT. The 
RC-model had better predictive performance than did the 
C-model alone, with AUC values improving from 0.86 to 
0.92 for the training cohort and from 0.80 to 0.91 for the 
test cohort. INPC type determined by noninvasive methods 
like imaging can avoid complications of invasive biopsies, 
such as bleeding, infection, and tumor spread, and can also 

prevent biopsy specimens from affecting the assessment of 
the accuracy of tumor grading (22).

PNT is a heterogeneous embryonic neural crest cell 
tumor that often presents as a mass in the neck, chest, 
abdomen, retroperitoneum, or pelvis. Definitive diagnosis 
requires a tumor sample via biopsy. Thus far, several 
methods for obtaining samples from primary tumors have 
been reported (23). They range from minimally invasive 
procedures such as ultrasound-guided core needle biopsy, 
laparoscopy-assisted core needle biopsy, and thoracoscopic/
laparoscopic incisional biopsy, to invasive procedures, such 
as open incisional biopsy. As molecular markers including 
tumor ploidy, gene amplification, and INPC are becoming 
increasingly important in the prognosis of neuroblastoma, 
adequate percutaneous core needle biopsy or incisional 
biopsy analysis of tissue samples is required. Core needle 
biopsy has met with some resistance to incorporation into 
routine clinical practice, with possible explanations including 
the need for sedation, the number of core needles assumed 
to be required for small tumors in children, differences in 
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information obtained from percutaneous core needle biopsy 
versus surgical biopsy, and the need to weigh the risks of 
intraoperative complications, infection, and total tumor 
leakage (24-26). Other perioperative complications include 
duodenal perforation, pleural effusion, and postoperative 
hematuria (27). Moreover, the INPC type is based on age, 
presence of Schwannian stroma, grade of neuroblastic 
differentiation, and mitosis-karyorrhexis index. The whole 
process of INPC type classification is complicated, invasive, 
and expensive. Therefore, based on this study, we believe that 
the INPC type can be accurately predicted before surgery in 
a noninvasive manner based on 18F-FDG PET/CT.

In the present study, radiomics features were based 
on 18F-FDG PET/CT rather than on [ 123I ]MIBG 
(metaiodobenzylguanidine) SPECT/CT. Currently, 
123I-MIBG is the most commonly used imaging modality 
and is considered the standard of care for patients with 
pNT. In comparison with 18F-FDG PET/CT, 123I-MIBG 
scans are carried out over 2 days and have reduced 
resolution compared to 18F-FDG PET/CT images, which 
may pose a challenge to inexperienced physicians (28). In 
many centers, planar I-MIBG imaging scans have been 
performed, but radiomics based on these images is very 
limited. In addition, one study suggested that MIBG scans 
may produce false negatives, which may lead to incorrect 
downstaging (29).

 In about 8% of patients with pNT, false-negative scans 
are seen at diagnosis despite conclusive evidence of disease. 
18F-FDG PET/CT describes the metabolic state of cancer 
cells, and many studies (30,31) have investigated its value 
in pNT. In patients with pNT, 18F-FDG PET/CT is more 
sensitive to the detection of primary and/or residual stage 
1 and 2 lesions, as it is more widely available. Liu et al. (32) 
showed that pretherapeutic F-DOPA and F-FDG PET 
provided complementary information, and both can be 
used for risk stratification. Overall, 18F-FDG PET/CT is 
superior in depicting pNT. 

In the present study, clinical parameters (age, gender, 
NSE, SF, and LDH) and radiographic features (SUVmax, 
infiltration across the midline, and calcification) had 
statistical significance between the FH and UH types. Age 
has been used as a prognostic factor for patients with pNT. 
The latest analysis by Sano et al. (31) disclosed a cutoff of 
around 18 months for the optimal prognostic distinction. 
This is consistent with our current study, as age greater 
than 18 months indicated a greater probability of INPC 
classification as UH. NSE is able to detect 42% of localized 
relapses, 77% of combined local/metastatic relapses, 
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Figure 2 The ROCs used for data analysis in this study. (A) The ROCs of the R-model, C-model, and RC-model in the training cohort. (B) 
The ROCs of the R-model, C-model, and RC-model in the validation cohort. AUC, area under the curve; CI, confidence interval; R-model, 
radiomics model; C-model, clinical model; RC-model, combination model; ROC, receiver operating characteristic.

Figure 3 The primary radiomics features extracted in this study. (A) The CT radiomics feature. (B-E) The PET radiomics features. CT, 
computed tomography; PET, positron emission tomography; FH, favorable histology; UH, unfavorable histology.
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Table 4 The IDI and NRI indexes between different models

Models
Training cohort Validation cohort

IDI (95% CI) P value NRI (95% CI) P value IDI (95% CI) P value NRI (95% CI) P value

R-model vs. C-model 0.033  
(−0.089, 0.155)

0.595 0.008  
(−0.226, 0.241)

0.949 -0.013  
(−0.278, 0.251)

0.921 0.189  
(−0.251, 0.628)

0.400

RC-model vs. R-model 0.110  
(0.028, 0.192)

0.009 0.221  
(0.012, 0.430)

0.038 0.206  
(0.082, 0.330)

0.001 0.618  
(0.291, 0.946)

<0.001

RC-model vs. C-model 0.143  
(0.054, 0.232)

0.002 0.484  
(0.212, 0.756)

<0.001 0.192  
(−0.014, 0.399)

0.068 0.439  
(0.1047, 0.773)

0.01

IDI, integrated discrimination improvement; NRI, net reclassification improvement; CI, confidence interval; R-model, radiomics model; 
C-model, clinical model; RC-model, combination model.

Figure 4 The calibration curves used for data analysis in this study. (A) The calibration curves for the R-model, C-model, and RC-model 
in the training cohort. (B) The calibration curves for the R-model, C-model, and RC-model in the validation cohort. R-model, radiomics 
model; C-model, clinical model; RC-model, combination model; HL, Hosmer-Lemeshow.

Figure 5 The decision curve analysis in this study. (A) The decision curve analysis for the R-model, C-model, and RC-model in the training 
cohort. (B) The decision curve analysis for the R-model, C-model, and RC-model in the validation cohort. R-model, radiomics model; 
C-model, clinical model; RC-model, combination model.
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Figure 6 The RC-model nomogram was developed for the prediction of unfavorable histology pNT type using age, INRGSS, LDH, and 
Rad-score. To use this nomogram, first locate the patient’s age, then draw a line straight up to the point’s axis on the top to obtain the score 
associated with age. Repeat the process for the other covariates (from age to Rad-score value). Add the score of each covariate together and 
locate the total score on the total points axis just below the last covariate–Bovine arch axis. Next, draw a line straight down to assess the 
unfavorable histology type risk of pNT. INRGSS, International Neuroblastoma Risk Group Staging System; LDH, lactate dehydrogenase; 
RC-model, combination model; pNT, peripheral neuroblastic tumor.

and 69% of metastatic recurrences (33). The association 
between NSE level and INPC type has been investigated 
previously. Some studies reported a significant correlation 
between NSE level and patient prognosis, with a high 
serum level of NSE and strong 123I-MIBG uptake each 
being predictive of UH of neuroblastoma (34). In our paper, 
UH type had a higher serum NSE level, which corresponds 
to the results of the Lau’s study (34). He et al.’s also found 
that LDH and SF had a strong prognostic impact on pNT, 
and they can be used to identify those ultra-high-risk 
patients, thus refining risk stratification (35). Patients with 
low SUVmax on PET/CT may have a better prognosis in 
subsequent treatment, which provides reliable prognostic 
information for pretreatment pNT patients (36). INRGSS 
allows for the preoperative risk stratification of patients with 
pNT (14). Finally, in our study, the 3 clinical characteristics 
of age, NSE, and INRGSS were used to predict INPC type.

Based on the present research, we discovered radiomics 
features that can predict the INPC type independent of 
other clinical parameters and radiographic features. It is 
possible that these radiomics differences reflect inherent 
biological tumor differences. We selected 5 radiomics 
features to establish an RC-model that showed favorable 
discrimination in predicting the INPC type. This model 
included 4 PET radiomics features and 1 CT radiomics 
feature, highlighting the importance of PET radiomics 
features in the prediction model. A plausible explanation 

is that PET images allow better monitoring of the tumor 
microenvironment, and therefore more signal differences 
can be observed (33).

The IDI index was measured to evaluate the incremental 
predictive utility of different models. The RC-model was 
improved by 11.0% compared with the R-model in the 
training cohort and 20.6% in the validation cohort. The RC-
model was improved by 14.3% compared with the C-model in 
the training cohort and 19.2% in the validation cohort. All the 
P values showed a significant improvement in reclassification. 
In the DCA, the RC-model nomogram diagnostic model 
not only achieved higher diagnostic efficiency and greater 
net benefit across the entire range of threshold probabilities, 
but also visualized and personalized the probability of the 
occurrence of the INPC UH type for each patient.

There are several limitations to this study. First, this was 
a retrospective study conducted at a single institution, and 
case selection bias appears to be inevitable. Furthermore, 
although 106 cases of pNT were included in our study, 
our sample size remains modest for a radiological study 
given the heterogeneous disease distribution of pNT. 
Second, our validation set used to test the effectiveness of 
the model came from the same hospital as the training set, 
so it is difficult to generalize our results to other hospitals. 
Therefore, a large multicenter prospective cohort study is 
required to validate the results and improve the reliability of 
the INPC type prediction model in pNT.
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In conclusion, the radiomics model may change the 
systematic treatment or operation plan before the operation. 
This study is an initial investigation of the radiomics model 
in INPC classification. The results of the current study have 
proven to be of interest, as the treatment of neuroblastoma 
patients can be stratified based on INPC classification and 
the combination of radiomics features and clinical features 
allows for a more comprehensive, safer, and cost-effective 
way of assessing INPC classification preoperatively. 
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Figure S1 Recruitment pathway for patients in this study. 

Figure S2 Heatmap comparison of the radiomics features. (A) Training cohort. (B) Validation cohort.
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Figure S3 Feature selection using the least absolute shrinkage and selection operator (LASSO) regression algorithm and the performance of 
radiomics signature. (A) The tuning parameter (λ) in the LASSO model was selected via 10-fold cross-validation based on minimum criteria. 
The binomial deviance was plotted as a function of log (λ). Dotted red curve indicated the average binominal deviance values for each model 
with a given λ. The left dotted vertical line defined the optimal values of λ by using the minimum criteria and the 1 standard error of the 
minimum criteria. The λ value was set as 0.07008150 in this study. (B) The dotted vertical line was plotted at the selected λ value, resulting 
in 5 non-zero-coefficient features.

Figure S4 The red bars show the scores for FH type pNTs patients and the blue bars show the scores for UH type pNTs patients. (A) 
Training cohort. (B) Validation cohort.
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