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In many disciplines, mediating processes are usually investigated with randomized
experiments and linear regression to determine if the treatment affects the outcome
through a mediator. However, randomizing the treatment will not yield accurate causal
direct and indirect estimates unless certain assumptions are satisfied since the mediator
status is not randomized. This study describes methods to estimate causal direct
and indirect effects and reports the results of a large Monte Carlo simulation study
on the performance of the ordinary regression and modern causal mediation analysis
methods, including a previously untested doubly robust sequential g-estimation method,
when there are confounders of the mediator-to-outcome relation. Results show that
failing to measure and incorporate potential post-treatment confounders in a mediation
model leads to biased estimates, regardless of the analysis method used. Results
emphasize the importance of measuring potential confounding variables and conducting
sensitivity analysis.

Keywords: mediation, causality, g-estimation, propensity score, sequential ignorability

INTRODUCTION

Mediation analysis allows researchers to investigate the underlying mechanisms of a treatment and
to address competing explanations. In a typical mediation model, an independent variable (X)
causes a mediator (M), and then the mediator causes an outcome (Y). For example, a randomized
health promotion program (X) may influence healthy eating (Y) via changing the dietary social
norms (M) (Ranby et al., 2011). However, even though mediation analysis investigates causal
mechanisms and involves causal inference by definition, most current mediation analysis methods
rely on assumptions that may not be satisfied for causal conclusions (Holland, 1988; Kenny,
2008; MacKinnon, 2008; Stone-Romero and Roposa, 2008; Mayer et al., 2014). When treatments
(i.e., variable X) are randomized in a mediation study, causal claims can be made for the effect
of the treatment on the mediator because randomization balances confounders between groups
and thereby reduces the possibility of confounders (i.e., extraneous variables that correlate with
both the treatment and mediator). Similarly, randomization to conditions allows for a causal
estimation of the treatment effect on the outcome variable. However, except for the experimental
design options such as double randomization, individuals usually cannot be randomized to the
level of the mediator because their score on the mediator is a result of their response to the
treatment. Therefore, in a mediation context, a randomized treatment does not ensure accurate
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causal estimation of the relation between the mediator (M) and
the outcome (Y). The path relating M to Y, adjusted for X and
the path from X to Y adjusted for M (i.e., the direct effect) are
still subject to potential confounding variables, as noted by many
researchers (Holland, 1988; Pearl, 2001; MacKinnon, 2008; Imai
et al., 2010a; MacKinnon et al., 2012).

The problem of causal inference in mediation led researchers
to consider the causal assumptions of mediation analysis (Pearl,
2001; VanderWeele and Vansteelandt, 2009; Imai et al., 2010a,b)
and suggest several methods for an accurate estimation of
mediation in the presence of confounding variables. However,
most of the recent literature on causal mediation has been
theoretical or if a simulation study is included, it is small
with a limited number of conditions and few path effect
sizes (Lynch et al., 2008; Lepage et al., 2012; Ten Have and
Joffe, 2012). The purpose of this paper is to address the
research question of how robust the modern causal mediation
methods are to violation of the no confounders assumption
in a large simulation study and provide recommendations to
researchers. The simulation study also includes a method –
the doubly robust sequential g-estimation – that has been
suggested in the literature to perform well but has never
been, to our knowledge, described in detail nor evaluated
(Vansteelandt and Keiding, 2011). Specifically, we compare the
statistical performance of five analysis methods: regression with
adjustment, inverse propensity weighting, inverse propensity
weighting with truncated weights, sequential g-estimation, and
doubly robust sequential g-estimation. We investigate the effect
of confounder effect size, type of confounders (i.e., baseline
vs. post-treatment), and violation of the assumption of no
unmeasured confounders on the M to Y relation on the accuracy
of indirect effect estimates in a single mediator model with
a randomized X. Furthermore, based on the results of the
simulation study, we recommend and discuss the importance
of sensitivity analysis and experimental designs that involve the
manipulation of the mediator whenever it is feasible.

Linear Regression Approach to
Mediation
The most common approach to mediation employs Ordinary
Least Squares (OLS) regression or structural equation modeling
(Baron and Kenny, 1986; MacKinnon, 2008). The basic
mediation model involves three equations including the
following variables: X, the treatment variable, Y, the dependent
variable, and M, the mediator (MacKinnon and Dwyer, 1993)
(see Figure 1):

E(Y|X) = i1 + c X (1)

E(M|X) = i2 + a X (2)

E(Y|X, M) = i3 + c′X + bM (3)

Equation 1 gives the expected Y given X, where X can take
on values x. In other words, it estimates the total effect of the
treatment X on outcome Y (the c regression coefficient). Equation
2 predicts the effect of X on the mediator (the a path). Equation 3,
where X can take on values x and M can take values m, estimates

FIGURE 1 | Single mediator model.

the effect of treatment X on the outcome Y adjusting for the
effects of the mediating variable M (the c′ path is the direct effect
of X on Y) and the effect of M on Y adjusted for X (the b
path). i1, i2, and i3 are intercepts; and e1, e2, and e3 are errors
that are assumed to be independent across equations. The point
estimate of the indirect effect is usually computed as the product
of coefficients, ab, that is equal to the difference between the total
and direct effects, c− c′ (i.e., the difference in coefficients method
to compute the total indirect effect), in linear models with no
missing data. The ab estimate of the indirect effect can then be
divided by its standard error and this ratio can be compared to
the normal distribution or other methods can be used to test
for statistical significance (MacKinnon et al., 2002; Kisbu-Sakarya
et al., 2014; Fritz et al., 2015). Note that lower case letters, x, m,
and y represent values of variables X, M, and Y, respectively. This
distinction between the variables and the values of the variables
defines causal effects at different values, X = x, M = m, and Y = y,
and allows for the possibility that different causal effects may be
obtained at different values, x, m, and y of variables X, M, and
Y, respectively.

Mediation analysis by linear regression has several
assumptions. First, it is assumed that there is no measurement
error that may cause bias in the estimators. It is also assumed that
the variables are continuous and residual variance is normally
distributed. Another assumption is that the causal paths between
X, M, and Y have the correct functional form and do not
have bidirectional effects (MacKinnon, 2008). Another critical
assumption about causality is that there are no omitted variables
affecting the causal relations in the mediation model, which will
be described in detail in the following section (Holland, 1988;
Robins and Greenland, 1992; Pearl, 2001, 2012).

Potential Outcomes Approach to
Mediation
The linear regression approach to compute the mediated effect
as ab is based on observed values of the mediator and outcome.
Another framework to define effects is the potential outcomes
approach. The potential outcomes approach provides a basis
for causal inference methods, including the ones used in causal
mediation analysis. This approach to causal effects (Rubin, 1974,
2004, 2005; Holland, 1986, 1988; Morgan and Winship, 2014)
defines the individual causal effect using the potential outcomes
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of the same individual. Starting with the individual level causal
effect, let variable X be a treatment program with level x (x = 1 for
the treatment, x = 0 for the control) and variable Y the outcome
variable. An individual i may be assigned to the treatment group
(x = 1) and obtain the potential outcome value Y i(1). The second
potential outcome for that individual in the treatment group is
the value she would have obtained on the outcome variable if she
had been assigned to the control condition (x = 0), that is Y i(0)
(also referred to as the counterfactual value). The corresponding
individual causal effect is then equal to the difference between
the potential outcomes, Y i(1) − Y i(0). However, because it is
often not possible to observe both outcomes for the same person
the individual causal effect cannot be computed. This is referred
to as the “fundamental problem of causal inference” by Holland
(1988). To overcome this challenge, averages of individuals are
used to compute the average causal effect, E[Y i(1) − Y i(0)].
This average causal effect solves the problem of estimating
causal effects for each individual. The average causal effect,
the difference between the means in the treatment and control
groups, is a causal effect when individuals are randomized to
conditions and the randomization has been successful.

The potential outcomes approach provides a new framework
to interpret mediation effects. In the case of a single mediator
model, let Y i(x, m) denote the potential outcome for an individual
under the treatment level x and mediator level m. Let Xi be
a binary treatment variable (x = 0 for the control group, and
x = 1 for the treatment group). The counterfactual value for
the continuous mediator is denoted as m′. This single mediator
model gives rise to the formulation of the following effects:
controlled direct effect, natural direct effect and natural indirect
effect (Robins and Greenland, 1992; Pearl, 2001, 2009).

Natural and Controlled Effects
Definition
The controlled direct effect is the effect of X on Y at a
specific value m of M. More formally, the controlled direct
effect (CDE) of a treatment on the outcome is the difference
between the potential outcome scores when the individuals’
mediating variable score was controlled and set to a specific value
(Robins and Greenland, 1992).

CDE = E[Y i(1, m)− Y i(0, m)]. (4)

As opposed to the controlled direct effect, natural direct effects
(NDE) are the effects of the treatment on outcome when fixing
the level of the mediator to one of its potential values and
changing the level of X:

NDE = E[Y i(1, Mx)− Y i(0, Mx)]. (5)

Similarly, average natural indirect effects are the effects of the
treatment on outcome when changing the level of the mediator
to one of its potential values under a fixed value of X:

NIE = E[Y i(Xi, Mi1)− Y i(Xi, Mi0)] (6)

The natural direct and indirect effects add up to the total effect,
when the X and M interaction is assumed to be zero. When the X
and M interaction is non-zero, Pearl (2001) demonstrated that

the sum of the natural direct and indirect effects equal to the
total effect (TE) (i.e., TE − NDE = NIE) at selected levels of
X and, importantly, this result also holds in models with non-
linear effects such as logistic regression. MacKinnon et al. (2020)
illustrates the correspondence between potential outcomes and
traditional estimators of the indirect effect when the X and
M interaction is non-zero, in the form of simple direct and
indirect effects.

Identification
The four assumptions below are required for the natural effects to
be identified (Pearl, 2001; VanderWeele and Vansteelandt, 2009;
VanderWeele, 2010a, 2011).

(i) No unmeasured confounder for the relation between
X and M.

(ii) No unmeasured confounder for the relation between
X and Y.

(iii) No unmeasured confounder for the relation between
M and Y.

(iv) No M to Y confounder affected by treatment.

Confounding occurs when there are common causes (i.e.,
confounders) of the independent variable and the dependent
variable. Omitting a confounder from a statistical model may
lead to biased estimates. Assumptions (i) and (ii) refer to the
ignorability of treatment assignment conditional on the observed
baseline confounders. Assumption (iii) refers to the ignorability
of the mediator conditional on the observed treatment and
pretreatment confounders. The linear regression approach to
mediation assumes sequential ignorability, which involves the
ignorability of the treatment assignment and the ignorability of
the mediator. Assumptions (i) and (ii) are frequently fulfilled
with randomization of the treatment X. Assumption (iii) means
that there are no unmeasured confounders influencing the b
path. This assumption usually fails because the mediator status
is not randomly assigned, but rather naturally occurs under the
assigned treatment condition. Even though we may condition
on observed confounders for the relation between M and Y,
unobserved confounders can still exist. Unobserved confounders
may be present in many studies which compromises the causal
interpretation of both c′ and b coefficients, thus the direct and
indirect effects (MacKinnon, 2008, Chapter 13; MacKinnon et al.,
2013).

Identification of the indirect effect using the controlled effect
approach requires assumptions i, ii, iii, and no interaction
between X and M assumption (assumption v). When there is
no interaction between X and M, the CDE becomes equal to
NDE which then allows for the computation of the indirect
effect again as the difference between the total effect and the
CDE. The computation of the indirect effect using this approach
assumes normally distributed variables in addition to the no XM
interaction assumption. Note that identification of CDE only
requires assumptions ii and iii. Additionally, all effects assume
that the potential outcomes for an individual do not depend on
the treatment assignment or mediator level of other individuals
(i.e., no interference between individuals).
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Several solutions to estimate controlled effects have been
proposed to improve the accuracy of the b and c′ coefficients as
causal estimates, and correspondingly interpretation of indirect
effect as a causal effect (Ten Have et al., 2007; Vansteelandt,
2009; VanderWeele and Vansteelandt, 2009; Ten Have and Joffe,
2012). Below, we describe some of those methods we investigate
in our simulation study. One should note that the methods
differ in how they control for confounders and assumptions.
Therefore, researchers should pay attention to which effects they
are interested in estimating and the assumptions made by the
analysis method they choose.

Estimation
Inverse propensity weighting method. Returning to the case of one
X and one Y variable, the causal effects of a non-randomized
treatment on an outcome can be estimated using propensity
scores that account for the effects of potential confounders of
the X to Y relation. In this section, estimation using propensity
scores is described first followed by the use of propensity scores
in causal mediation.

Propensity scores. In the case of an effect of treatment on the
outcome, the propensity score is the estimated probability
of receiving the treatment given measured confounders
(Rosenbaum and Rubin, 1983). Because the confounders used
to estimate the propensity score are either variables that do not
change, such as gender, or variables measured at baseline, the
estimated propensity scores are not influenced by the treatment.
Therefore, assuming all confounders are measured, comparing
the treatment and control groups with similar estimated
propensity scores is a causal estimator of the unconfounded
effect of X on Y. In other words, propensity scores balance
the distribution of confounders in the treatment and control
groups so that the treatment assignment effect on the outcome
is unconfounded given the propensity scores. An advantage
of using propensity scores over analysis of covariance as a
method to adjust for confounders is that including a large set
of confounders in an analysis of covariance model is sometimes
not practical whereas the propensity score is a single number
summarizing all of the measured confounders. Moreover,
propensity score methods allow the researcher to easily assess
if the distributions of confounders in the treatment and control
groups overlap adequately (Rubin, 1997; King and Zeng, 2006),
whereas this assumption is not easily visualized or assessed
in an ANCOVA. If there is not adequate overlap, propensity
score methods are not used. This leads the propensity score
method to estimate more stable treatment effects, as compared
to ANCOVA. There are several propensity score methods for
confounder adjustment; among them are matching (Rosenbaum
and Rubin, 1985; Rubin and Thomas, 1992, 1996), stratification
(Rosenbaum and Rubin, 1984), and weighting (Robins et al.,
1995; Hirano and Imbens, 2001). Here, we focus on a weighting
method called inverse propensity weighting (IPW) to improve
causal inference in the case of confounders affecting the M to Y
relation in the single mediator model. Note that we don’t keep
the i subscript in the next sections for simplicity.

Creating propensity scores and weighting in the mediation
context. For a non-randomized treatment effect on an outcome,
inverse propensity weighting makes the treated and control
participants represent the population by weighting each
observation. The weights reflect the probability that each
person would have received the treatment based on measured
pre-treatment confounders. The weights are the inverse of the
probability of being in the group that an individual actually
participated in, conditional on the confounders (C). In other
words, individuals in the treatment group are weighted by
1/P[X = 1| C = c] and individuals in the control group are
weighted by 1/(1− P[X = 1|C = c]). In this framework, the causal
inference challenge is viewed as a missing data problem (Robins
et al., 1994), in that Y i(1) is only observed for individuals under
the treatment condition and is missing for the individuals in the
control group. Inverse weighting works as a strategy to account
for the counterfactual values of the outcome scores.

Propensity scores can be used to improve the causal
interpretation of the indirect effects in a similar way as for the
X to Y effect. If the mediator is binary with values of 0 and 1,
then individuals with M = 1 are given a weight of P[M = 1|
X = x]/P[M = 1| X = x, C = c]. And individuals with M = 0
are given a weight of (1 − P[M = 1| X = x])/(1 − P[M = 1|
X = x, C = c]). In the mediation context, the confounders used
for weighting are measured before the mediator. The weights
reflect the additional prediction of the confounders compared to
the prediction by treatment alone. The purpose of these weights
is to create a new data set in which confounding by measured
variables is removed so that the relation of M to Y more closely
resembles a randomized relation. For a binary mediator, the
denominator model can be computed by a logistic regression
of the mediator on measured confounders and the treatment
condition. The predicted probabilities are the propensity score
estimates (denoted as π̂). If the mediator is continuous, then
the denominator model can be computed by regressing the
mediator on measured confounders and the treatment and
then inserting the predicted values (m̂) in a normal probability
density function (Robins et al., 2000; Coffman and Zhong, 2012)
as shown below:

φ(M|X, C) =
1√
2ψ2

e−
(m−m̂)2

2σ2 (7)

where σ is the residual standard error from the regression of M
on X and C.

Estimating the indirect effect. Two marginal structural models
(MSM) equations (equations 8 and 9) are used to define mediated
effects (VanderWeele and Vansteelandt, 2009; Coffman and
Zhong, 2012):

E[M|x] = i0M + a x (8)

which defines the effect of X on M as:

E[M(1)−M(0)] = (i0M + a1)− (i0M + a0) = a

and
E[Y|m, x] = i0Y + bm+ c′x (9)
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which defines the effect of the continuous M (for which a
reference value is indicated as m′) on Y for x = 1 as:

E[Y(1, m)− Y(1, m′)]

= (i0Y + bm+ c′)− (i0Y + bm′ + c′) = b(m−m′)

and the effect of the continuous M on Y for x = 0 as:

E[Y(0, m)− Y(0, m′)]

= (i0Y + bm)− (i0Y + bm′) = b(m−m′).

Thus, b defines the causal effect of one unit increase in M on Y, at
each level of the treatment (Coffman and Zhong, 2012).

If the treatment in the mediation model is randomized, then
only equation 9 is weighted using the propensity scores. If the
treatment is not randomized, then equation 8 (the effect of X on
M) should also be weighted. The null hypothesis stating that the
product of the a and b paths is equal to zero can be tested to assess
mediation (Coffman and Zhong, 2012).

A possible problem in propensity weighting is the presence of
extreme weights. Extreme variation in the weights can yield high
variance and instability in the estimates. A solution to reduce
the impact of extreme weights is weight truncation (Potter,
1993). Weight truncation is generally performed by trimming
the weights that are larger or smaller than some values (e.g., cut
points at the 1st or 99th percentile of the weight distribution). Yet,
simulation studies show that even though weight trimming can
improve the performance of propensity score weights in some
conditions, it can also induce bias in other conditions (Lee et al.,
2011). Therefore, researchers are advised to use weight trimming
with caution and focus more on improving the specification of
the propensity score model as compared to methods such as
trimming (Lee et al., 2011).

Sequential g-estimation. G-estimation is a method to identify
the controlled direct effect in the presence of post-treatment
confounders (Ten Have et al., 2007; Ten Have and Joffe,
2012). Post-treatment confounders in a mediation model are
confounders of the M to Y relation that are influenced by
the treatment; they can bias the direct effect (i.e., c′) estimate.
An example of post-treatment confounders for the M to Y
relationship may be the variable socio-economic status (SES)
in a mediation chain where educational attainment influences
unhealthy eating behavior, which then influences blood pressure.
In this example, SES may be influenced by educational attainment
and also influence both eating behavior and blood pressure.
Another example of post-treatment confounders in mediation
may be alliance with the therapist in a cognitive therapy
intervention to decrease work-related stress through enhancing
coping skills. In this example, alliance with the therapist is not
a mediator that is targeted by the stress management program
and instead may even bias the indirect effect estimate as a post-
treatment confounder.

A method to handle a post-treatment confounder is the
g-computation method that attempts to estimate all potential
values in a research design by using the estimated distribution of
the measured confounders given values of X (Robins, 1986; Ten
Have et al., 2007). However, the g-computation method can be

difficult to implement when estimating the joint distribution of
the confounders as a function of treatment in the case of many
confounders, since the method requires estimating all predicted
potential outcomes. A simpler method is sequential g-estimation,
which is equivalent to g-computation method in the case of linear
models, which allows the researchers to directly model the effect
of treatment on the outcome (Goetgeluk et al., 2008; Joffe and
Green, 2009; Vansteelandt, 2009).

The sequential g-estimator is implemented in two steps in
which the first step removes the effect of the mediator from
the outcome variable and in the second step the direct effect
is estimated. First, the outcome is regressed on the treatment,
mediator, and post-treatment confounders using OLS regression
to find the mediator’s effect on the outcome (this is referred to as
the mediator model). Then, the mediator’s effect is removed from
the outcome by using the coefficient reflecting the effect of M on
Y, (Y − βm M). Next, this residual outcome is regressed on the
treatment to find the remaining direct effect of X on Y (this is
referred to as the outcome model):

E(Y − βmM|X) = α0 +ψX (10)

The indirect effect can then be computed as the difference
between the total effect and the CDE. The above equation for
the residual outcome can also include the baseline confounders,
but not post-treatment confounders. The standard error for the
sequential g-estimator, ψ, may be biased because it does not
account for the uncertainty in the estimation of the mediator’s
effect. Therefore, bootstrapping can be used for the estimation
of the standard error. Note that the g-estimator requires
assumptions i, ii, iv, and v.

Doubly robust sequential g-estimation. Because the sequential
g-estimation method fits two models in its estimation (by first
estimating a mediator model and then an outcome model as
described above), it may be biased by misspecification in either
of these two models. A doubly robust sequential g-estimation
method is suggested in the literature in which the estimated direct
effect is robust to misspecifications in either the mediator or the
outcome model (Vansteelandt and Keiding, 2011). The method
is expected to produce bias in the direct effect estimates when
both parts of its estimation process are misspecified (Schafer
and Kang, 2008). Doubly robust sequential g-estimation involves
the following steps: In the first step, a propensity model for the
mediator is fitted as in the IPW method; then, in the second step,
the outcome regression is fitted using the propensity weights.
Even though this method to estimate the controlled direct effects
has been recommended, its performance has never been tested in
simulation studies.

SIMULATION STUDY

Recent literature suggests various methods to deal with the
assumption of no unmeasured confounders for the M to Y
relation in mediation analysis. The methods differ in how
the adjustment is made for confounders. Simulation studies
show that the inverse propensity weighting approach produces
roughly unbiased estimates of the indirect effects when all
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pre-treatment or post-treatment confounders are measured
and included in the propensity model (Coffman and Zhong,
2012; Coffman et al., 2016). Similarly, sequential g-estimation
has been shown to produce unbiased estimates of the direct
effect in the case of including all post-treatment confounders
in the estimation process, whereas linear regression with
adjustment does not (Loeys et al., 2013). Additionally, sequential-
g estimation produces roughly unbiased direct effect estimates
as the association between the post-treatment confounder and
the outcome increases. Yet, the adjusted regression and IPW
estimators get increasingly biased as the association between the
post-treatment confounder and the outcome increases (Robins
et al., 2000; Vansteelandt, 2009). A recent simulation study
also showed that the modern methods perform well when
post-treatment confounders are observed, yet did not test the
no unmeasured confounding assumptions and the effect of
confounder effect size on bias (Coffman et al., 2016).

In this study, we aim to investigate the effect of confounder
effect size, type of confounders (i.e., baseline vs. post-treatment),
and violation of the assumption of no unmeasured confounders
for the M to Y relation on the accuracy of indirect effect
estimates produced by these modern methods using a large
simulation design.

Method
Simulation Overview
A Monte Carlo simulation study was conducted to examine the
effect of confounder effect sizes and violation of the assumption
of no unmeasured confounders for the M to Y relation
on the performance of five analysis methods (i.e., regression
with adjustment, IPW, IPW with truncated weights, sequential
g-estimation, and doubly robust sequential g-estimation) in a
single mediator model with two confounder variables of the M
to Y relationship. There are two measured confounder variables
(C1 and C2) that influence the mediator directly, and the
outcome through a spurious relation induced by an unobserved
confounder U (see Figure 2). The generated model is based on
Vansteelandt (2009). The adjustment for the collider M (i.e., a
variable affected by two other variables in a causal diagram) along
the path X to M to C to U to Y makes X and Y dependent
along that path and may induce selection bias, especially when
confounders are affected by the treatment (Goetgeluk et al., 2008;
Vansteelandt, 2009). The model was generated with different
effect sizes for the paths X to M, M to Y, X to C1, X to C2,
C1 to M, and C2 to M. After the generation of the data, the
five methods were used to estimate the indirect effect estimates
in the single mediator model. To assess the effect of violation
of the assumption of no unmeasured confounders, two models
are estimated using the five methods: (a) a two-confounders
estimation of the model by including both confounders (C1 and
C2) in the estimation; (b) a one-confounder estimation of the
model by including only the confounder C1 in the estimation
and omitting the second confounder C2 from the estimation. The
data were generated and analyzed in SAS 9.3 with a total of 1,000
replications per condition.

FIGURE 2 | Generated model with mediator to outcome confounders.

Data Generation and Simulation Conditions
The following regression equations are specified in SAS in order
to generate the population parameters. Figure 2 shows the
simulated model. Exogenous variables are generated using the
SAS RANNOR function to produce normally distributed random
variables. The independent variable X is simulated to be binary to
represent a treatment status (0 = control, 1 = treatment group).
All other variables are simulated to be continuous with normally
distributed error terms. There is an unobserved confounder U in
the simulated model so that there is only one path to be traced
from X to Y for ease of interpretation.

M = aX + dC1 + fC2 + e1 (11.1)

Y = c′X + bM + tU + e2 (11.2)

C1 = gX + kU + e3 (11.3)

C2 = hX + nU + e4 (11.4)

The unstandardized regression parameters for the b and c′
paths are varied as 0,0.14, and 0.59. The effect of X on M (the
a path), and the effects of C1 on M, and C2 on M (the paths
d and f ) are varied as 0.14,0.39, 0.59. The effect of X on C1
and C2 (the paths g and h) are varied as 0,0.14, and 0.59. The
effects of C1 on M and C2 on M are set to be equal (i.e., the d
and f paths), as well as the effect of X on C1 and C2 (i.e., the
g and h paths). The effects of the unobserved confounder U on
C1, C2, and Y (i.e., the paths k, n, and t) are set equal to 1.0.
Mediation paths effect sizes were chosen following MacKinnon
et al. (2002) to approximately correspond to small, medium,
and large effect sizes (Cohen, 1988). Sample size was set to
500 in each condition. To summarize, a 3 (X → M) × 3
(M → Y) × 3 (X → Y) × 3 (C1 → M and C2 → M) × 3
(X → C1 and X → C2) factorial design yielded a total of
243 simulation conditions. Furthermore, in order to investigate
models of mediation with paths d and f taking values of opposite
signs, we have simulated the following conditions: d =−0.14 and
f = 0.14; d = 0.14 and f = −0.14; d = −0.14 and f = −0.14;
d = −0.59 and f = 0.59; d = 0.59 and f = −0.59; d = −0.59 and
f = −0.59 when the b paths were set to 0 or to 0.59 resulting in
12 additional conditions. These conditions were only simulated
when g and h were equal to d, c′ was equal to 0, and the a
path was equal to 0.59. It should be noted that we ran an extra
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condition of zero confounding (i.e., the confounder effect sizes
were equal to zero) as a simulation check, and in that case,
all estimation methods including the linear regression produced
accurate indirect effect estimates.

Model Estimation
The five methods were applied to the generated data sets using
two model estimation specifications: (a) The two-confounders
estimation model including both of the population model
confounders C1 and C2 in the estimation, and (b) the one-
confounder estimation model including only the confounder C1
in the estimation (i.e., omitting the second confounder C2 from
the estimation). The case of a one-confounder estimation model
allows a test of the robustness of methods to the violation of no
omitted confounders assumption. An exception was that the one-
confounder model for the doubly robust sequential g-estimation
that had three types of estimation where C2 was included in one
part of the model but not another part of the model as will be
described below.

(1) Linear regression with adjustment. The linear outcome
regression equation for the two-confounders estimation
model includes X, M, and both C1 and C2 as predictors of
Y when estimating c′; and the one-confounder estimation
model only includes X, M, and C1 as predictors of Y when
estimating c′.

(2) Inverse propensity score weighting. The two-confounders
estimation for the propensity score model to create the
weights for the mediator is specified by including X, C1
and C2 in estimating the denominator model. The one-
confounder estimation was performed by only including
X and C1 in estimating the denominator model. In both
cases, the weighted outcome model only includes X and
M as predictors.

(3) Inverse propensity score weighting with truncated weights.
The model specification is the same as the method (2)
described above; yet weights are truncated at the 1st and
the 99th percentile of the weight distribution as in Cole
and Hernán (2008). The truncation is conducted to avoid
weighting certain observations too little or too much.

(4) Sequential g-estimation. The first step in which the outcome
is regressed on the treatment, mediator, and confounders
using ordinary least squares regression (referred to as the
Q-model) is specified by including X, M, C1, and C2
as predictors in the two-confounders estimation model.
Only X, M, and C1 are included in the one-confounder
estimation model.

(5) Doubly robust sequential g-estimation. In the first step,
the propensity model for the mediator is fitted as in
method (2), the IPW method. Then, in the second step, the
outcome regression is fitted using the propensity weights.
For the doubly robust sequential g-estimation method,
three one-confounder estimation models are fitted: (a) by
omitting confounder C2 in only the mediator propensity
model, (b) by omitting confounder C2 in only the outcome
model, (c) by omitting confounder C2 in both the mediator
propensity and outcome models. This allows for testing

if the doubly robust method fails when either parts or
one part of the estimated model omit the confounder C2
(Schafer and Kang, 2008).

Data Analysis, Outcome Measures, and Evaluation
Criteria
The total indirect effect is computed as subtracting the direct
effect from the total effect (c− c′). For all methods, the percentile
bootstrap with 1,000 replications is used to calculate the 95%
confidence intervals. Bias of the indirect effect c − c′ are
defined as:

Bias
(
θ̂c

)
= R−1

R∑
r=1

(θ̂rc − θc)

where R refers to the total number of replications, θc refers
to the true value of the estimate, and θ̂rc refers to the
parameter estimate for replications r in condition c. Bias indicates
whether the observed parameter estimate consistently over- or
underestimates the true value of the estimate. Additionally, the
mean square error (MSE) is defined as follows:

MSE = R−1
R∑

r=1

(θ̂rc − θ̂)2

MSE is equal to the variance of the estimates plus the square of
bias. Therefore, it takes both bias and precision into account to
assess the accuracy of the estimator. A low MSE indicates that
the estimate is closer to the true value due to high precision
and/or small bias.

RESULTS

In Figures 3 and 4, bias and mean square error of estimates
of indirect effects for two-confounders estimation models are
presented across different effect sizes for the relation between the
confounders and the mediator, i.e., paths d and f in Figure 2.
The first rows of the Figure panels present the results when the
confounders are not influenced by the treatment (i.e., the g and
h paths in Figure 2 being equal to zero), and the second and
third rows of figure panels present the results for the case of
post-treatment confounders.

Figure 4 shows that when the confounders are at baseline,
IPW methods have increasing bias as the confounder effect size
increases while sequential g-estimation and linear regression with
adjustment perform well. When the size of the indirect effect
is larger than 0.20, the magnitude of the bias produced by the
IPW-truncated method is approximately 0.10 which means 50%
relative bias for a 0.20 true value of the indirect effect estimate.
This indicates a large bias since an estimator can be considered
as acceptable in terms of bias if the absolute value of relative
bias is less than 10% (Flora and Curran, 2004). In the case of
measured post-treatment confounders, sequential g-estimation
performs the best in terms of bias and MSE across all confounder
effect sizes. The doubly robust sequential g-estimation method
has increasing bias as the post-treatment confounder effect size
increases. This finding may be expected considering that the
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FIGURE 3 | Bias in the indirect effect by confounder to mediator (d path) and treatment to confounder (g path) effect size – two-confounders estimation model.
Regression, linear regression adjusting for covariates; IPW, inverse propensity weighting; IPW-t, IPW with truncated weights; Seq-g, sequential g-estimation;
R-Seqg., doubly robust sequential g-estimation.

doubly robust g-estimation method uses IPW in its estimation
process, and the IPW method produces more biased estimates
as the confounder effect size increases. Results show that weight
trimming does not improve the performance of the IPW method
in terms of bias but this finding may be due to the trimming
rule used. The optimal level of trimming may be difficult to
determine and may not contribute to or have adverse effects
in the estimation. On the other hand, IPW with truncated
weights has a lower mean squared error (MSE) than the
IPW as expected.

Figures 5, 6 present the results for one-confounder estimation
models where one of the confounders, C2, was omitted from
the analyses. This model with C2 omitted from the analysis
corresponds to the common case in mediation studies in which

no measure of a confounder is available, but a confounder may
affect the analysis. A salient result from all one-confounder
estimation models is that omitting an existing confounder for
the M to Y relationship leads to increasing levels of bias
as the effect of the treatment on the confounder increases.
Especially when the effect of treatment on the confounder is
large, then all methods have severe bias and MSE for the case of
large confounder effect size. The results also show that doubly
robust sequential g-estimation performs the worst when both
the mediator and the outcome estimation models violate the no
omitted variables assumption.

In order to investigate models of mediation that applied
researchers can confront in real life, we also simulated the
case of confounders with opposite signs (e.g., paths d and f
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FIGURE 4 | Indirect effect mean square error by confounder to mediator (d path) and treatment to confounder (g path) effect size – two-confounders estimation
model. Regression, linear regression adjusting for covariates; IPW, inverse propensity weighting; IPW-t, IPW with truncated weights; Seq-g, sequential g-estimation;
R-Seqg., doubly robust sequential g-estimation.

taking values of 0.14 and −0.14). Since the misspecified models
in which some confounders are omitted from the analyses
depict the majority of real-life cases, we have only focused
on these models for these conditions. Figure 7 displays the
bias in the mediated effect for the misspecified models that
did not contain confounder C2 in the estimation. Results
show that when the models were misspecified, and one or
both of the effects of the confounders on the mediator were
negative, a similar pattern emerged compared to when both of
these effects were positive with one exception. That is, these
models had less bias when the effects of the confounders on
the mediator were both large and negative and the effect of
treatment on the confounders was large and positive compared
to small and positive.

ILLUSTRATIVE EXAMPLE

We illustrate the application of causal mediation methods
using an example based on a recent study in the Journal of
Occupational and Organizational Psychology. Kovjanic et al.
(2013) conducted a randomized experiment to investigate the
effect of transformational leadership techniques on persistence
as mediated by worker’s need for autonomy. A review by Judge
et al. (2006) suggests that transformational learning is positively
associated with factors such as commitment to the workplace and
organizational identification. Because of the positive association
of transformational learning with these factors that are not
worker’s psychological needs, it is possible these factors could act
as potential post-treatment confounders of the transformational
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FIGURE 5 | Bias in the indirect effect by confounder to mediator (d path) and treatment to confounder (g path) effect size – one-confounder estimation model. Reg,
linear regression adjusting for covariates; IPW, inverse propensity weighting; IPW-t: IPW with truncated weights; Seq-g, sequential g-estimation;
R-seqg_misspecified mediator, doubly robust sequential g-estimation with one-confounder estimation mediator model; R-seqg_misspecified outcome, doubly
robust sequential g-estimation with one-confounder estimation outcome model; R-seqg_misspecified mediator and outcome, doubly robust sequential g-estimation
with one-confounder estimation mediator and outcome models.

learning experimental manipulation which are associated with
the mediator and outcome.

Figure 8 shows the model that corresponds to the example
with transformational leadership (TL) as the predictor, need for
autonomy as the mediator (Need), persistence as the outcome,
and commitment to the workplace (Commit) and organizational
identification (Ident) as post-treatment confounders. The
mediated effect was estimated using the models that were
investigated in the simulation study of this paper. As real data on
confounders were not available, we have simulated data using the
parameter values in Figure 8 for N = 500. Parameter values have
been chosen from our simulation study. Across all models and
whether or not the models were misspecified, the mediated effect
was statistically significant as indicated by zero not being within
the 95% percentile bootstrap confidence intervals.

Regarding the illustrative example, if a researcher was
going to estimate the mediated effect of transformational
leadership on persistence of the worker through its effect on the
psychological needs of the worker and there were post-treatment
confounders of this relation as depicted in Figure 8, traditional
linear regression analyses would overestimate the hypothesized
mediated effect. Sequential g-estimation produced the estimate
of the mediated effect that was the closest to the true value of
the mediated effect of transformational leadership on persistence
though its effect on psychological needs. Although the doubly
robust sequential g-estimation, IPW, and truncated IPW also
resulted in overestimated mediated effects of transformational
leadership on persistence through its effect on psychological
needs, these estimators were closer to the true mediated effect
than traditional linear regression and all included the true
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FIGURE 6 | Indirect effect mean square error by confounder to mediator (d path) and treatment to confounder (g path) effect size – one-confounder estimation
model. Reg, linear regression adjusting for covariates; IPW, inverse propensity weighting; IPW-t, IPW with truncated weights; Seq-g, sequential g-estimation;
R-seqg_misspecified mediator, doubly robust sequential g-estimation with one-confounder estimation mediator model; R-seqg_misspecified outcome, doubly
robust sequential g-estimation with one-confounder estimation outcome model; R-seqg_misspecified mediator and outcome, doubly robust sequential g-estimation
with one-confounder estimation mediator and outcome models.

value of the mediated effect in the 95% confidence intervals
except for doubly robust sequential g-estimation (see Table 1).
Even in the case that the mediator model was misspecified
(i.e., one measured confounder, identification, was left out of
the analysis) sequential g-estimation provided the second to
least biased estimate of the mediated effect of transformational
leadership on persistence through its effect on psychological
needs only behind IPW (see Table 2). Only the 95% confidence
interval for the IPW estimate included the true value of the
mediated effect when the mediator model was misspecified.
When both the mediator and outcome models were misspecified,
doubly robust sequential g-estimation resulted in similar bias as
linear regression.

DISCUSSION

To test the research question of how robust the methods are to
different confounder effect sizes and types (i.e., baseline versus
post-treatment), models including two mediator-to-outcome
confounders were estimated for each simulation condition (i.e.,
two-confounders estimation models). Below we present our
discussion of the findings and would like to note that this
study is limited to linear models, a limitation regarding the
generalizability of the results.

The sequential g-estimation method is designed to handle
post-treatment confounders, and the simulation results
confirmed that it produced the most accurate estimates of
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FIGURE 7 | Bias in the indirect effect by confounder 1 to mediator (d path), confounder 2 to mediator (f ), and treatment to confounder (g path) effect size –
one-confounder estimation model. Reg, linear regression adjusting for covariates; IPW, inverse propensity weighting; IPW-t, IPW with truncated weights: Seq-g,
sequential g-estimation; R-seqg_misspecified mediator, doubly robust sequential g-estimation with one-confounder estimation mediator model;
R-seqg_misspecified outcome, doubly robust sequential g-estimation with one-confounder estimation outcome model: R-seqg_misspecified mediator and
outcome, doubly robust sequential g-estimation with one-confounder estimation mediator and outcome models.

the indirect effect in the presence of post-treatment confounders.
Furthermore, results showed that IPW’s performance was mainly
influenced by the confounder effect size. This may happen
because as confounder effect size increases the variability of
IPW estimates increase (Robins, 2000; Goetgeluk et al., 2008;
Vansteelandt, 2009). This is also in line with a previous study
which found that IPW did not work well as the effect size
of baseline measures of M and Y increased in the case of a
two-wave mediation model (Valente et al., 2019). Furthermore,
in this study, we used a weighting strategy for the propensity
score approach to causal mediation analysis; however, other
strategies such as matching or stratification may have performed
better (Rosenbaum and Rubin, 1984; Rubin and Thomas,
1992). Even though there is no study showing how matching
would perform in the case of mediation analysis, propensity
score studies addressing the X to Y relation indicate that
matching may work better than weighting to achieve unbiased

causal estimates (Frölich, 2004). Weighting estimates can be
problematic since the estimates can be highly influenced by
the assigned weights of individuals with propensity scores that
are close to values 0 or 1 (Kang and Schafer, 2007; Schafer
and Kang, 2008). In order to avoid extreme weights, the IPW
method with truncated weights was also included in this study.
However, results showed that in general, the IPW-truncated
method did not perform better than the conventional IPW
method. This finding may be due to the trimming rule used in
this study (weights were trimmed at the 1st and 99th percentile
of the weight distribution) and some other trimming strategies
may yield better results. Simulation studies point out that
trimming may optimize propensity score weights by decreasing
variability in the weights, while the optimal level of trimming
may be difficult to determine. Researchers should evaluate
which trimming option best suits their data using evaluation
criteria such as the least mean square error (Potter, 1993).
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FIGURE 8 | Illustrative example of mediated effect transformational leadership
(TL) on persistence through its effect on need for autonomy (Needs) with
post-treatment variables, commitment to workplace (Commit) and
identification (Ident) and unmeasured confounder, U.

TABLE 1 | Mediated effect estimates of simulated dataset for five correctly
specified models for N = 500.

Models True value Estimate LCL UCL

Linear regression 0.759 1.236 0.946 1.579

Sequential g 0.759 0.785 0.587 1.016

Sequential g – doubly robust 0.759 1.012 0.765 1.297

IPW 0.759 0.952 0.623 1.278

IPW – truncated 0.759 1.091 0.736 1.440

TABLE 2 | Mediated effect estimates of simulated dataset for seven misspecified
models for N = 500.

Misspecified models True value Estimate LCL UCL

Linear regression 0.759 1.261 0.956 1.587

Sequential g 0.759 1.053 0.795 1.326

Sequential g – DR mediator misspecified 0.759 1.111 0.795 1.326

Sequential g – DR outcome misspecified 0.759 1.250 0.947 1.583

Sequential g – DR both misspecified 0.759 1.301 0.962 1.647

IPW 0.759 1.050 0.750 1.368

IPW – truncated 0.759 1.100 0.769 1.411

However, other literature suggests that researchers should focus
on correct specifications of their propensity score model rather
than relying on trimming methods (Freedman and Berk, 2008;
Lee et al., 2011).

Omitting one of the confounders from estimation corresponds
to the common case where no measure of a confounder
is available but a confounder may affect the analysis. So
far, omitted variables bias has been largely investigated in
the case of X to Y relationship (Antonakis et al., 2010).
Methods such as difference-in-differences, propensity score
analysis, regression discontinuity, and instrumental variables are
recommended whenever researchers want to achieve causally
interpretable estimates when X is not randomized. The causal
mediation literature basically employs these methods to solve
the non-randomized mediator status issue. For example,
using the instrumental variable method, randomized treatment
assignment (X) can be used as an instrument to mimic
randomization for the M to Y relationship (Jo, 2008). However,

this approach requires different assumptions such as the
exclusion restriction that requires no relation of X on Y
that is not through M. The exclusion restriction assumption
means that there is not a direct effect of the instrumental
variable on the outcome, which is difficult to satisfy in
the mediation context. In this paper, we have focused on
methods estimating controlled direct effects (i.e., IPW and
g-estimation) to investigate omitted variable bias in mediation
since we believe they are more realistic for social sciences
research. Furthermore, different from the omitted variables
literature in the context of X to Y relation, the causal
mediation literature also focuses on the effect of omitting
potential confounders that are influenced by the treatment
(i.e., post-treatment confounders). Yet, the results of the
current study point out that when models are misspecified by
omitting one of the confounders from the analysis (i.e., one-
confounder estimation model), failing to measure potential post-
treatment confounder variables in a mediation model leads to
biased estimates regardless of the analysis method used and
emphasize the importance of sensitivity analysis for causal
mediation analysis.

One aim of the current paper was to investigate the
performance of doubly robust g-estimation, as it has been
suggested in the literature as a superior method to g-estimation.
In the case of two-confounders estimation model, the pattern
of results for the doubly robust sequential g-estimation
method’s performance was in general similar to the IPW
method rather than sequential g-estimation. The doubly
robust g-estimation method employed in this study used
IPW estimation, and results suggest that the performance
of the doubly robust method was influenced heavily by
the IPW part of the estimation. Moreover, in the case of
one-confounder estimation model, the doubly robust method
had the highest bias when both parts of its estimation
process (the propensity and outcome models) omitted the
confounder C2. This finding was consistent with the warnings
from the literature on the use of doubly robust methods
(Schafer and Kang, 2008).

The focus of this article was on the causal identification
of the indirect effect in the case of a randomized treatment.
However, many studies in psychology involve non-experimental
studies where X, M, and Y are all observed variables. When
X is not randomized (or randomization fails), the researcher
must adjust for all treatment-to-outcome confounders in order
to satisfy the no unmeasured confounder for the X to Y (and
X to M) relation assumption (VanderWeele and Vansteelandt,
2009). One potential solution to estimating causal indirect effects
in the presence of X to Y confounders using the marginal
structural model approach is described in VanderWeele (2015).
Specifically, in addition to the weight for the mediator (wi

M),
a weight for the exposure (wi

X) can also be created. The
exposure weight will reflect the probability that each person
would have received the treatment conditional on baseline
covariates. Then, the product of these weights (wi

X
× wi

M)
can be used to weight each individual when employing the
marginal structural model approach to estimate direct and
indirect effects.
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RECOMMENDATIONS

Based on the current study, the following recommendations for
researchers can be offered.

(1) When confounders for the M to Y relationship are measured,
it is important to identify the types of confounders (baseline
vs. post-treatment) in order to choose the analysis method
to be implemented. When confounders are measured and
included in the analysis, linear regression with adjustment
can be used for estimating the indirect effect; however,
if the measured confounders are post-treatment, then
sequential g-estimation is recommended. IPW should be
used with caution as it leads to biased estimates as the
confounder effect size gets larger.

(2) Researchers should carefully consider the potential
confounder variables for their mediation model when
designing the study and make an effort to measure the
confounder variables. Our simulation study shows that
when failing to accommodate confounder variables of
the M to Y relationship in a mediation model with
linear effects, all methods lead to biased estimates of
the indirect effects, especially when the confounders
are post-treatment.

(3) Sensitivity analysis methods are highly recommended.
Sensitivity analysis methods can be used to evaluate
how robust the indirect effect is to unmeasured third
variables. In this case, even if important confounders are
not measured and included in the analysis, some idea
of the robustness of results to potential confounders can
be obtained. It is also unlikely that researchers usually
would have measured all potential confounders. Sensitivity
analysis has been an important area of research to
improve causality in treatment effects when randomization
has not been possible (Rosenbaum and Rubin, 1983).
For example, Cornfield et al. (1959) found that the
relationship between smoking and lung cancer can be
significantly weakened if a confounder variable for that
relationship would be nine times more frequent in heavy
smokers compared to non-smokers. Sensitivity analysis
has been especially seen as an indispensable part of
statistical mediation analysis (Imai et al., 2010a,b). Current
literature suggests several sensitivity analysis methods for
mediation analysis (Cox et al., 2013). For example, a
technique described by VanderWeele (2010a) is based on
the relation of the confounder to Y and the difference in the
proportion of individuals with the confounder prevalence
between the experimental groups at the same level of
the mediator. Another method expresses confounder
bias as the correlation between the error terms of the
mediator and outcome regression equations (Imai et al.,
2010a,b). Another method by Mauro (1990) is based on
the correlations of a potential confounder with study
variables. Statistical software code for the above-mentioned
sensitivity analysis techniques is available in Imai et al.
(2010b) and Cox et al. (2013). Furthermore, researchers
can have access to the statistical software code for the

investigated causal mediation methods at MacKinnon and
Pirlott (2015).

(4) Researchers can also improve the internal validity of their
mediation model by choosing among several research designs
that attempt to manipulate the mediator when it is both
practically and ethically possible. Double randomization
design that involves the manipulation of the mediator
enables a better causal interpretation of the M to
Y relationship than the conventional measurement-of-
mediation designs (Spencer et al., 2005; Stone-Romero and
Rosopa, 2011; Pirlott and MacKinnon, 2016). A double
randomization design randomly assigns participants to X
and measure M and Y in experiment 1, and then, randomly
assign participants to levels of M in a second experiment. If
there is a significant effect of manipulated M on Y in the
second experiment, it indicates a causal M to Y path. There
are several types of mediator manipulations. Examples
are the enhancement manipulation where exposure to the
mediator is manipulated by enhancing the dose of the
mediator, and the blockage manipulation in which the
mediator is blocked in one condition but not in another
condition to investigate if the effect of the treatment
depends on the mediator (Robins and Greenland, 1992;
Spencer et al., 2005; MacKinnon, 2008; Stone-Romero and
Roposa, 2008; Bullock et al., 2010; Imai et al., 2013; Holland
et al., 2016; Pirlott and MacKinnon, 2016).

Causal inference in the presence of mediating variables is an
important area of research that has led to recent advancements,
but there is a need for future work. For example, the sequential
g-estimation method may be the preferred method in the
presence of post-treatment confounders; however, it only allows
the computation of a total indirect effect by obtaining an
accurate direct effect estimate. Future research should extend
causal mediation methods to more complex situations such
as multiple mediators, longitudinal, and multilevel mediation
models. For instance, even though applications in multilevel
causal modeling exist, there is considerable need for analytical
work and simulation studies (Hong and Raudenbush, 2006;
Hong, 2010; VanderWeele, 2010b). Another important area of
work for causal mediation is the development of alternative
experimental designs in which researchers manipulate the
mediator as described above. Future work is crucial in
evaluating the advantages and disadvantages of the proposed
experimental designs, clarifying the assumptions, and developing
and illustrating the analysis of such designs. Such work in both
experimental and quantitative approaches to mediation would
encourage substantive researchers to apply causal mediation
methods to real data.

Mediation analysis is an important tool to identify causal
mechanisms of phenomena. Since mediation analysis, by nature,
attempts causal claims, investigation of the best possible methods
to estimate causal indirect effects has become an intensive area
of research. This manuscript illustrates the performance of some
of these modern techniques and provides guidance to implement
them. The simulation study, by showing the distinct effects of
baseline and post-treatment confounders on the accuracy of
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the estimates, concludes that when post-treatment confounders
are omitted, estimates are biased. We are hopeful that this
manuscript will improve the practice of mediation analysis and
causal conclusions based upon it.
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