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The role of tiotropium in the management of 
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Asthma is a chronic respiratory disease characterized by reversible airway obstruction that is secondary to an allergic inflammation 
and excessive smooth muscle contraction. Cholinergic signals were known to contribute significantly to the pathophysiology of asthma. 
However, the use of anti-cholinergic agents in asthma has been justified only in acute asthma exacerbations, until tiotropium bromide, 
a long-acting anti-cholinergic agent was introduced. Recent reports showing a promising role of tiotropium in the treatment of asthma 
have aroused interest of the use of anti-cholinergic agent for the management of asthma. This report describes pharmacological 
characteristics, potential effects on inflammatory cells, and the current status of tiotropium in the treatment of asthma.
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INTRODUCTION

Asthma is a chronic respiratory disease characterized by 
reversible airway obstruction that is secondary to an allergic 
inf lammation and excessive smooth muscle contraction 
[1].  Currently,  anti- inf lammator y drugs (mainly inhaled 
corticosteroids) and bronchodilators (mainly inhaled β2 
agonists) are widely used in the treatment of asthma based on 
the understanding of asthma pathogenesis. Parasympathetic 
nervous system is the important neural pathway controlling 
airway smooth muscle. Stimulation of parasympathetic nerve 
results in bronchoconstriction, bronchial vasodilatation and 
mucus secretion via muscarinic receptors [2]. Moreover, 

parasympathetic tone is known to be increased in asthma by 
several mechanisms; increased afferent stimulation caused 
by airway inflammation [3], abnormal muscarinic receptor 
expressions [4], an increased release of acetylcholine from 
parasympathetic nerve ending [5], and decreased levels of 
neuromodulators that attenuate parasympathetic tone [6]. 
Therefore it seems natural that we can expect a favorable 
outcome when we use anti-cholinergic agents that block 
parasympathetic tone in the treatment of asthma. However, 
early experiences with ipratropium bromide, a short-acting 
inhaled anti-cholinergic agent, in the treatment of asthma were 
disappointing [7-9]. The use of anti-cholinergic agents in asthma 
has been justified only in acute asthma exacerbations [10].
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Anti-cholinergic agents had been left orphan in the field of 
asthma pharmacology until tiotropium bromide, a long-acting 
inhaled anti-cholinergic agent was introduced. During the last 
decade, tiotropium has been used widely in the treatment of 
patients with chronic obstructive pulmonary disease (COPD) 
and is indicated for once-daily maintenance treatment in the 
current COPD treatment guideline [11]. Recent reports showing 
a promising role of tiotropium in the treatment of asthma 
have aroused interest of the use of anti-cholinergic agent 
for the management of asthma [12-15]. This report describes 
pharmacological characteristics, potential effects on inflammatory 
cells, and the current status of tiotropium in the treatment of 
asthma.  

Role of cholinergic signaling in the pathophysiology of 
asthma

So far, 5 muscarinic receptors (M1-M5 subtype) mediating 
cholinergic signal has been identified. However, only M1, M2 
and M3 receptors have been convincingly demonstrated to 
exist in human airways. Among them, the M3 receptor in the 
airway smooth muscle is known to play an important role in the 
pathophysiology of asthma by inducing bronchoconstriction 
and mucus secretion [16, 17]. Whereas, the pre-junctional M2 
receptor provides a negative feedback to attenuate further release 
of acetylcholine [18]. An increased release of acetylcholine from 
cholinergic nerve endings [19] and an abnormal muscarinic 
receptor expression (either an increase in M1 and M3 receptors or 
disruption of the M2 receptors) [20] have been proposed to explain 
an excessive bronchoconstriction found in asthmatics. Afferent 
sensory nerve endings exposed to the airway lumen by mediator-
induced epithelial damage (e.g., eosinophil-derived major basic 
protein [21]) is thought to be an important mechanism for vagally 
mediated airway hyperrresponsiveness [22]. Mucus hypersecretion 
is one of the cardinal features found in asthma contributing to 
an airway obstruction. Submucosal glands are innervated and 
express M1 and M3 receptors [23]. M3 receptor is thought to be 
the predominant receptor that mediates mucus secretion [24, 25] 
and muscarinic receptor stimulation transactivates the epidermal 
growth factor receptor [26] which is known to regulate goblet 
cell hyperplasia [27]. Along with this, it is reported that repeated 
administration of the cholinergic agonists promoted goblet cell 
hyperplasia and mucus gland hypertrophy in experimental animal 
models [22]. Interestingly, recent investigations have revealed 
that most inflammatory cells including T lymphocyte [28, 29], B 

lymphocyte [28, 29], mast cell [28, 30] and eosinophils [31, 32] 
express functional muscarinic receptors. Those findings suggest 
that cholinergic signals can modulate inflammatory processes by 
paracrine and/or autocrine mechanisms [29, 33]. Moreover, there 
may be a distinct regulatory role for endogenous acetylcholine 
in promoting airway remodeling induced by allergen [34, 35]. 
Taken together, cholinergic signals contribute significantly to the 
pathophysiology of asthma. 

Pharmacological characteristics of tiotropium
Tiotropium bromide monohydrate, chemically described as (1α, 

2β, 4β, 5α, 7β)-7-[(hydroxydi-2-thienylacetyl)oxy]-9,9-dimethyl-3-
oxa-9-azoniatricyclo[3.3.1.02,4]  nonane bromide monohydrate, 
is a second-generation inhaled anti-cholinergic agent and 
is sparingly soluble in water [36]. Compared with other anti-
cholinergics, tiotropium shows peculiar selectivity and affinity for 
muscarinic receptor subtypes. It displays a 6-20-fold higher affinity 
for muscarinic receptors than does ipratropium [37]. Tiotropium 
is basically non-selective and thus binds to all three muscarinic 
receptors in the airway but it dissociates much faster from M2 
receptors compared to M1 and M3 receptors [38, 39]. Therefore, it 
can be categorized as a more selective antagonist for M1 and M3 
receptors. A prolonged pharmacologic activity is also attributed to 
its slow dissociation from M1 and M3 receptors. After an inhaled 
dose of tiotropium, about 20% is deposited in the lung [40]. Then, 
it rapidly absorbed into the systemic circulation and reaches the 
peak plasma concentration within 5 min [41]. The half-life of the 
tiotropium-M3 receptor complex is approximately 35 h, whereas 
0.3 h for ipratropium [37, 39]. After the first dose, mean time to 
onset of effect is 30 min, mean time to peak effect is about 3 h 
and maximum effect is obtained after 1 week [37, 39, 42, 43]. It has 
been calculated that tiotropium at the steady-state concentration 
would occupy less than 5% of muscarinic receptors, which may 
explain the relatively low frequency of systemic adverse reactions 
[39]. There is no evidence for drug accumulation after repeated 
administration.

Effect of titropium on the asthma pathogenesis; results 
from experimental models of asthma

In both acute and chronic murine model of asthma, treatment 
with tiotropium significantly reduced airway inflammation and the 
Th2 cytokine production in bronchoalveolar lavage (BAL) fluid [44]. 
In this report, authors found that the levels of TGF-β1 in BAL fluid 
were significantly suppressed after treatment and suggested that 



apallergy.org

Tiotropium for the management of asthma

http://dx.doi.org/10.5415/apallergy.2012.2.2.109  111

the reduction of TGF- β1 production might one of the underlying 
mechanism for their observations. Another interesting finding of 
this report was that authors verified that the M3 receptors were 
present on airway smooth muscle cells, inflammatory cells, goblet 
cells, and airway epithelium in lung section and on lymphocytes 
in the spleen section of mouse. As mentioned before, the non-
neuronal cholinergic system is widely expressed in epithelial cells, 
submucosal glands, smooth muscle cells, and a variety of immune 
cells including lymphocytes, macrophages, and mast cells in the 
airway and choline acetyltransferase and/or acetylcholine and 
nicotinic and muscarinic receptors are found in these cells [28, 29]. 
This non-neuronal cholinergic system may account the reduction 
in Th2 cytokine production by the tiotropium treatment in murine 
model of asthma. In this sense, a recent report which evaluated the 
role of tiotropium on airway hyperreactivity using a vagotomized 
guinea-pig model of allergic asthma is worthy of being mentioned 
[45]. Authors focused on the non-neuronal cholinergic system 
and compared the effect of tiotropium on vagally mediated 
bronchoconstriction and bronchoconstriction induced by 
intravenous administration of achetylcholine. They found that 
tiotropium did not attenuate vagally-induced bronchoconstriction 
in sensitized controls, although it inhibited bronchoconstriction 
induced by intravenous administration of achetylcholine. 
Interestingly, tiotropium inhibited eosinophil accumulation in the 
lungs and around nerves. We can learn from those observations 
that tiotropium may inhibit airway hyperreactivity not only by 
blocking receptors for vagally released acetylcholine but also by 
working through an anti-inflammatory mechanism. Moreover, 
tiotropium was also found to decrease airways remodeling in 
animal models of ovalbumin-induced asthma and these effects 
were comparable to those of the corticosteroid [46, 47].

Efficacy of titropium on the asthma treatment; results 
from clinical trials

Consideration of tiotropium as a treatment option in asthma 
management has been provoked by the finding that a large 
proportion of asthmatics do not achieve control with current 
treatment options including the combination of long-acting β2 
agonist (LABA) and even high dose inhaled corticosteroids (ICSs) 
[48, 49]. Earlier studies in asthmatics demonstrated that inhaled 
tiotropium resulted in a rapid onset, sustained bronchodilation and 
reduced the airways hyperresponsiveness [50, 51]. And successive 
small-scale studies suggested factors capable of predicting good 
responses to tiotropium; asthmatics with COPD component [52], 

severe asthmatics with non-eosinophilic phenotype [53], and 
severe asthmatics with Arg16Gly and Gly16Gly in ADRB2 (coding β2 
adrenoreceptor) [12]. However, despite the early signals of efficacy, 
beneficial effects of tiotropium have not been fully evaluated in 
asthmatics. The tiotropium bromide as an alternative to increased 
inhaled glucocorticoid in patients inadequately controlled on a 
lower dose of inhaled corticosteroid study was the cornerstone 
of clinical use of tiotropium in asthma treatment [13]. This was a 
three-way, double-blind, triple-dummy, cross-over trial, which 
enrolled patients with milder asthma controlled inadequately 
by ICS. The purpose of this study was to assess whether the 
addition of inhaled tiotropium to ICS was superior in efficacy to 
the ICS double dose and noninferior to addition of the salmeterol 
(inhaled LABA) to beclomethasone (ICS). Tiotropium added to ICS 
showed a significantly improved morning peak expiratory flow 
rate (PEFR) compared to double the ICS dose. And a similar effect 
was observed by adding salmeterol. The tiotropium regimen also 
significantly improved the pre-bronchodilator forced expiratory 
volume in one second (FEV1) as compared to double ICS regimen 
and LABA regimen. Both the tiotropium and LABA regimens also 
significantly improved asthma symptoms, quality-of-life scores 
and lung function as compared to double ICS regimen. This study 
demonstrates that in partially controlled asthmatics with ICS, 
we can improve disease control not only by adding LABA but 
also by adding tiotropium. In addition, recently, well-designed 
studies showing a promising role of tiotorpium in the treatment 
of moderate to severe asthmatics have been published [14, 15]. 
Kerstjens and colleagues [14] performed a study to compare the 
efficacy and safety of two doses of tiotropium (5 and 10 μg daily) 
administered through the RespimatTM inhaler with placebo as an 
additive therapy in patients with uncontrolled severe asthma. 
They found that peak FEV1 was significantly higher with 5 μg 
(difference, 139 mL; 95% CI, 96-181 mL) and 10 μg (difference, 170 
mL; 95% CI, 128-213 mL) of tiotropium than with placebo (both 
p < 0.0001). And trough FEV1 at the end of the dosing interval 
and daily home PEFR measurements were also higher with both 
tiotropium doses. In addition, they found that asthma-related 
health status or symptoms showed no significant difference 
between the tiotropium and placebo group. In addition, adverse 
events were similar across groups except for dry mouth which 
was more common on 10 μg of tiotropium [14]. There has been 
concerns about the safety of regular use of LABAs in asthmatics 
[54, 55], especially regarding for asthmatics who are Arg16 
homozygote in the coding region of the β2 adrenergic receptor 
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gene [56]. Bateman and colleagues tested the hypothesis that 
tiotropium might be an alternative (non-β2 adrenergic agonist) 
bronchodilator in Arg16 homozygote asthmatics [15]. In this 
study, they found that tiotropium was superior to placebo and 
noninferior to salmeterol in maintaining improved lung function 
in moderate persistent Arg16 homozygote asthmatics [15]. And 
safety profiles were comparable [15]. 

Conclusion

There is increasing interest in using tiotropium for the treatment 
of asthma. Based on recent reports (Table 1), tiotropium may be 
a valuable alternative to LABA for patients whose symptoms are 
not controlled by ICSs alone and as an additive therapy in patients 
with severe asthma not controlled with available medications, 
including LABA. However, we need additional studies testing 
whether tiotropium reduces asthma exacerbations, an important 
marker of disease control [57] to the same extent as LABA [58]. 
In addition, safety issues related tiotropium should be cleared up 
so that we can determine whether tiotropium is an alternative 
to LABA for the long-term treatment of asthma. Because there is 
a concern for the possible association between tiotropium and 
cardiovascular events [59].
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