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Abstract

Background: To predict gene expressions is an important endeavour within computational systems biology. It can both be
a way to explore how drugs affect the system, as well as providing a framework for finding which genes are interrelated in a
certain process. A practical problem, however, is how to assess and discriminate among the various algorithms which have
been developed for this purpose. Therefore, the DREAM project invited the year 2008 to a challenge for predicting gene
expression values, and here we present the algorithm with best performance.

Methodology/Principal Findings: We develop an algorithm by exploring various regression schemes with different model
selection procedures. It turns out that the most effective scheme is based on least squares, with a penalty term of a recently
developed form called the ‘‘elastic net’’. Key components in the algorithm are the integration of expression data from other
experimental conditions than those presented for the challenge and the utilization of transcription factor binding data for
guiding the inference process towards known interactions. Of importance is also a cross-validation procedure where each
form of external data is used only to the extent it increases the expected performance.

Conclusions/Significance: Our algorithm proves both the possibility to extract information from large-scale expression data
concerning prediction of gene levels, as well as the benefits of integrating different data sources for improving the
inference. We believe the former is an important message to those still hesitating on the possibilities for computational
approaches, while the latter is part of an important way forward for the future development of the field of computational
systems biology.
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Introduction

The massive growth of high throughput data within molecular

biology during the last decade has sparked an interest in systems

biology and generated a great variety of suggestions on how to infer

knowledge from these data sets. That is, whether the data belong to

the genomics, transcriptomics, proteomics or metabolomics domain,

they still need to be structured before one can learn anything from

them. Here, networks have proved to be a unifying language for

different biological systems involving, genes, proteins, metabolites

and also small molecules. These networks, defined by protein-

protein, protein-to-gene, metabolic interactions etc., determine

cellular responses to input signals and govern cellular dynamics

[1]. Still, though, the relative benefits of the proposed structuring

methods are unclear, in part since researchers mainly publish

positive merits benchmarked on their own data sets. Therefore, it

was very welcome when the DREAM (Dialogue on Reverse

Engineering Assessment and Methods) project was presented in

2006 during a conference [2]. Here at last, researchers had the

opportunity to compare their algorithms in an objective manner.

The first challenge, called DREAM2, was held between July and

October 2007, and the outcome was presented both in a dedicated

conference and in a special issue of the Annals of the New York

Academy of Sciences [3]. The initiative was appreciated by the

community, and in June 2008 the DREAM3 challenges were

presented [4]. Compared with DREAM2, some of these challenges

were turned to issues where the predictions could be directly

measured, and were in this sense more realistic. Of special interest

for the present authors was the challenge of predicting rankings of

expression values for 50 genes in one time-series, where a

compendium of 9335 probes for 32 expression profiles, divided

into four time-series corresponding to various mutants, of yeast,

Saccharomyces cerevisiae, were presented (the values for the searched

genes were of course removed for the time-series of interest). One

was also allowed to utilize any public data available.

Integration of data, which this challenge implicitly called upon,

has been the subject of much attention recently; see for example

the review by Hecker et al. [5]. There are several rationales for

merging data when analyzing the outcome of high-throughput

experiments. First and foremost is the fact that the systems and
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networks one infers often have so many units/nodes that the

problem is not well-posed, for any mathematical model, due to

lack of data [6,7] (unless one introduces further constraints, such

as sparseness). This is especially true when the measurements

have been genome-wide, which means that they comprise data

from thousands of units/genes, while the number of measure-

ments for one condition seldom exceeds a few hundred. Another

rationale is the quality of the data, which often is low. Therefore,

it is of importance to strengthen the quality of the inference

process by guiding it as much as possible with data corresponding

to various angles of approach. In this article we present our

contribution to the DREAM challenge, both describing which

data we integrated and how the inference algorithm was

developed. We also analyze our result, something which could

be done first after the submission period was over and the

observed values were released. The paper starts with a survey of

the specific challenge for the DREAM competition, followed in

the next section by the results we obtained. In this result section,

we also compare the performance of our algorithm with others

participating in the challenge. Thereafter, we have a discussion

on what can be learnt from this exercise and suggest some lines of

future research. In the methods section, we give a description of

how we developed our algorithm; especially we describe in detail

both how we integrate more expression data from other

conditions and utilize information on TF (transcription factor)

bindings.

The Gene Expression Prediction Challenge of DREAM3
The challenge for predicting gene expression provided by the

DREAM project is of great importance to explore the benefits and

bottlenecks of the state-of-the-art algorithms in a fair competition. It

represents a solution to the non-trivial problem of designing relevant

challenges which at same time addresses biological and computa-

tional interesting problems. From the DREAM web-site [wiki.c2b2.

columbia.edu/dream/index.php/The_DREAM_Project, accessed

October 10, 2008] we quote for the gene expression prediction

challenge within DREAM3:

Gene expression time course data is provided for four

different strains of yeast (S. Cerevisiae), after perturbation of

the cells. The challenge is to predict the rank order of

induction/repression of a small subset of genes (the

‘‘prediction targets’’ in one of the four strains, given

complete data for three of the strains, and data for all genes

except the prediction targets in the other strain. Predictors

are also allowed to use any information that is in the public

domain but are expected to be forthcoming about what

information was used.

Background. GAT1, GCN4, and LEU3 are yeast

transcription factors. Each of these transcription factors

has something to do with controlling genes involved in

nitrogen or amino acid metabolism. The genes are not

essential because strains that have perfect deletions of any of

these genes are viable. In this challenge, we provide gene

expression data from four strains: (i) a strain that is wild-type

for all three transcription factors (wt, or parental), (ii) a strain

that is identical to the parental strain except that it has a

deletion of the GAT1 gene (gat1D), (iii) a strain that is

identical to the parental strain except that it has a deletion of

the GCN4 gene (gcn4D), and (iv) a strain that is identical to

the parental strain except that it has a deletion of the LEU3

gene (leu3D).

Expression levels were assayed separately in all four strains

following the addition of 3-aminotriazole (3AT). 3AT is an

inhibitor of an enzyme in the histidine biosynthesis pathway

and, in the appropriate media (which is the case in these

experiments) inhibition of the histidine biosynthetic pathway

has the effect of starving the cells for this essential amino acid.

Data from eight time points was obtained from 0 to

120 minutes. Time t = 0 means the absence of 3AT.

The challenge. Predict, for a set of 50 genes, the

expression levels in the gat1D strain in the absence of 3-

aminotriazole (t = 0) and at 7 time points (t = 10, 20, 30, 45,

60, 90 and 120 minutes) following the addition of 3AT.

Absolute expression levels are not required or desired;

instead, the fifty genes should be ranked according to

relative induction or repression relative to the expression

levels observed in the wild-type parental strain in the

absence of 3AT.

This challenge is biologically relevant, and the fact a gold

standard exists but is hidden makes the challenge objective and

fair. Further, the probe names were given, which allows for data

integration of publicly available experiments and a priori

knowledge, making the challenge even more realistic in describing

a situation which can occur in one’s laboratory. However, the

problem is somewhat different from the normal setting in systems

biology where the aim is not only to predict future experiments but

also to obtain interpretable models from which we can gain an

increased biological understanding [8–10]. The data for this

DREAM challenge was kindly delivered by Neil Clarke and co-

workers, a fact which was revealed first after the submission period

for predictions had closed. We will henceforth refer to this data as

the ‘‘DREAM data’’.

Results

The goal of the challenge of DREAM was to predict the order

of the chosen 50 genes within the gat1D strain for the eight time

points at which they were measured. All details about the

algorithm we utilized and how it was developed can be found in

the Methods section. When the gold standard was revealed, it

turned out that the mean correlation we obtained was 0.563, and

that we, together with a prediction submitted by J. Ruan [11] who

obtained a mean correlation of 0.558, had performed substantially

better than the other participants.

Comparing with the training results of Tables 1, 2, 3 from the

Methods section, we also calculate the results when we apply our

algorithm to the gat1D strain in its premature states:

N Table 1. Using only the expression values for obtaining a

perfect fit and a L2-minimization of the coefficients, we get a

rank correlation with the gold standard of 0.535. Actually, the

highest value here is obtained for the case when both values

and rates are included, and a L1-minimization of the

coefficients is performed; in this case the rank correlation is

0.609. These numbers should be compared with Table 1,

where we can see the correspondences 0.712 and 0.663,

respectively, for these two methods.

N Table 2. Combining least squares with the elastic net for the

gat1D strain gives a rank correlation of 0.620, while RLAD

results in 0.320. Compare this with Table 2, which has

corresponding values of 0.794 and 0.681.

N Table 3. The prediction for the gat1D strain has a correlation

with the gold standard of 0.623 when more expression data are

Gene Expression Prediction
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included. When we also add prior knowledge of TF-bindings,

the correlation increases further to 0.624. These correlations

correspond to the values 0.856 and 0.857 from Table 3.

An observation here is that the submitted prediction for the

gat1D strain correlates less well with the gold standard than each

of the series explored during the development of the algorithm.

Neil Clarke points out in his referee report (published on-line

accompanying this article) that he picked some of the genes to be

predicted because of their surprising or non-trivial expression

pattern the gat1D strain. This fact, combined with a general

observation that cross-validation often underestimates the error

[12], makes this result less surprising. Nevertheless, each step we

take in the progression of the algorithm increases its performance,

and as mentioned in the list above, we have the sequence of rank

correlations as 0.535, 0.620, 0.623 and 0.624. The reason for these

numbers being lower than the ones from the training of the

algorithm is presently unclear to us.

Considering the result for each time point, Figure 1, we can see

a huge variation in how well we, and the other groups, succeeded.

The upper blue curve (stars) shows the correlations we obtained

for each time point, while the slightly lower green curve (circles) is

for Ruan. The red curve with plus-signs is the mean of all other

participants. We can see how some time points obviously are

harder than others to predict. For example, for t1~0 we obtained

a correlation of only 0.285 but for ts~45 it is 0.675. Interestingly,

the expression values which are harder to predict seem to be

harder for all proposed methods, not only for our, and the curves

co-vary. Especially, we can at t4~30 see how all algorithms make

worse predictions than in nearby time points. Indeed, our result

and the Ruan-result are correlated with a correlation coefficient of

0.957. The reason for this needs more research to find out.

If we instead consider the obtained rank correlations with the

gold standard per gene, instead of per time point, we get the result

in Figure 2. Also here, not surprisingly, the results by us and Ruan

co-vary, but this time with the smaller correlation coefficient of

0.521. The variation this time is also considerably larger, where

the highest rank correlation we obtain is 0.97 and the lowest is

{0:40. That is, for some genes we obtain orderings which are

worse than lists picked by random. This is interesting, since it

means there are a lot of improvements to be made. See, however,

the discussion in [11] about the possible inappropriateness of using

the Spearman rank correlation for the time-profile correlations the

way it is done here, resulting in too pessimistic estimates of the

performance of the algorithms. The reason is that the rank-

transformation was performed for each time point, making

comparisons between different times problematic. That is, this

might introduce errors in estimating the time-profile accuracy.

However, we refrain from any recalculations since then all

submissions should be reconsidered.

Discussion

The importance of challenges as DREAM lies to a large extent

in its objectiveness. When an inference algorithm comes from the

same laboratory as the one which has performed the assessment

experiments, sometimes even in the same article, it is likely the

algorithm has been tuned to fit with the expected outcome. This is

most probably often over fitting, and decreases then its

performance for other data sets. Also, the value of this procedure

as an assessment is questionable, since the testing of only a few of

the predictions of the algorithm has a clear anecdotic flavor,

especially when the researcher can choose by him- or herself

which parts should be presented. As a contrast, the DREAM

challenges provide the community with workbenches where all are

welcome to submit the predictions of their algorithms, and thereby

getting the opportunity to assess and compare them with the

performance of others. No one knows the gold standard

beforehand, and even if the evaluation data is limited, it is well

defined but still no fine tuning can be carried out. This makes a

huge difference compared with the case mentioned above, when

the same laboratory both performs the experiments and present

inference algorithms with alleged generalizability.

However, this appreciated objectiveness and fairness of

DREAM holds of course true only as long as the gold standard

Table 1. Spearman rank correlations for predictions obtained
by perfect fits and minimization of L1- and L2-norms.

Training strains

Norm Data wt gcn4D leu3D Overall

L1 values 0.616 0.632 0.686 0.670

L2 values 0.587 0.747 0.699 0.712

L1 values, rates 0.647 0.604 0.662 0.663

L2 values, rates 0.587 0.747 0.699 0.712

L1 rates 0.244 0.260 0.434 0.360

L2 rates 0.448 0.542 0.611 0.570

The correlations are based on cross-validations, where the last column stands
for an overall calculation based on 24 ranking lists. The minimization with
respect to an L2-norm has the best performance, both for including only
expression values and for including both expression values and rates. Following
the principle of including as little as possible, we discard the rates.
doi:10.1371/journal.pone.0009134.t001

Table 2. Spearman rank correlations based on two different
inference schemes.

Training strains

Algorithm wt gcn4D leu3D Overall

RLAD 0.486 0.799 0.684 0.681

LS, Elastic net 0.687 0.828 0.764 0.794

The correlations are based on cross-validations, where the last column stands
for an overall calculation based on 24 ranking lists. A minimization of least
squares, combined with a penalty term of the form of the elastic net, gives the
best performance.
doi:10.1371/journal.pone.0009134.t002

Table 3. Spearman rank correlations after soft integration of
other data sets.

External data Training strains

Expression TF-binding wt gcn4D leu3D Overall

x 0.793 0.881 0.789 0.856

x x 0.793 0.880 0.791 0.857

The expression data are obtained from the Rosetta Inpharmatics and ncbi
omnibus, and integrated into the inference process by more terms in the
objective function. The TF-binding data come from Yeastract and form priors
for the penalty term, making it more probable that genes which are co-
regulated should act as predictors for each other. Both data sets are only
included to the extent the cross-validation procedure allows.
doi:10.1371/journal.pone.0009134.t003
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is hidden. As soon as it is revealed, one can start improving one’s

algorithm to better fit the expected outcome, but at the same time

taking the risk of exposing it to over fitting. Any ‘‘improvements’’

at this stage must be very well motivated in order to make any

sense at all. For example, for our algorithm, we could consider the

possibilities to use local fitting parameters instead of a global one

for the prior, or to further prune the model by choosing parameter

values not at the cross-validation minimum, but one standard

deviation below, etc. Due to the above mentioned reasons, we

refrain from such actions, though, and instead look forward to the

next round of DREAM.

The algorithm here presented represents one efficient way of

predicting rankings of expression values. A key component in the

development of the algorithm has been the inclusion of results of

measurements not directly associated with the experimental

condition for which the expression values should be predicted.

Whether this inclusion has been for more expression data or for

prior knowledge of TF-DNA bindings, a cross-validation scheme

has helped us not to rely more on these measurements than the

original data allow. This is denoted as ‘‘soft integration’’ and forms

a cornerstone of our work. The success of the algorithm clearly

shows that prediction of expression levels is a possible task, even

when the number of genes in the system exceeds the number of

experiments 100-fold.

Surprisingly, the inclusion of a priori knowledge of TF-DNA

bindings did not improve the performance of the algorithm

substantially. The reason for this needs more research to find out,

since the quality of this kind of data is generally believed to be

reasonably high. A hypothesis is that our choice to have just one

global parameter b for tuning the impact for all genes was too

restrictive.

Interestingly, the second best performance algorithm, by J.

Ruan, is based on a very different thinking with respect to data

integration. There, only the data provided by DREAM is utilized,

and their algorithm is based on profile similarities measured by

Euclidean distances and predictions from k-nearest neighbors,

KNN [11]. Nevertheless, the performance of that algorithm was

only on average slightly less satisfying than the performance of

ours. Indeed, in not a few instances it even performed better than

ours, and in [11] an even stronger version is presented, although it

Figure 1. Spearman rank correlation for each time point. The correlations are all with respect to the gold standard. The upper blue curve
(stars) is our result; the green curve slightly below (rings) belongs to Ruan [11], while the lower red curve (plus-signs) is the mean of all other
participants. The connecting lines are only guides for the eye. Note how the rankings for some time points obviously are harder to predict than
others, and that the results are clearly co-varying.
doi:10.1371/journal.pone.0009134.g001

Figure 2. Spearman rank correlation for each gene. The correlations are all with respect to the gold standard. The upper blue curve (stars) is
our result; the green curve slightly below (rings) belongs to Ruan [11], while the lower red curve (plus-signs) is the mean of all other participants. The
connecting lines are only guides for the eye. Most of the times, these results co-vary, but occasionally they have even different signs. The two breaks
of the mean curve (gene numbers 13 and 38) come from some non-valid numbers in the presented results.
doi:10.1371/journal.pone.0009134.g002
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was presented first after the gold standard was revealed. When we

consider the similarities per experiment (Fig. 1) or per gene (Fig. 2),

we can see how our two algorithms seem to function equally well,

with the exception of some genes (for example, number 19, 22, 29

and 46, as shown in Fig. 2).

The reason for the success, and failure, for both of these two

philosophies for prediction of gene expression needs further research

to find out. Especially, the cases where one algorithm is successful

and the other is not, deserve extra attention. As a final remark, we

stress again how the integration of data, which is important for our

algorithm, did not at all appear in the Ruan-algorithm, but still the

results are similar. That is, a simple method as KNN can still be as

effective as a more sophisticated algorithm where TF-DNA bindings

etc. are taken into account. This means there is probably a lot of

improvements possible, which is a challenge for the future

development of computational systems biology.

Methods

Modelling Assumptions
The quest for modelling gene networks has taken many different

forms during the last decade [5,9,10,13]. One of the major

modelling frameworks is provided by ODEs, ordinary differential

equations, which is the form we exploit here for the development

of our algorithm.

An often utilized approach for large-scale modelling of gene

regulatory networks is to only consider the transcripts, and thereby

letting all interactions be projected onto the space of genes only

[14]. By this, one obtains a gene-to-gene network, sometimes

referred to as ‘‘‘influential’ gene regulatory network’’ [5]. Further,

the amount of data available makes most models except linear

ones behind reach, and one therefore assumes a linear relation

between the expression rates and the expression levels [15–17] (or

some non-linear transformation of them, the equations still being

linear, though [18]). The rationale for this assumption of linearity

is normally expressed as a belief in the system being close to some

equilibrium or working point, and thus an expansion keeping only

the linear terms would be appropriate. The basic dynamical

equation then looks like

_xxi(t)~a0iz
X

j

w0ijxj(t): ð1Þ

Here xi(t) denotes the expression level of gene i at time t, and the

dot on the left hand side denotes its time-derivative. The

coefficients w’ij and the a’t elements are to be inferred and

describe the gene regulatory system on a gene-to-gene level. The

interactions, i.e., the non-zero w’ij , can both correspond to (semi)-

direct interaction, for instance when xj denotes the RNA-level of a

transcription factor which binds to the promoter of gene i, and

indirect interactions, for instance when gene j stands for an

inhibitor of a transcription factor which in its turn regulate gene i.

Note that the coefficient w’ij can be both positive, describing

activation, and negative, describing inhibition. Since this is a

dynamical equation, it can be used for studying the time-

development of the model, including aspects as stability and

flexibility [19].

Here, however, we are not primarily interested in the dynamics

or in the derivatives of the 50 genes in the gat1D strain which were

removed from the data file, but in the prediction of their

expression levels. By denoting this set of 50 genes as T , we

reformulate and generalize Eq. (1) to

xi(t)~ai

X
j 6 [T

~wwij _xxj(t)z
X
j 6 [T

wijxj(t), ð2Þ

for all i [ T .

Model Selection
In order to obtain a ranking list based on the expressions of the

50 genes in T , we must predict the values of xi(t) for all i[T from

(2). For this, we need explicit values of wij and ~wwij . Given the

values of xj(t) and _xxj(t) for all j 6 [ T and xi(t) for all i[T , this can

be formulated as a minimization problem with the objective

function

X
k

xi(tk){ai{
X
j 6 [T

~wwij _xxj(tk){
X
j 6 [T

wijxj(tk)

�����
�����

m

zPenalty: ð3Þ

We will here stick to the cases where m~1, least absolute

deviations (LAD), and m~2, least squares (LS), respectively. The

penalty term is utilized for discriminating among models, and is to

be determined later. For the moment, it is set to zero. The

experiments are assumed to have been performed at time tk,

where we for ease of notation let the index k run over all three

complete time-series (the gat1D-series, i.e., the series which should

be predicted, is never utilized for the inference, since it is from this

series we determine the output which is submitted for the

challenge – hence there is a risk of over fitting if we utilize it twice).

The DREAM data are measured by Affymetrix chips of 9335

probes, and obtained from two biological and two technical

replicates. We map the probe-names onto unique gene names,

which leave 7804 units, where we use mean values when more

than one probe corresponded to one gene. Furthermore, we

approximate the derivatives from central differences, except at the

end points of each series. At time t~0 we set the derivative to

zero, since it was right before the addition of 3AT, and at the final

time t~120 we approximate the derivatives from backward

differences.

Throughout the article, we utilize cross-validation (CV) to

discriminate among models. We hold one of the three time-series

provided by DREAM out from the inference, and utilize the other

two, and occasionally also other data sets, for finding the searched

parameters. We then use data from the left out strain to predict the

expression values of the 50 searched genes for each time point in

the this series, rank them according to the predicted levels such

that the highest expressed gene obtain rank number one, second

highest rank number two, etc., and calculate the Spearman rank

correlation with the observed ranking of the same series. This is

repeated three times, holding each of the provided time-series out

a time. We end up with 24 different ranking lists for the 50 genes

in T , eight for each time-series. Henceforth, we will refer to this

procedure simply as ‘‘cross-validation’’. Note that this approach to

only hold one of the given time-series out still holds also when

external datasets are introduced.

Before we start exploring various versions of the penalty term in

(3), we try to simplify the model (2). The strategy is to primarily

work with the DREAM data, in order to reduce the model. When

this first reduction is obtained, we will utilize also other publicly

available data in order to further strengthen the predictive power

of our mathematical model. This first model selection is performed

among the models with perfect fits, i.e., the ones where the terms

for the first sum of absolute values in (3) all are zero, making the

exponent m irrelevant, and we get an idea on what to include.

Gene Expression Prediction
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This perfect fit is possible since for each gene value we should

predict, that is, for each i, we have 15 509 free parameters to

determine from 16 linear equations (one per time point). We

explore the following three scenarios:

N Only expression values are included

N Both expression values and expression rates (derivatives) are

included

N Only expression rates (derivatives) are included

By picking the solution with zero value for the objective function

(without penalty term) and choosing the coefficients wij and ~wwij

such that their L1-norm
P

j ~wwij

�� ��z wij

�� ��� �
and L2-normffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j (~ww2
ijzw2

ij)
q

, respectively, are minimized, we obtain the values

of the Spearman rank correlations presented in Table 1. The rank

correlations are for each series comprising eight time points as well

as for the full 24 lists simultaneously (referred to as ‘‘overall’’)

obtained by cross-validation. Note that this is not the same as the

mean value of each time-series or time point.

We see that the highest values for the correlations are obtained

when we only include the expression levels. Inclusion of the

expression rates makes the result slightly worse, except for the least

squares where the correlations are equal. However, with the same

predictive power, we apply Occam’s razor and prefer the simplest

model. To only use the rates gives the least satisfying result of them

all. Therefore, in the sequel, we choose to discard all derivative

terms and determine the parameters according to

wi:~arg min
wi

:

X
k

xi(tk){
X
j 6 [T

wijxj(tk)

�����
�����

m

zPenalty: ð4Þ

Here we use the short-hand notation wi: for wij

� �
j

and drop the

intercept term ai since we also centre the data. What remains is to

determine the value of m and the explicit form and value of the

penalty term.

By choosing the exponent m~2 we turn the problem into Least

Squares (LS), while m~1 gives Least Absolute Deviations (LAD).

Least squares are known to be sensitive for outliers, while LAD is

not affected by such at all. However, the solutions obtained from

LAD are unstable, in the sense that small variations in data might

result in large variations of the inferred parameters, that is, least

squares are a more stable inference method. Indeed, LAD can be

compared with picking the median, which may be devastating

when we are already short of data [20]. Both methods will here be

explored.

The penalty term can take many different forms. A review for

least squares of more classical forms as Mallow’s Cp, Akaike

Information Criterion (AIC), Bayesian Information Criterion

(BIC), Minimum Description Length (MDL) etc in the context

of gene networks can be found in [21]. We will here stick to forms

which are computationally attractive, which is important since the

size of the present problem makes methods based on exhaustive

search practically impossible. We choose for least squares the form

Penalty: P li,wi:,aið Þ~li

X
j

ai wij z(1{ai)
w2

ij

2

�����
�����

 !
: ð5Þ

This is known as the elastic net [22] and is a convex combination

of the well established methods of ridge regression ai~0ð Þ [23]

and of the lasso ai~1ð Þ, [24]. For LAD, least absolute deviations,

only the ‘‘lasso-form’’, i.e., ai~1ð Þ, is of practical interest due to

implementation considerations. This case is called regularized least

absolute deviation (RLAD) [25].

This convex combination is a compromise between the two goals

of a good solution, to have good predictive power and to be

interpretable [5]. The L1 penalty in the lasso favours sparse

solutions, i.e., it performs effectively a subset selection, but is greedy

in the case of correlated predictors since it only picks the most

correlated predictor. On the other hand, the L2 penalty in ridge

regression keeps all predictors as non-zero with probability one, but

is not greedy as the lasso. It has been argued that this compromise

can overcome some of the limitations of the lasso and ridge

regression, with the preservation of the benefits from each of the

pure methods [22]. In Table 2 we investigate what kind of penalty is

most predictive for our purpose. We investigate the elastic net for

least squares (m~2) and RLAD for least absolute deviations

(m~1) on the DREAM data set. The parameters ai and li are

obtained from an exhaustive grid search over the parameter

space ai [ 0:02,0:05,0:1,0:2,0:3,0:4,0:5,0:6,0:7,0:8,0:9,0:95,1f g
and 1000 equidistant values of li between zero and the upper limit

(defined as the limit where the found solution coincides with the

solution without penalty term). The parameters are eventually

chosen with cross-validation. In practice, we utilize the R-package

glmnet by Friedman et al. [26]. It turns out that the values of ai vary

with i in the whole interval between zero and one, with a median of

0.75. That is, the solution is ‘‘lasso-like’’, but still the maximum in-

degree turns out to be 488 (with median 23.5) which is not possible

for a pure lasso where the number of predictors cannot exceed the

number of experiments.

We show in Table 2 the results of such an optimization. The

entries are the Spearman rank order correlations obtained from

cross-validation, i.e., they are the best measure of performance we

have without adding any prior information. The general conclusion

from Table 2 is that least squares regression combined with the

elastic net is to prefer among the methods. From a correlation of

0.794 it is worthy to proceed with further improvements by

integrating more data into the inference process. Worth noting is

that in this process, the parameters li and ai are not fixed, but will

be recalculated by new cross-validation procedures.

Data Integration
One way to improve the performance of the algorithm is to

include more data. This is a challenging problem which is crucial for

all kinds of large-scale inference problems [5]. Previous work has

shown, however, that uncritical inclusion of more data can even

decrease the performance of an algorithm [27]. For yeast, huge

amounts of public data are available, which potentially can improve

the quality of the inferred models. The main issue is to select and

process only the relevant data sets. This must be done in a careful,

supervised way to avoid over fitting, because validation data are on

the other hand severely limited. The here presented framework

introduces two main possibilities, integration of more expression

data and introduction of prior knowledge of regulatory interactions.

More expression data. A straightforward way to include

other types of expression sets is to extend the sum of squares in (4)

over more data sets. We integrate two collections of expression

sets, which reduce the number of possible genes to use as

explanatory variables further; down to 4140 genes (since the

numbers differ across the experiments, and we only utilize those

genes for which we have measurements in all experiments). The

final collection comprises:

i. A set of total of 515 steady-state profiles from a collection of

the gene knock-out experiments [28] and other heavy

perturbations [29] from the Rosetta Inpharmatics

Gene Expression Prediction
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ii. A set of 256 time-series profiles, comprising a collection of

time-series experiments downloaded from ncbi omnibus

[30,31] with GEO accessions GDS16, GDS18, GDS19,

GDS20, GDS30, GDS33, GDS34, GDS36, GDS37, GDS38,

GDS39, GDS104, GDS108, GDS109, GDS112, GDS113,

GDS115, GDS124, GDS180, GDS283, GDS354, GDS608,

GDS1013, GDS1752, GDS2267 and GDS2715

However, the experimental conditions can vary a lot, and most

of them are probably distant from the conditions we actually are

interested in. It is therefore likely that these profiles have less

impact on the actual problem than the primary profiles presented

for the actual problem. We therefore introduce an extra coefficient

uk for each term in (4), which becomes

wi:~arg min
wi
:

X
k

vk xi(tk){
X
j 6 [T

wijxj(tk)

 !2

zP li,wi:,aið Þ, ð6Þ

These coefficients are chosen to be unity for the DREAM data, to

set the scale, and we determine their values otherwise by the cross-

validation procedure. In order not to have too many free

parameters in the model, we pick one value for the 515 steady

state profiles from Rosetta, vk~vs:s: and another value for the 256

profiles from the time-series of ncbi omnibus, vk~vtime. The result

is shown in the first line of Table 3.

Prior knowledge of TF-DNA regulations. The TF-DNA

binding data are taken from Yeastract [32,33], and give clues on

which genes are likely to act as regulators. To take this knowledge

into account, we utilize a modified form of the penalty in (5). Now,

we choose a different penalty for each predictor such that we

increase the probability for a non-zero wij if gene j somehow, to be

specified below, is co-regulated with gene i. By utilizing the cross-

validation scheme, we integrate this prior knowledge in a soft way,

i.e., we bias the search to known relations, but allow also the

possibility of novel links. Explicitly, expression (5) is modified by

the introduction of parameters Pij , called priors, reflecting the

likeliness of gene j not to be co-regulated with gene i, to look like

P li,wi:,aið Þ~li

X
j 6 [T

Pij ai wij

�� ��z(1{ai)
w2

ij

2

 !
: ð7Þ

That is, the prior Pij corresponds to our prior belief that there is no

correspondence between gene j and gene i, since a high value of

Pij implies a high penalty, and thus there has to be a high

correlation between the genes to include gene j as a predictor for

gene i. We let the parameters Pij be between zero and unity, with

no loss of generality, since it is only the relative difference which is

of relevance, while li takes care of the global magnitude of the

penalty.

The reason why we focus on co-regulation rather than

regulatory interactions is that the values of the inference are

based on transcript levels, and TFs are known to be expressed on a

low level. Also, their activity is often determined by phosphory-

lation and other effects rather than their amount [34], which

makes the levels even more dubious. Therefore, we concentrate

not on the TFs themselves but on genes which are controlled by

the same TFs and thus might act as predictors for each others. The

rationale can also be formulated such that if two genes are

regulated by the same set of TFs they are likely to have large (anti-)

correlation, thus the level for one of the genes should be a good

predictor for the other, see Figure 3. The explicit calculation is

carried out through the TF interaction matrices obtained from

Yeastract [32,33]. We set TF
(e)
ij ~1 if there is documented

experimental evidence for TF-j binding upstream of gene i and

TF
(ezp)
ij ~1 if there is either experimental evidence or putative

evidence (or both) for such a binding. Otherwise, the elements are

set to zero. From these TF interaction matrices, we calculate the

weighted shared fraction of TFs between gene j and gene i, Mij , as

Mij~
SnTF

(e)
in TF

(e)
jnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SnTF
(e)
in

� �
SnTF

(e)
jn

� �r z
SnTF

(ezp)
in TF

(ezp)
jnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SnTF
(ezp)
in

� �
SnTF

(ezp)
jn

� �r :ð8Þ

Note that M is a symmetric matrix, Mij~Mji, just as it should

from its definition of a weighted shared fraction of TFs. The prior

finally is chosen as:

Pij~
1

1zbMij

, ð9Þ

where b§0 is a free global parameter to be determined later by

cross-validation.

To summarize the discussion above, the objective function takes

the form

wi:~arg min
wi
:

X
k

vk xi(tk){
X
j 6 [T

wijxj(tk)

 !2

zP li,wi:,ai,bð Þ,ð10Þ

where the penalty term is

P li,wi:,ai,bð Þ~li

X
j 6 [T

1

1zbMij

ai wij

�� ��z(1{ai)
w2

ij

2

 !
: ð11Þ

Thus, the data integration leaves us with 207,103 para-

meters (50 targets|(4140 wijz1liz1ai)z2vkz1b~207 103

parameters) in total to determine. The global parameters result

in the fractional value of 4142.06 parameters for each gene to

predict. That is, the cross-validation procedure we utilize has to

Figure 3. Schematic view of how to obtain the weighed shared
fraction of TFs. We utilize as prior information that genes which are
co-regulated are likely to be effective predictors of each other; the more
TFs in common, the more likely to be co-regulated.
doi:10.1371/journal.pone.0009134.g003
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minimize expression (10) with a penalty term of the form presented

in (11) and detailed in (8). We minimize it by a greedy stepwise

procedure, again using the R-package glmnet [26].

Effectively, for each target gene i, we start from the value of ai

found without any prior and explore nk and b individually. For

each sets of values for these parameters, we run glmnet with 1000

values of li (described above) and perform local searches in ai

around its present value, changing it if the Spearman rank

correlation increases. The parameters vs:s:,vtime and b are

introduced in the order they increase the performance of the

algorithm, but when a value is determined, we do not change it

again. It turns out they are introduced in the order vs:s:,vtime and b,

with the values 3:10{3,2:10{4 and 0:10, respectively. They are

obtained by in an iteratively refinement process, where the initial

searches for vs:s:,vtime are in the range between zero and one, and

values for b from the set 0,0:1,1,10,100f g. The refined search

utilizes steps of the size 10{4 for vs:s:,vtime and 0.01 for b. The

result is shown in the second line of Table 3. We can see how this

final step further increases the quality of the performance of the

algorithm, although the increase this time is not as drastic as

before. Worth noting is also how the Rosetta data contribute ten

times more than the data from the ncbi omnibus. The rather low

value of b is also an indication that the positive contribution of

known TF-DNA bindings is limited.

Finally, from a computational point of view, we remark that all

implementations and calculations have been performed on an

ordinary laptop in the languages R and Matlab. That is, the

complexity of the problem is not worse than it can be handled in

any laboratory.
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