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Abstract: In multiple sclerosis (MS) patients with a progressive form of the disease, spinal cord
(SC) functions slowly deteriorate beyond age 40. We previously showed that in the SC of these
patients, large areas of incomplete demyelination extend distance away from plaque borders and
are characterized by a unique progliotic TGFB1 (Transforming Growth Factor Beta 1) genomic
signature. Here, we attempted to determine whether region- and age-specific physiological parameters
could promote the progression of SC periplaques in MS patients beyond age 40. An analysis of
transcriptomics databases showed that, under physiological conditions, a set of 10 homeobox (HOX)
genes are highly significantly overexpressed in the human SC as compared to distinct brain regions.
Among these HOX genes, a survey of the human proteome showed that only HOXA5 encodes a
protein which interacts with a member of the TGF-beta signaling pathway, namely SMAD1 (SMAD
family member 1). Moreover, HOXA5 was previously found to promote the TGF-beta pathway.
Interestingly, SMAD1 is also a protein partner of the androgen receptor (AR) and an unsupervised
analysis of gene ontology terms indicates that the AR pathway antagonizes the TGF-beta/SMAD
pathway. Retrieval of promoter analysis data further confirmed that AR negatively regulates the
transcription of several members of the TGF-beta/SMAD pathway. On this basis, we propose that
in progressive MS patients, the physiological SC overexpression of HOXA5 combined with the
age-dependent decline in AR ligands may favor the slow progression of TGFB1-mediated gliosis.
Potential therapeutic implications are discussed.

Keywords: multiple sclerosis; spinal cord; transforming growth factor beta 1; astrocytes; androgen
receptor; homeobox A5

1. Introduction

Magnetic resonance imaging (MRI) studies have demonstrated that spinal cord (SC) tissue
alterations correlate with clinical disability in progressive forms of multiple sclerosis (MS), be it
secondary progressive MS (SPMS) or primary progressive MS (PPMS) [1–3]. Importantly, in PPMS
or SPMS, scores of clinical disability tend to inexorably progress starting from the fourth decade of
life [4,5], and this occurs despite an overall decrease in the number of active inflammatory lesions
in the brain [6,7]. In this context, we recently reported on the in-depth analysis of SC molecular
neuropathology in SPMS or PPMS patients. We found that areas of incomplete demyelination extend
distance away from plaque borders [8] and are characterized by a TGF-beta 1 (transforming growth
factor beta 1) progliotic signature [9]. Based on the identification of astrocyte vs. oligodendrocyte gene
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co-expression networks, we further proposed that TGF-beta 1, while preventing acute inflammation,
could (i) promote gliosis, (ii) prevent the antigliotic effects mediated by androgen receptor ligands,
and (iii) alter the translation of myelin genes [9]. However, the question as to whether such a process
could be, to some extent, SC-specific, was not assessed.

Interestingly, to our best knowledge, only one article has reported on an extensive and systematic
neuropathological analysis of plaque activity on both the brains and SCs derived from a large cohort
of MS patients [10]. While the main conclusion of this work related with the role of smoldering
plaques (i.e., slowly expanding lesions) in MS progression, an important finding was unraveled but
somehow neglected and not discussed. Indeed, when assessing the impact of localization on the
percentage of active vs. inactive plaques, the authors found that irrespective of age and disease
duration, significant differences were observed when comparing the SC to the brain: “Lesions in the
SC were more likely to be inactive (p < 0.001, p = 0.002) compared to supratentorial and infratentorial
lesions. In addition “Lesions in the SC were less likely to be smoldering (p = 0.02) compared to
supratentorial lesions” [10]. Finally, “no/few smoldering plaques were found in the SC or optic nerve”
while “smoldering and inactive plaques were both equally distributed between the supratentorial and
the infratentorial white matter” [10]. Importantly, the authors also reported that active plaques did not
display any region-specific distribution even when specifically assessing early active or late active
plaques [10]. It is worth noting that, although based on the analysis of fewer samples, a previous work
similarly concluded a dissociation between brain and SC neuropathological features in SPMS or PPMS
patients. Such a dissociation was reported with regard to both the percentage of inactive plaques (89%
of inactive plaques in the SC as compared to 54% in the brain) and the percentage of slowly expanding
plaques (5% of slowly expanding plaques in the SC as compared to 18% in the brain) [11]. It appears
thus that downstream of the triggering autoimmune mechanisms leading to the formation of active
plaques, an SC-specific process might be responsible for dampening of plaque-associated inflammation.
If so, myelin repair, a process known to be coupled with plaque-associated inflammatory events,
would also differ between the brain and SC. In this functional scheme, the identification of a TGFB1
genomic signature in MS spinal cords makes sense since TGFB1 was demonstrated to dampen acute
central nervous system (CNS) inflammatory lesions [12,13] to exert potent progliotic effects (notably
via the astrocytic synthesis of extracellular matrix molecules) [14–16] and to both inhibit the terminal
differentiation of oligodendrocyte progenitors and prevent microglia-mediated remyelination [17].

In the present paper, we mined transcriptomics and proteomics databases to identify physiological
parameters that would be responsible for a region-specific and age-dependent susceptibility of human
SC to TGFB1-mediated gliosis. Our results may explain the particular outcome of SC active plaques
and in progressive MS patients, the age-dependent deterioration of SC functions.

2. Results

2.1. The Human Spinal Cord Genomic Signature Retrieved from the ARCHS4 Database Is Specifically Enriched
in Homeobox Genes

In order to identify genes whose expression is SC-specific as compared to other CNS regions,
we first explored the ARCHS4 library of tissue-specific genomic signatures which may be accessed
via the Enrichr platform [18]. The ARCHS4 library, obtained by the combined analysis of 84,863
publicly available human RNA-seq data, gathers genomic signatures for 108 human tissues or cell
types, irrespective of the presence or absence of a pathological state [19]. From the ARCHS4 library,
we retrieved brain and spinal cord genomic signatures and extracted two sets of genes specific to
each of these signatures. These two lists of genes were then submitted to enrichment analyses via
the TargetMine platform [20]. Interestingly, the most significant enrichment was obtained using the
InterPro domain enrichment tool [21]. Indeed, we found that the 869 genes which are specific to the SC
signature (as compared to the brain signature) were highly significantly enriched in homeobox genes
(Figure 1). Conversely, enrichment analysis using the InterPro domain enrichment tool also showed
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that the set of genes specific to the brain signature (as compared to the SC signature) was enriched in
terms that are not related with homeobox genes (Figure 1).
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Figure 1. Enrichment analyses of spinal cord vs. brain genomic signatures. The genomic signatures of
human brain and spinal cord were retrieved from the “ARCHS4 Tissue” [19] library gathering and
combining 84,863 publicly available human RNA-seq data for which gene expression values were
z-score normalized across samples. Brain and spinal cord genomic signatures were compared and
crossed in order to identify spinal cord- vs. brain-specific signatures. The retrieved lists of genes were
then submitted to an enrichment analysis using the TargetMine [20] webtool “InterPro domain” which
exploits the InterPro protein families database [21]. The TargetMine bioinformatics platform provides
p-values computed from the Fisher’s exact test and adjusted for multiple test corrections using the
Benjamini and Hochberg procedure. For each list, only the 5 most statistically significant enrichments
are shown.

2.2. In the Normal Adult Human Central Nervous System, a Set of Homeobox Genes Are Uniquely
Overexpressed in the Spinal Cord as Compared to Other CNS Regions

Since the ARCHS4 library was built from the analysis of human tissues, irrespective of their
pathological or normal state, we then sought to determine whether homeobox genes are indeed
physiologically overexpressed in the human SC as compared to other CNS regions. To this aim,
we explored the GTEx database [22–24] which corresponds to the currently largest repository of
RNA-seq data obtained from normal human tissues. We focused our analysis on the set of homeobox
genes belonging to the ARCHS4 SC-specific signatures. Starting from this list of 29 candidate homeobox
genes, we retrieved the corresponding median TPM (transcripts per kilobase million) values calculated
in the GTEx database from the RNA-seq analysis of spinal cord samples (n = 159), cerebellum (n = 241),
hippocampus (n = 197), or brain cortex (n = 255) samples. We then filtered the results in order to
retain only homeobox genes exhibiting SC mRNA levels above the threshold of 5 TPM. This approach
allowed us identifying 10 homeobox genes which, under physiological conditions, are substantially
expressed in the human SC but are not or only very poorly expressed in the cerebellum, hippocampus,
and brain cortex (Table 1).

It should be noted that while the brain cortex cannot be considered as a myelin-rich area,
the cerebellum is abundantly myelinated and the hippocampus comprises large areas of myelinated
tracts. It is thus highly unlikely that such differences may reflect differences regarding the cell
composition of the SC as compared to other CNS areas. However, to address this issue, we sought to
check if the HOX genes reported as poorly expressed in the brain according to the GTEx database had
also been reported to be poorly expressed in cultured oligodendrocytes, astrocytes, or neurons derived
from the normal human brain. To this aim, we queried the “Brain RNA-seq” database which compiles
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RNA-seq data obtained from primary cultures of CNS-resident cells (oligodendrocytes, astrocytes,
microglia, neurons, endothelial cells) derived from adult normal human brains [25]. We found that in
all analyzed cell types, the 10 homeobox genes identified as being overexpressed in the SC according
to the GTEx databank exhibited mRNA levels equal to or slightly above the 0.1 FPKM threshold of
detection which was set to in the “Brain RNA-seq” databank (data supplement 1). Besides the issue of
cell composition, another potential drawback resides in the fact that CNS-derived samples analyzed in
the GTEx database were not submitted to a careful neuropathological examination. Moreover, some of
these samples were obtained from patients who died from traumatic brain injury [26]. To confirm
our findings, we thus performed a complementary investigation on the previously published BNE
(Brain Net Europe) transcriptomics dataset [27] from which analyzed control human CNS samples
were demonstrated to be disease-free as assessed by neuropathological examination. While all the
regions of interest that we explored in the GTEx database are not available in the BNE dataset, we could
nevertheless assess the differential expression of homeobox genes in SC vs. brain cortex samples
(Table 2). Results show that despite the relatively low number of analyzed samples in the BNE dataset
(10 in each group), the retrieved expression profiles confirm the results obtained by querying the GTEx
database (Table 2).

Table 1. Region-specific homeobox mRNA median TPM (transcripts per kilobase million) values
retrieved from the GTEx databank [20–22].

Spinal Cord
(n =159)

Cerebellum
(n = 241)

Hippocampus
(n = 197)

Brain Cortex
(n = 255)

HOXA2 8.14 0 0 0

HOXA4 29.14 0.03 0 0.01

HOXA5 23.01 0.08 0.01 0.02

HOXB2 20.31 0.54 0.19 0.10

HOXB3 6.16 0.17 0.05 0.04

HOXB5 8.52 0 0 0

HOXB6 5.37 0 0 0

HOXB7 15.82 0 0.05 0.02

HOXB8 17.91 0 0 0

HOXD8 5.41 0 0 0.01

Table 2. Comparisons of spinal cord vs. brain cortex mRNA levels of homeobox genes retrieved from
the BNE dataset [23].

Gene Symbol SC/BC Ratio Adjusted p-Value

HOXA2 15.49 4.57 × 10−7

HOXA4 58.62 2.62 × 10−6

HOXA5 234.90 9.03 × 10−6

HOXB2 41.46 1.14 × 10−7

HOXB3 2.58 0.01

HOXB5 52.41 0.002

HOXB6 1.74 0.06

HOXB7 102.29 2.47 × 10−6

HOXB8 407.52 0.009

HOXD8 13.42 0.001
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Finally, our findings are also supported by a survey of the literature regarding the spinal
cord-specific expression of homeobox genes in mice. Thus, in transgenic mice expressingβ-galactosidase
under the Hoxb8 promoter, lacZ activity was shown to be restricted to the spinal cord [28]. Accordingly,
Hoxb8-Cre (i.e., Hoxb8-Cre recombinase) mice were used for brain-sparing conditional gene deletion [29].
Similarly, according to the GENSAT database of engineered mouse strains [30,31], transgenic mice
expressing EGFP (enhanced green fluorescent protein) under the Hoxa5 promoter exhibit spinal
cord-restricted EGFP expression. Of note, for both Hoxb8 and Hoxa5, the expression pattern of reporter
genes was indicative of a widespread promoter activity in both neuronal and glial cells. Finally,
Hoxb7 was demonstrated to be overexpressed by a factor >10 in SC-derived endothelial cells (cultured
or freshly extracted) as compared to brain-derived endothelial cells [32].

2.3. The Spinal Cord-Overexpressed HOXA5 Homeobox Protein Interacts with the Gliosis-Associated
Transcription Factors SOX2 (SRY-box 2) and SMAD1.

Homeobox genes encode transcription factors (TFs) which, as such, function via interacting
with a wide range of proteins including TFs, co-TFs, and chromatin modifiers [33–35]. Indeed,
complex networks of transcription factors were shown to regulate gene expression patterns in a
tissue-specific manner [36]. We thus sought to identify the set of TFs establishing first shell interactions
with SC-overexpressed homeobox TFs. To this aim, we queried the human proteome database
“BioGrid” [37] to retrieve the most recently updated list of protein partners of spinal cord-overexpressed
homeobox proteins. We obtained a list of 85 interactors (data supplement 2, sheet “HOX partners”)
that we then crossed with the list of currently known human TFs [38] (data supplement 2, sheet “List
Human TFs”). By this means, we retrieved 14 TFs that interact with SC-overexpressed homeobox
proteins (Table 3).

Table 3. List of transcription factors which physically interact with spinal cord-overexpressed
HOX proteins.

SC-Overexpressed HOX Genes Gene Symbols (Bold) and Names of TFs
Interacting with SC-Overexpressed HOX Proteins

HOXA5 DDIT3 (DNA damage inducible transcript 3)
HOXA5 FOXA2 (forkhead box A2)
HOXA5 FOXO1 (forkhead box O1)
HOXA5 SMAD1 (SMAD family member 1)
HOXA5 SOX2 (SRY-box 2)
HOXA5 TWIST1 (twist family bHLH transcription factor 21)
HOXA5 ZNF707 (zinc finger protein 707)
HOXB5 HOXC4 (homeobox C4)
HOXB5 HRAS (HRas proto-oncogene, GTPase)
HOXB5 NKX2-1 (NK2 homeobox 1)
HOXB6 ALX4 (ALX Homeobox 4)
HOXB6 TCF21 (transcription Factor 21)

HOXB7, HOXB8 PBX1 (PBX homeobox 1)
HOXB8 PBX3 (PBX homeobox 3)

Interestingly, two of these TF partners, SOX2 and SMAD1, belong to the astrocytosis-related
co-expression module that we previously demonstrated in MS spinal cords (data supplement 2,
sheets “MS SC gliosis-associated module” and “MS SC gliosis-associated TFs”) [9]. Both SOX2
and SMAD1 were previously shown to physically interact with HOXA5 but none of the other
SC-overexpressed homeobox proteins. Considering that only 12 TFs (out of 1211 human TFs) belong
to the gliosis-associated gene module identified in MS SCs, the presence of SMAD1 and SOX2 in
the short list of currently known HOXA5 TF partners corresponds to an enrichment factor of 31.74
with an associated p-value of 0.002 (Fisher’s exact test). Of note, several works demonstrated the
progliotic effects of SOX2 and SMAD1 [39–41]. Furthermore, SMAD1 belongs to the BMP (bone
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morphogenetic protein) and to the TGFB1 signaling pathways [42–45], both of which have been
involved in astrocytosis [46,47]. Moreover, according to the BioGrid database, SOX2 and SMAD1
themselves interact with 3 TFs encoded by genes of the gliosis-associated co-expression module we
identified in MS SCs: the androgen receptor (AR), GLIS3 (GLIS family zinc finger 3), and NFIB (nuclear
factor I B). These findings indicate that the protein–protein interactions linking HOXA5 to SOX2 and
SMAD1 are likely to be functionally relevant in the context of MS-associated spinal cord gliosis. Finally,
we retrieved from the JASPAR library of predicted TF targets, the computationally inferred list of genes
which harbor HOXA5 binding motifs in their promoter regions. We found that such a list of predicted
targets includes SMAD1, SMAD3, TGFB1, and TGFBR2.

2.4. Data Mining Analysis Indicates that the Progliotic Pathway Associated with SC-Overexpressed HOX
Proteins Is Negatively Regulated by the Androgen Receptor

That AR belongs to the gliosis-associated gene module identified in MS SCs was previously
proposed to reflect a failed negative feedback process. Indeed, AR exerts antigliotic effects [48–51]
and was shown to potentially antagonize the TGFB1 pathway via the hijacking of SMAD3 [52] and
the transcriptional silencing of TGFB1 [53,54]. However, a global view on the potential antagonism
between the AR and TGF-beta/SMAD pathway is still lacking. We thus sought to determine whether an
unsupervised analysis of gene ontology (GO) terms would support the existence of such an antagonism.
To achieve this goal, we queried the “QuickGO” server run by the European Molecular Biology
Laboratory’s European Bioinformatics Institute (EMBL-EBI) [55,56], which allows exploring the 44,990
GO terms annotating the proteins referenced in UniProt Knowledgebase [57] across species. In particular,
when querying any given GO term on the “QuickGO” server, the “Co-occurring terms” tablet provides
the whole list of GO terms exhibiting similarities (i.e., shared annotated proteins) with the queried
GO term. Here, we successively queried the GO terms “Positive regulation of SMAD protein signal
transduction” (GO:0060391), “Negative regulation of SMAD protein signal transduction” (GO:0060392),
“Negative regulation of androgen receptor signaling pathway” (GO:0060766), and “Positive regulation
of androgen receptor activity” (GO:2000825). Similarities between SMAD-related GO terms and
androgen receptor-related GO terms were then searched. Strikingly, only functionally antagonistic
overlaps were observed, notably between the “Positive regulation of SMAD protein signal transduction”
GO term and the “Negative regulation of androgen receptor signaling pathway” GO term (Table 4).

Table 4. Antagonistic overlap between SMAD-related GO terms and androgen receptor-related
GO terms.

Queried GO Term Relevant Overlapping GO Term Rank of Similarity

Positive regulation of SMAD
protein signal transduction

(GO:0060391)

Negative regulation of androgen
receptor signaling pathway

(GO:0060766)

23rd from 743 overlapping
GO terms

Negative regulation of SMAD
protein signal transduction

(GO:0060392)

No overlap with androgen
receptor-related GO-term Not applicable

Negative regulation of androgen
receptor signaling pathway

(GO:0060766)

Positive regulation of SMAD
protein signal transduction

(GO:0060391)

4th from 562 overlapping
GO terms

Positive regulation of androgen
receptor activity (GO:2000825)

No overlap with SMAD-related
GO-term Not applicable

These results, obtained via an unsupervised system biology approach, further point to a functional
antagonism between the SMAD signaling pathway and the AR pathway. On this basis, we then
performed a manual curation of the literature and listed the promoter analysis studies which previously
documented the silencing effects of AR on the transcription of SOX2 and/or gene members of the
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TGF-beta pathway (data supplement 3). We were then able to build a comprehensive network gathering
previously demonstrated protein–protein interactions and/or transcriptional regulatory links between
AR, HOXA5, and members of the TGFB1/SMAD pathway (Figure 2).
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Figure 2. Network of physical and functional interactions linking spinal cord-overexpressed HOX
proteins, members of the TGFB1 pathway, and the androgen receptor. A survey of the human
proteome was performed via the BioGrid database [41] to retrieve protein–protein interactions (in
grey lines) between HOXA5 (homeobox A5), SOX2 (SRY-box 2) and members of the TGFB1 pathway,
i.e., SMAD1 (SMAD family member 1), SMAD2 (SMAD family member 2), SMAD3 (SMAD family
member 3), SMAD4 (SMAD family member 4), TGFBR1 (transforming growth factor beta receptor 1),
TGFBR2 (transforming growth factor beta receptor 2), and TGFB1 (transforming growth factor beta 1).
In parallel, a survey of previously published promoter analysis data allowed retrieving and visualizing
(in blue dashed lines) the robustly documented silencing effects exerted by the androgen receptor on
the transcription of SOX2, SMAD3, TGFBR2, and TGFB1. Finally, the JASPAR database [58] accessed
via the Harmonizome website [59] was explored in order to retrieve predicted transcriptional targets of
HOXA5 (red dashed lines).

3. Discussion

3.1. The Spinal Cord-Overexpressed HOXA5 Gene May Amplify the TGFB1 Progliotic Pathway

We previously proposed that, while efficiently dampening neuroinflammation, chronic overexpression
of TGFB1 may promote periplaque gliosis and trigger alterations of myelin synthesis in MS spinal
cords [9]. However, we did not attempt to determine whether aging and/or spinal cord-specific cues
could shape such a process. We found here that under normal conditions, a unique set of homeobox
genes are overexpressed in the human SC as compared to the brain. Among these, HOXA5 forms
heterodimers with 2 TFs which were previously found to be involved in MS SC gliosis, namely SOX2
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and SMAD1. Although, at this stage, one may only speculate on the functional impact of HOXA5
on TGFB1-mediated astrocytosis, at least two published sets of experimental data indicate that
HOXA5 promotes the TGFB1 pathway: (i) in murine adipocytes, Hoxa5/Smad1 interaction induces the
phosphorylation of Smad1 [60] and (ii) in human carcinoma cells, the transactivating activity of HOXA5
is crucially involved in the process of TGFB1-mediated epithelial–mesenchymal transition [61]. Finally,
a re-analysis of a recent work performed in mice with experimental autoimmune encephalomyelitis
(EAE) shows that widespread CNS inflammation induces a region-specific increased expression of
Hoxa5 in SC astrocytes [62]. The region-specificity of astrocyte function is a research focus of major
interest that is, however, relatively poorly documented to date, especially with regard to spinal cord
specificities [63–66]. Our results urge investigation of the impact of SC-overexpressed HOX proteins,
notably HOXA5, on the functions of SC astrocytes under inflammatory conditions.

3.2. Androgens, via Transcriptional Silencing and SMAD-Interfering Mechanisms, May Antagonize the
Progliotic Effects of TGFB1

Testosterone, the most potent androgen receptor ligand, was previously shown to promote
myelin repair [67,68], exert immunosuppressive effects [69–72], and to prevent gliosis [48–51]. In male
patients, accumulating data indicate a role for testosterone deficit in MS progression [73,74]. Moreover,
the physiological levels of testosterone achieved in men are proposed to explain the 3:1 sex ratio
observed to the disadvantage of females in RRMS incidence [73,74]. In male patients beyond age
40, such a protective effect may be progressively lost due to the premises of andropause. However,
a loss of AR-mediated protection is also likely to occur in female patients since a gender-independent
aging-associated decline in circulating androgen precursors is observed beyond age 40. Such androgen
precursors, detectable in the blood of both males and females, are essentially synthesized by the
adrenal gland and comprise dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate
(DHAS), and androstenedione [75–77], all of which can be metabolized in AR ligands by CNS
cells including astrocytes [78]. The 1:1 sex ratio in PPMS may be thus explained by intra-CNS
androgens levels which, beyond age 40, are equally insufficient in males and females with regard to
the AR-mediated anti-inflammatory, anti-gliotic, and myelin repair-promoting functions. Similarly,
that spinal cord-located RIS (radiologically isolated syndrome) in a male patient is associated with a
higher risk of developing PPMS, and may indeed reflect a premature failure of the neuroprotective AR
pathway, as we recently proposed.

3.3. An Imbalance between the Androgen Receptor Pathway and the HOXA5-Promoted TGFB1 Pathway May
Explain the Impact of Age and Gender on MS Spinal Cord Gliosis

As revealed earlier, the SC-overexpressed HOXA5 protein may favor the TGFB1-mediated
anti-inflammatory pathway in MS spinal cords, which explains the favorable outcome of SC MS
plaques regarding their inflammatory activity. Moreover, until the aging-related decline in AR
ligands, a proper balance between the AR-mediated antigliotic pathway and the TGFB1-mediated
progliotic pathway may limit gliosis in MS SCs. However, we propose that due especially to the SC
overexpression of HOXA5, the physiological decline of AR ligands beyond age 40 exposes MS spinal
cords to the long term deleterious effects of TGFB1. Indeed, as supported by the molecular histology
of SC periplaques [8,9], TGFB1 may fuel a process of extensive astrocytosis that possibly stems from
pre-existing sites of plaque-associated gliosis (Figure 3).
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Figure 3. A proposed pathophysiological scheme of the fate of spinal cord lesions. In adult patients
before age 40, MS spinal cord lesions resolve and repair more efficiently than brain lesions. This is
due to a more potent TGFB1 anti-inflammatory pathway which is favored by physiological spinal
cord overexpression of the SMAD1-interacting protein HOXA5. At this stage, the androgen receptor
(AR) anti-inflammatory pathway superimposes to the TGFB1 pathway, promotes myelin repair,
and balances the progliotic effects exerted by TGFB1. However, in adult patients beyond age 40,
the physiological decline in AR ligands provokes an imbalance between the AR and the TGFB1
pathways. Neuroinflammation mediated by blood-derived immune cells is maintained at relatively
low levels but AR-mediated myelin repair becomes inefficient. The imbalanced TGFB1 pathway fuels
extensive gliosis and leads to profound alterations of myelin homeostasis which eventually translate
into a process of myelinodegeneration [9].

Such a progliotic TGFB1 anti-inflammatory pathway may be triggered by persisting low-grade
inflammation or, alternatively, may self-perpetuate. We previously provided data from gene
co-expression analyses indicating that TGFB1, along with a limited set of cytokine, may alter myelin
homeostasis in MS spinal cords [9]. In support of this observation, TGF-beta was recently demonstrated
to not only render aging microglia inhibitory to myelin repair but to significantly block the differentiation
of oligodendrocyte precursor cells into mature myelinating oligodendrocytes [17]. Finally, it is worth
noting that increased levels of TGFB1 were previously reported in the cerebrospinal fluid of MS
patients as compared to controls [79]. The data mining results exposed in the present paper point
to a molecular crosstalk between the AR and the TGFB1 pathways. At the protein level, previously
published biochemical analyses showed that AR interaction with the TGFB1 signaling molecule SMAD3
was responsible for an antagonism between the AR and the TGFB1 pathways [52,80–82]. Also at the
transcriptional level, several papers demonstrated the AR-mediated silencing of key genes of the
TGFB1 pathway (data supplement 3), including SMAD3 [83]. Since SMAD3 is involved in the progliotic
effects of TGFB1 [84,85], one may hypothesize that the hijacking of SMAD3 by AR may support the
antigliotic effects exerted by androgens in different in vivo experimental settings [48–51,67,86]. Finally,
since TGFB1 and AR signaling pathways may antagonize each other, any imbalance to the detriment
of the AR pathway may also result in a lowered ability of AR ligands in promoting myelin repair and
dampening inflammation.

3.4. Therapeutic Implications

There are two categories of arguments indicating that clinically relevant therapeutic implications
may be drawn from the notion of TGFB1/AR imbalance in MS progressive forms.
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Point 1: Blocking the TGFB1 pathway or stimulating the AR pathway efficiently delays and/or
dampens EAE. Regarding TGFB1, in-depth mechanistic investigations were performed in at least 2
major articles showing that blocking the TGFB1 pathway is therapeutically effective in the context of
EAE [87,88]. In particular, Luo et al. [88] demonstrated (i) an early and sustained upregulation of TGFB1
expression by microglia and astrocytes in EAE mice, (ii) a parallel intra-CNS induction of the TGF-beta
signaling pathway and (iii) substantial clinical and histological benefits afforded by the systemic
administration of a TGF-beta receptor 1 (TGFBR1) inhibitor. In another key paper, Lanz et al. [87]
showed that in EAE mice (i) endogenously generated angiotensin II sustains inflammation via the glial
upregulation of TGFB1 and (ii) the systemic administration of a pharmacological inhibitor of angiotensin
II type 1 receptor dampens clinical signs and blunts intra-CNS T-cell infiltration via a downregulation of
the TGFB1 pathway. Conversely, in transgenic mice overexpressing TGF-beta 1 under the control of an
astrocyte-specific promoter, EAE develops earlier and is more severe than in wild-type littermates [89].
With regard to the AR pathway, the systemic administration of testosterone was shown to exert
anti-inflammatory and neuroprotective effects in male EAE mice [90,91] and in female EAE mice [92].
Interestingly, in a rat model of chronic EAE, therapeutic effects of testosterone were accompanied by
a marked decrease of spinal cord astrocytosis [51]. Of note, a similar protective activity in the EAE
model was reported with the androgen precursors DHEA [93] and androstenedione [94].

Point 2: Molecules that either block the TGFB1 pathway or stimulate the AR pathway have market
authorization and are well tolerated. TGFB1 is recognized to play a major pathophysiological role in
systemic sclerosis, a chronic inflammatory and autoimmune disorder affecting the connective tissue [95].
In patients suffering from systemic sclerosis, the anti-TGFB monoclonal antibody fresolimumab,
which targets the 3 TGFB isoforms (TGFB1, TGFB2, and TGFB3), was shown to be well tolerated and
clinically efficient in a phase II clinical trial [96]. Fresolimumab is considered as a promising therapy of
systemic sclerosis, either as a standalone treatment or in combination with classical immune-targeting
compounds such as rituximab or mycophenolate mofetil [97]. Interestingly, fresolimumab is likely to
cross a partially compromised blood–brain barrier as shown in patients suffering from glioblastoma [98].
Also of note, a large array of pharmacological inhibitors of the TGF-beta pathway have been developed
and are being tested in phase I or phase II trials for the treatment of solid tumors [99]. Finally,
inhibitors of the renin–angiotensin system are off-the-shelf compounds that were previously shown
to efficiently antagonize the TGFB1 pathway [100–104]. One of these compounds, the angiotensin
II receptor type 1 antagonist Losartan, was shown to efficiently prevent the pathogenic intra-CNS
overproduction of TGF-beta 1 involved in post-stroke epilepsy [105] and in Alzheimer’s disease [106].
However, on the basis of our results, inhibiting the TGF-beta 1 pathway may become effective only
if the AR pathway is concomitantly restored. In this regard, phase I/II trials in RRMS male patients
showed promising neuroprotective and immunomodulatory effects of testosterone as well as a good
tolerance [107–109]. On the other hand, testosterone treatment is likely to expose patients to potentially
harmful adverse effects in the long term. An alternative possibility would be the use of the androgen
precursor DHEA which, using a large cohorts of subjects, has been proven to be safe in long-term
treatments, irrespective of gender [110–112]. Again, one should keep in mind that the antigliotic
activity of AR ligands may be antagonized by TGFB1. Hence, if not associated with a therapeutic
strategy aimed at dampening the impact of chronic TGFB1 overproduction, the use of AR ligands
may fail to block gliosis and low-grade inflammation. Supporting this view, EAE in middle-age male
mice is characterized by a chronic rather than acute clinical course and an overall unresponsiveness to
testosterone therapy [113].

4. Materials and Method

All bioinformatics and data mining analyses were performed at least 3 times between January
2018 and November 2019.
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4.1. Workflow of the Study

The general workflow of the present study is shown in Figure 4.
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4.2. Mining of Transcriptomics Databases Obtained from the Analysis of Human CNS Tissue Samples

The ARCHS4 database gathers and combines 84,863 sets of publicly available human RNA-seq
data for which gene expression values were z-score normalized across samples [19]. From these data,
genomic signatures were obtained for 108 human tissues or cell types, irrespective of the presence
or absence of a pathological state. The ARCHS4 library of genomic signatures was retrieved from
the Enrichr platform [18] and SC vs. brain signatures were crossed in order to identify a list of
genes which, as compared to the brain, are specific to the SC signature. In parallel, we explored
the GTEx mRNA expression database [22–24], which corresponds to the currently largest repository
of RNA-seq data obtained from normal human tissues. From the GTEx databank, we retrieved the
median TPM (transcripts per kilobase million) values obtained from the analysis of spinal cord samples
(n = 159), cerebellum samples (n = 241), hippocampus (n = 197), or brain cortex (n = 255). Finally, as a
confirmatory investigation, we also performed a survey of the Brain Net Europe (BNE) dataset [27],
gathering transcriptomics data obtained from the analysis of pathological vs. control human CNS
samples which had been carefully selected on the basis of neuropathological examination [27]. In this
study, the authors concurrently performed expression profiling of 118 samples from 6 distinct CNS
regions derived from control patients affected by non-CNS disorders or by patients affected by one
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of the following CNS diseases: multiple sclerosis, schizophrenia, Huntington’s disease, Parkinson’s
disease, Alzheimer’s disease or amyotrophic lateral sclerosis. From this study, of which the results
are deposited in the publicly available databank “GEO DataSets” (GSE26927), we retrieved the RNA
expression data obtained from 10 normal human SC samples (including 3 replicates) and 10 normal
brain cortical (BC) samples (subpial grey matter from the frontal gyri). We then performed differential
expression analysis of SC vs. BC mRNA profiles using the unequal variance and bilateral Student’s t test
(i.e., a Welch test) adjusted for multiple test corrections using the Bonferroni procedure. Concurrently
the same analysis was conducted using “GEO2R”, a NCBI interactive online tool specifically designed
to compare RNA expression data archived in GEO datasets [24].

4.3. Mining of the Proteomics Database BioGrid

BioGrid is a public database that archives protein interaction data obtained by high- or
low-throughput experimental approaches. Interactors of specific HOX proteins were individually
retrieved on BioGrid. Filters applied in our search allowed excluding protein–protein interactions that
had been reported in non-human species as well interactions that were not published. Results were
filtered for transcription factors (TFs) by crossing the retrieved list of interactors with the list of currently
known human TFs [38].

4.4. Enrichment Analyses

Enrichment analysis tools and corresponding tasks performed in this study are described below.
The enrichment web platform TargetMine [20]: TargetMine is a monthly updated web platform

that allows performing enrichment analysis of 9 large libraries of gene/protein lists. We used the InterPro
domain enrichment tool which exploits the InterPro protein families database [21]. The TargetMine
bioinformatics platform provides p-values computed from the Fisher’s exact test and adjusted for
multiple test corrections using notably the Benjamini and Hochberg procedure.

The gene ontology and GO annotations “QuickGO” website of the European Molecular Biology
Laboratory’s European Bioinformatics Institute (EMBL-EBI) [55,56]. The “QuickGO” web server, run by
the European Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI) [55,56],
allows exploration of the 44,990 GO terms used to annotate the proteins referenced in the UniProt
Knowledgebase [57] across species. When querying any given GO term on the “QuickGO”
server, the “Co-occurring terms” tablet provides the whole list of GO terms exhibiting similarities
(i.e., shared annotated proteins) with the queried GO term. We used this webtool to search for
similarities between SMAD-related GO terms and androgen receptor-related GO terms.

The Harmonizome website [59]: Harmonizome is a regularly updated website which compiles a
large collection of processed biological datasets obtained by multiple experimental and/or computational
approaches. From any queried biological object (gene symbol, protein name, biological process, etc.)
sets of associated biological objects may be retrieved, allowing for the generation of integrated
knowledge on the queried object. Here, we used the JASPAR library [58] to retrieve the predicted
targets of HOXA5.

5. Conclusions

The present study, based on the mining of transcriptomics and proteomics data, addresses a
yet poorly explored connection between age, gender, and spinal cord in MS progressive forms [114].
We conclude that the aging-related decline in AR ligands might be responsible for a process of
TGFB1-mediated gliosis that preferentially targets MS spinal cords. Such a spinal cord bias is, at least
in part, determined by the constitutive overexpression of homeobox genes (notably HOXA5) in the
human spinal cord as compared to the human brain. We propose that MS patients suffering from a
progressive form of the disease might benefit from a treatment strategy aimed at both dampening the
TGFB1 progliotic pathway and promoting the AR antigliotic pathway.
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