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Abstract: The challenge to obtain plasmonic nanosystems absorbing light in the near infrared is
always open because of the interest that such systems pose in applications such as nanotherapy or
nanodiagnostics. Here we describe the synthesis in an aqueous solution devoid of any surfactant of
Au-nanowires of controlled length and reasonably narrow dimensional distribution starting from
Au-nanoparticles by taking advantage of the properties of glucosamine phosphate under aerobic
conditions and substoichiometric nanoparticle passivation. Oxygen is required to enable the process
where glucosamine phosphate is oxidized to glucosaminic acid phosphate and H2O2 is produced.
The process leading to the nanosystems comprises nanoparticles growth, their aggregation into
necklace-like aggregates, and final fusion into nanowires. The fusion requires the consumption of
H2O2. The nanowires can be passivated with an organic thiol, lyophilized, and resuspended in water
without losing their dimensional and optical properties. The position of the broad surface plasmon
band of the nanowires can be tuned from 630 to >1350 nm.
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1. Introduction

The aggregation of gold nanoparticles (AuNPs) into clusters is a well-known phenomenon that can be
induced by crosslinking agents, cationic surfactants, or salts. In this latter case, Derjaguin, Landau, Verwey,
and Overbeek (DLVO) suggested that the interactions between particles are governed by superposition
of van der Waals forces and double layer forces [1,2]. It has been shown that aggregation occurs more
easily in organic solvents than in water [3] because of the higher solvation power of pure water to
ions. Typical crosslinking agents are molecules with at least two functional groups able to interact with
the gold surface. The most popular ones are bisthiols [4,5]. For naked gold nanoparticles, i.e., those
devoid of passivating molecules or with their surface not fully passivated, aggregation can be a slow,
spontaneous process that eventually leads to the precipitation of the clusters formed. It has been reported
that the shape (globular or linear) of the aggregates formed depends on whether the aggregation process
is a diffusion- or reaction-limited process [6,7]. Conditions for forming linear, necklace-like [8,9] or
globular [10] aggregates have been reported. The solvent used [4,11] passivating units, or the addition
of salts [3,12] to influence the process leading, prevailingly, to one or the other aggregate morphology.
Aggregation strongly affects the spectroscopic properties of AuNPs. For this reason, spectrophotometry
is of great help in assessing the morphology of the aggregate formed [13]. A necklace-like aggregate
formation is highlighted by the development of an additional, new surface plasmon resonance (SPR)
band at 650–750 nm, red-shifted with respect to the 520–525 nm band of the single, isolated AuNP. On the
contrary, close-packed, globular aggregates exhibit a single band at ca. 550–570 nm.
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For several important applications like, for instance, surface-enhanced Raman scattering (SERS)
for diagnostic purposes [14,15] or thermal therapy in nanomedicine [16,17] it would be desirable to
further red-shift the new band formed with the necklace-like aggregate formation because tissues
absorb less in the near infrared (NIR) region. The extent of the shift depends on the length of the
aggregate and, very importantly, on the distance between the nanoparticles, the closer they are the more
red-shifted is the band [18]. The shift of the plasmon resonance band beyond 700–750 nm can only be
obtained by fusing the nanoparticles into a nanowire. [19,20] It is well known that the plasmon band of
gold nanorods red-shifts with the increase of the aspect ratio [21]. In fact, nanowires (NWs), depending
on their length, absorb well within the NIR region [16,22]. Most of the several “wet” conditions for the
preparation of NWs use amphiphilic molecules like oleylamine [23,24] or cetyltrimethylamminium
bromide [25]. For biological applications, these protocols pose a serious problem of contamination of the
nanostructure by the toxic cationic additives used for their preparation [26]. Fusion of linear aggregates
by laser irradiation and not by chemical reaction has also been reported [16,27]. We report here the
synthesis of gold nanowires under milder conditions. Our results are based on the serendipitous
observation that the addition of glucosamine phosphate (GAP) to AuNPs led to the growth and fusion
of them into nanowires. We were actually looking for a mild passivating agent to replace citrate [28] in
AuNPs. However, the presence of the glucose moiety on GAP, as we will show below, resulted in a
cascade of redox processes [29] starting with AuNPs aggregation in a linear fashion and ending with
their fusion into nanowires.

2. Materials and Methods

2.1. Chemicals and Instruments

GAP, compound 1, tris(hydroxymethyl)aminomethane (TRIS), H2O2, and solvents were obtained
from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany) and used as received without further
purification unless stated otherwise. Zwitterionic thiol 2 was prepared by following previously
reported procedures [30].

Glassware in contact with gold nanoparticles was washed with aqua regia before and after its use
and rinsed with distilled water. All gold nanoparticle preparations and purifications were carried
out with milliQ water. Nanoparticles were purified by centrifugation on a Hettich Universal 320 R
centrifuge (Andreas Hettich GmbH & Co.KG, Tuttlingen, Germany) operating with a swinging rotor
(V ≤ 15 mL, rpm ≤ 5000), a 45◦ fixed angle rotor (V ≤ 5 mL, rpm ≤ 12,000) or an Eppendorf miniSpin
Plus (Eppendorf AG, Hamburg, Germany) (V ≤ 1.5 mL, rpm≤ 14,500) depending on the sample volume.

UV–Visible spectra were acquired on a Varian Cary 50 or Cary 100 spectrophotometer
(Agilent Technologies, Santa Clara, CA, USA) whereas UV–Vis–NIR spectra were acquired on a
Varian Cary 5000 spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) employing 10 mm
path length Hellma Suprasil® quartz cuvettes.

Transmission electron microscopy (TEM) analyses were run on a FEI Tecnai G12 microscope
(Thermo Fisher Scientific, Hillsboro, OR, USA) operating at 100 kV and images registered with an OSIS
Veleta 4 K camera (Olympus Soft Imaging Solutions GmbH, Münster, Germany). Samples were typically
deposited on a copper grid and the excess of solvent removed with filtering paper. Size distribution
analysis was carried out by modelling nanoparticle intensity profiles employing Pebbles (v2.0.1, A.
Ponti et al., ISTM, CNR, Rome, Italy) and size distribution calculated by performing direct statistics on
the previously modelled nanoparticles with PebbleJuggler software (v1.0, A. Ponti et al., ISTM, CNR,
Rome, Italy) [31]. Nanowire length and width were measured with ImageJ (v1.51, W. Rasband et al.,
NIH, Bethesda, MD, USA); length measurements were performed by modelling the nanowires as a
series of straight linear segments.
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2.2. Gold Nanoparticles Preparation

A modified version of a literature procedure was followed [32]. Typically, to 5.6 mL of water,
sequentially and under vigorous stirring, 1.6 mL of sodium citrate (510 mM), 250 µL of silver nitrate
(10 mM), and 500 µL of tetrachloroauric acid (250 mM) were added and stirred for 5 min. During this
time, the solution changed from initial yellow color to green, grey, and finally black. After the
incubation time, the solution was quickly added to 117 mL of boiling water and heated under reflux
for 1 h, becoming wine-red after a few seconds. The citrate-capped nanoparticles solution obtained
was then allowed to cool down to room temperature before addition of GAP.

2.3. Citrate Depletion

To the above AuNPs solution (125 mL), GAP (8 mg), dissolved in 1 mL of water, was added and
the solution stirred for 10 min. The final concentration of GAP was, accordingly, 25 µM. Free molecules
in solution were removed by using 15 or 4 mL Amicon® Ultra filters of 100 KDa molecular weight cutoff

centrifuged for 2.5 min at 2000 rpm. Prior to use, filters were prewashed twice with 1:1 H2O:MeOH and 3
times with H2O, then nanoparticles were washed 5 times with water. Typical concentrated volumes after
centrifugation for 15 and 4 mL were 1.5 and 0.4 mL respectively. To determine the amount of organic
material present before and after the depletion protocol we carried out a thermogravimetric analysis
(TGA) of the two AuNPs preparations [33,34] (see Figure S1 and Table S1 of Supplementary Materials).

2.4. Necklaces and Nanowire Formation in H2O

Aggregation and nanowire formation processes were typically followed by using approximately
100 µL of the above centrifuged sample, diluted up to 3 mL and placed in a cuvette. Temperature was
kept constant and equal to 30 ◦C during all experiments. In addition to the experiments done in the
cuvettes, nanowires have also been isolated after functionalization (passivation) with 2. By employing
60 mL of as-prepared AuNPs solution a final amount of 6.6 mg of NWs was obtained (approx. yield
based on Au, 50%).

2.5. Oxygen Depletion

A nitrogen flow was applied to the as-prepared AuNPs for 1 h. Nanoparticles were then filtered
as usual and the resulting cuvette, after dilution, was deoxygenated again by bubbling with nitrogen
for an additional 10 min. Cuvettes were sealed with parafilm and samples incubated as usual.

2.6. XPS Analysis

X-ray photoelectron spectroscopy (XPS) spectra were collected in an Ultra High Vacuum chamber
equipped with an EA 125 Omicrom electron analyzer (Scienta Omicron GmbH, Taunusstein, Germany).
Core level photoemission spectra (C 1s, O 1s, N 1s, Ag 3d, and Au 4f regions) were collected at room
temperature in normal emission with a non-monochromatized Al Kα X-ray source (hν = 1486.6 eV)
using 0.1 eV steps, 0.5 s collection time, and 20 eV pass energy. The analyzed sample was prepared
by drop casting the water solution containing Au NPs on a copper substrate. After drying in air,
the obtained film was introduced into the ultrahigh vacuum chamber and de-gassed overnight. The XPS
photoemission lines were separated into individual components (after Shirley background removal)
using symmetrical Voigt functions and nonlinear least-squares routines for the χ2 minimization.
The results are reported in the Supplementary Materials (Figure S2 and Table S2).
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3. Results and Discussion

Our original idea was to find a mild capping agent for AuNPs that could allow them to remain
stable in solution without aggregation even when used in stoichiometric concentration to passivate
the nanoparticle surface. Glucosamine phosphate (GAP, Figure 1) proved suitable for this purpose.
Indeed, under these conditions (i.e., [GAP] ≥ [Ausurface]) AuNPs are stable as can be judged by the
intensity and position of the SPR band monitored over several days. Phosphonic acid derivatives bearing
an amino group like aminomethylene phosphonic acid are mild passivating agents of AuNPs [35] and
GAP behaves in a similar way. It appears to be able to passivate AuNPs by interacting with the gold
surface more strongly than citrate because of the presence of the amino group [36]. However, when GAP
is used under substoichiometric concentrations, i.e., at a concentration lower than that of the free Au
atoms present on the surface of AuNPs, a slow aggregation process of the nanoparticles occurs that
evolves into the formation of nanowires. As we discuss below the glucose moiety of GAP is necessary
for the final outcome of the process. Oxidation of glucose to gluconic acid under aerobic conditions
in the presence of AuNPs was first reported by Rossi et al. [37]. They observed a steady growth of
nanoparticles during the process. It was later discovered [38] that hydrogen peroxide was also formed
in addition to gluconic acid [29,39]. Hydrogen peroxide is known to be able to reduce Au(III) and Au(I)
to Au(0) in the presence of the AuNPs [29]. All the above processes are involved in the formation of
nanowires from AuNPs as we discuss here.
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3.1. Preparation of the AuNPs

The AuNPs were prepared as described in Section 2.2 by reduction of Au(III) with citrate. Their size
was estimated by TEM (Figure 2A) to be 8.5 ± 1.5 nm. The washing procedures with water (Section 2.3)
resulted in the depletion of most of the citrate. TGA reveals that the percentage of organic material is
reduced from 14.4% to 4.3% after the washing cycles. By considering 8.5 nm spherical nanoparticles
(the spherical shape is an acceptable simplification for nanoparticles of this size) [33] we estimated,
as discussed elsewhere [34] that ca. 30% of the gold atoms on the surface of the nanoparticles is
not passivated in the “citrate-depleted” nanoparticles compared to none before the organic material
removal protocol we performed. The Zeta potential of the as-prepared AuNPs is −25.5 mV while
that of the citrate-depleted ones drops to −2.5 mV. The TGA experiments indicate that, when GAP is
added, the amount of organic material remaining after the depletion process is higher (see Figure S1 of
Supplementary Materials). Our estimate is that [GAP]final is 4–5 µM.
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3.2. GAP-Induced Aggregation in Water and NWs Formation

The AuNPs we prepared are stable under the preparation conditions ([sodium citrate] = 6.8 × 10−3 M)
for prolonged times. However, when most of the citrate is removed (citrate-depleted AuNPS, see Section 2.3)
they start very slowly to cluster [40,41] as can be seen in the absorbance spectrum (slight increase of
absorbance >600 nm in Figure 2B) and increase in size (increase in absorbance at 525 nm in Figure 2B
and TEM image in Figure 2C). Clearly, under these low passivation conditions, Ostwald ripening cannot
be prevented.

On the other hand, if GAP is present in the “citrate depleted” AuNPs we observe not only
the growth in size of the nanoparticles (Figure 3B) but also a relatively faster aggregation process
(from days to hours) leading to necklace-like aggregates as revealed by the formation of an additional
absorption band at 650–680 nm (Figure 3A, traces in red). This aggregation process only occurs when
substoichiometric amounts of GAP are added. After longer times (days) this band broadens and
shifts to longer wavelengths up to >1200 nm (Figure 3A, traces in blue). Throughout the experiment,
the solution pH remains constant at 6.5. TEM images taken at different time intervals revealed the
formation of nanowires of increasing length resulting from the fusion of the formed necklace-like
aggregates (Figure 3C–E). The aggregation and fusion processes can be also followed by the naked eye
as can be seen in Figure 4. As a matter of fact, the two processes are not fully separated and some
fusion already occurs after four days.

Very interestingly, if aliquots of the solution are collected at different time intervals and treated
with thiol 2 (Figure 1) the obtained NWs are “frozen” and prevented from any further growth.
These passivated nanowires can be lyophilized and redissolved showing a spectrum identical to the
one recorded at the time of the thiol addition. The only relevant difference is a decrease of the intensity
of the longer wavelength band in part associated with the passivation process (Figure 5). TEM analysis
of these samples (Figure 6) reveals NWs characterized by a broad-length distribution. The average
aspect ratio of such nanowires increases with the time allowed for the original AuNPs to evolve,
prior to the addition of thiol 2 (Table 1). At variance with nanorods that show relatively narrow SPR
bands depending on their aspect ratio, our nanowires present rather broad SPR. This is the result of
the coexistence of several plasmon modes related to the broad distribution of their length and the
existence of branching points (clearly visible in Figure 3D,E) [16].
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Table 1. Dimensions of the nanowires after stopping the AuNPs aggregation and fusion at different
times and the maximum of the longer-wavelength plasmon resonance band.

Length/nm a Width/nm a Aspect Ratio a λmax

59 ± 29 21 ± 3 3 ± 1 634 nm
269 ± 112 24 ± 3 11 ± 4 952 nm
988 ± 212 26 ± 4 38 ± 12 >1350 nm

a Average of 17 (634 nm), 12 (952 nm) or 7 (>1350 nm) nanowires from 2–3 different TEM pictures.
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3.3. Analysis of the Different Processes Occurring and the Role of GAP

3.3.1. The Role of the Functional Groups of GAP in the Aggregation of AuNPs under Substoichiometric
Passivation Conditions

The experimental results indicate that the aggregation of the AuNPs only occurs when the surface
Au atoms are not fully passivated either by citrate or GAP. Our estimate (see Section 2.3) is that ca. 5 µM
GAP is still present in the “citrate depleted” AuNPs. We calculated (see Section 2 in Supplementary
Materials) that the concentration of the surface Au atoms of these 8.5 nm AuNPs is ca. 30 µM.
This means that the amount of GAP is ca. 18% of that required to fully saturate the nanoparticles surface.
Incidentally, this GAP concentration is also the optimum one required for crosslinking of similarly
citrate-depleted AuNPs by using amino acids [34]. The group with the strongest affinity for AuNPs
among those present on GAP is the primary amine. Passivation of AuNPs by amines, although leading
to less robust nanoparticles than those passivated with thiols, is well documented [42–44]. What is the
other functional group responsible for the crosslinking? Those present on GAP, apart from the amine,
are the sugar hydroxyls and the phosphate groups. O-phosphorylethanolamine (1, Figure 1) is an
amino phosphate devoid of the sugar moiety. When GAP is replaced by 1, AuNPs grow very little and
do not aggregate at all (see Figure S3 of Supplementary Materials). Tris(hydroxymethyl)aminomethane
(TRIS, Figure 1) is an amino-alcohol [13]. It induces very limited linear aggregation towards necklaces
that do not evolve into nanowires (see Figure S3 of Supplementary Materials). Accordingly, neither
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the hydroxyls nor the phosphate present on GAP appear to be involved in the crosslinking process.
As is shown below, a new functional group is formed during the early steps of the overall process:
a carboxylate. This is responsible for the aggregation in a process not much different from that observed
with some amino acids [34].

3.3.2. The Role of Glucosamine

All experimental evidence points to a critical role played by the glucose subunit present in GAP.
It is known that glucose is involved in several redox process in the presence of Au(I) or Au(III) ions
and AuNPs, as well. It is able to reduce HAuCl4 into AuNPs [37]. The AuNPs, once formed, oxidize
glucose to gluconic acid while reducing O2 to H2O2 [28,38,39]. Furthermore, H2O2 is also able to reduce
AuCl4− to Au(0) [45–47]. The oxidation of GAP was demonstrated in our case by analyzing the organic
component of AuNPs passivated with an excess of GAP. Under these conditions, obviously, the AuNPs
do not crosslink but the amount of GAP is such to allow its quantification with time. 1H-NMR analysis
of the organic component of the AuNPs after several days reveals (see Figure S4 of Supplementary
Materials) the disappearance of the signals amenable to GAP and the appearance of signals pertaining
to the oxidized glucosaminic acid phosphate (GAP-COOH, Figure 1) derivative. Thus, during this
time, GAP is oxidized to GAP-COOH. Depletion of O2 from the system prevents the oxidation. In the
absence of O2, GAP behaves in the very same way as 1 does (see Figure S5 of Supplementary Materials)
and aggregation is not observed. The above results indicate that GAP-COOH, at low concentration,
is responsible for the linear aggregation of the nanoparticles. This implies that a carboxylate group
has a higher affinity for the nanoparticle surface than a phosphate group. The aggregation is hence
indirectly initiated by a redox process requiring both the glucose moiety of GAP and O2.

3.3.3. The Overall Process

The overall process of formation of the nanowires requires the following steps: (a) the AuNPs
growth and oxidation of GAP to GAP-COOH; (b) the formation of necklace-like aggregates; (c) the
fusion of the aggregates into nanowires.

The initial growth of the original nanoparticles (Figure 3B) is a well-known phenomenon
reported for poorly-passivated gold nanoparticles [48]. AuNPs growth leads to the decrease of
their overall surface area and, hence, the amount of passivating GAP and GAP-COOH required
for their stabilization is also lower. Furthermore, larger nanoparticles are less prone to aggregation
and subsequent coalescence [48]. Both these points explain why the growth of the nanoparticles,
which reflects on the width of the final nanowires, stops at ca. 25 nm from the 8.5 nm diameter of
the original ones. We observe that nanoparticles growth is fast at the early stages of the process
while it slows down considerably with time (Figure 3B). However, the key question is what leads to
nanoparticle fusion once the linear aggregates are formed. It has been reported that 3–5 nm AuNPs
prepared by citrate reduction of HAuCl4 followed by further reduction with NaBH4 still contain ca. 4%
Au(I) [49]. In the absence of the final NaBH4 reduction, as in our case, the amount is expected to be
larger. XPS analysis of our as-prepared-AuNPs reveals that ca. 9–10% Au(I) is still present (Figure S2
and Table S2 of SM). Cold welding of ultrathin gold nanowires has been reported as the result of fast
surface-atom diffusion under low pressure [50]. Such atom diffusion has been also suggested in the
case of NWs formation in the presence of surfactants [25]. We hypothesize, however, that the reduction
of residual Au(I) by the H2O2 produced in the reduction of O2 could provide the “glue” for fusing the
AuNPs together when the necklaces are already formed. To test this hypothesis we prepared linear
AuNPs aggregates by addition of NaCl in EtOH following a reported procedure [3]. Their aggregation
is reversible, as reported. However after the addition of H2O2, rapid, irreversible fusion is observed as
shown in Figure 7. This strongly supports the suggestion that H2O2 reduces the residual Au(I) present
in the aggregated nanoparticles leading to their fusion into NWs.
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aggregation and subsequent addition of H2O2. Nanowires were obtained without adding GAP.

When we examine in detail the formed nanowires, the “memory” of the original nanoparticles is
manifested by their wavy aspect, which is not much different from that observed by Xia et al. [25].
for nanowires prepared in the presence of cetyl-trimethylammonium bromide. We cannot rule out
that Au atoms could diffuse along individual nanowires to generate smooth surfaces, but this is not
the process that starts the AuNPs fusion. Contrary to ultrathin NWs [24,51,52] ours are very likely
polycrystalline rather than single-crystal structures. The branching of the nanowires occasionally
observed could be due to the merging of smaller diameter nanoparticles. It has been demonstrated
that, while gold nanoparticles of the same size aggregate in a linear fashion, the coexisting smaller ones
are less selective leading to lateral aggregation (Figure 8) [8]. Obviously, during the growth process,
nanoparticles of different size coexist in spite of the rather narrow size distribution of the original
AuNPs preparation. The wavy morphology of these NWs and the absence of any surfactant for their
preparation is likely on the basis of their easy passivation, in strong contrast with what is typically
observed with gold nanorods for which ligand exchange is not a trivial endeavor [53].
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Figure 8. TEM pictures with highlighted branching points formed due to the non-linear disposition of
AuNPs of small size in two different samples still mostly at the necklace-like aggregation state.

To sum up, the experimental evidence suggests that the small amount of GAP present after the
partial depletion process is oxidized to GAP-COOH in the presence of O2, which, in turn is reduced to
H2O2. GAP-COOH is responsible for the aggregation of AuNPs into mostly necklace-like aggregates
while the reduction of residual Au(I) to Au(0) by H2O2 is responsible for the fusion of the aggregates
with formation of nanowires. It has been reported [54] that gold nanorods can be oxidized by O2 to
Au(I) under acidic conditions and high temperature in the presence of CTAB leading to their shortening.
Although our conditions are much different from those reported for such a process to occur, we cannot
rule out that a similar oxidation reaction could constitute an additional source of Au(I) for the fusion of
our AuNPs.
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4. Conclusions

We report here a straightforward and mild procedure to induce the aggregation of AuNPs mostly
in a linear fashion to form necklaces that eventually fuse into nanowires. Experimental evidence
indicates that the evolution of the nanoparticles into nanowires is associated with a redox process
catalyzed by the nanoparticles involving the oxidation of the glucose moiety of GAP, the reduction
of O2 to H2O2 and eventually, the reduction of remaining Au(I) ions present in the gold clusters by
the H2O2 formed. The product of the oxidation of GAP, the gluconic acid derivative GAP-COOH,
appears to drive the mostly linear aggregation of the AuNPs while their fusion requires the reduction
of residual Au(I) to Au(0) by H2O2. Because of the small amount of passivating agent present at the
onset of the experiments, nanoparticles grow quickly by interacting together and coalescing into bigger
ones. At the early stages of the process, GAP exerts the double role of a reducing agent on one side
and a source of the efficient crosslinking compound GAP-COOH on the other. Fusion of the linear
aggregates into nanowires is then due to reduction of residual Au(I) by H2O2. The overall process
is depicted in Figure 9. The final result is the synthesis of NWs with a broad SPR band centered at
a wavelength that is more red-shifted the longer the incubation time. They can reach wavelengths
well above 1000 nm. These nanowires can be covered with a thiol that, by forming a surrounding,
passivating monolayer, stabilizes them, prevents any further growth, and allows their lyophilization
and resuspension in water without any significant change in optical properties.
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Figure 9. Cartoon rendition of AuNPs evolution towards nanowires: (i) GAP (red) poorly-passivated,
small AuNPs grow by clustering and coalescence; the nanoparticles catalyze the oxidation of GAP to
GAP-COOH (blue) and O2 is reduced to H2O2; (ii) larger nanoparticles aggregate to form necklaces in
a process mostly driven by GAP-COOH. Ramifications occurs because of the less selective aggregation
of smaller nanoparticles; (iii) residual Au(I) is reduced to Au(0) by H2O2 and this induces fusion and
nanowires formation.

We believe that our results are very important for several applications, particularly in the field of
nanomedicine [55] in view of the great interest in nanosystems presenting plasmon resonance bands
shifted in the IR region where cells and tissues do not absorb the radiation. Accordingly, also because
of the use of non-toxic GAP in water and without any organic solvent or surfactant [56] and the ease of
functionalization, they can be addressed for therapeutically relevant or analytical purposes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/4/622/s1,
Figure S1: Thermogravimetric analysis of the citrate-passivated AuNPs, Table S1: Thermogravimetric analysis of
nanoparticles, Figure S2: Au 4f photoemission line, Table S2: Surface elemental composition, Figure S3: Effect
of addition of 2 or TRIS to AuNPs, Figure S4: 1H-NMR spectra of GAP in the presence of AuNPs after 2 weeks,
Figure S5: UV-Vis spectra of AuNPs treated with GAP in the absence of O2.
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