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Generalization vs. Specificity: In
Which Cases Should a Clinic Train its
Own Segmentation Models?
Jan Schreier*, Francesca Attanasi and Hannu Laaksonen

Varian Medical Systems (United States), Palo Alto, CA, United States

As artificial intelligence for image segmentation becomes increasingly available, the

question whether these solutions generalize between different hospitals and geographies

arises. The present study addresses this question by comparing multi-institutional

models to site-specific models. Using CT data sets from four clinics for organs-at-risk

of the female breast, female pelvis and male pelvis, we differentiate between the effect

from population differences and differences in clinical practice. Our study, thus, provides

guidelines to hospitals, in which case the training of a custom, hospital-specific deep

neural network is to be advised and when a network provided by a third-party can

be used. The results show that for the organs of the female pelvis and the heart the

segmentation quality is influenced solely on bases of the training set size, while the patient

population variability affects the female breast segmentation quality above the effect of

the training set size. In the comparison of site-specific contours on themale pelvis, we see

that for a sufficiently large data set size, a custom, hospital-specific model outperforms

a multi-institutional one on some of the organs. However, for small hospital-specific data

sets a multi-institutional model provides the better segmentation quality.

Keywords: deep learning, segmentation, radiotherapy planning, neural network, generalizability

INTRODUCTION

Radiotherapy is a common treatment modality for breast cancer as well as pelvic cancer types.
During the planning process of the treatment, the target structure(s) as well as surrounding organs-
at-risk (OAR) need to be segmented. This is a time-consuming task, which takes, for example, for
a breast cancer case on average 31 min (1).

Previously, heuristic automatic segmentation algorithms have been developed to decrease the
contouring effort. These algorithms are based on for example water shedding (2), thresholding
(3) and region growing (4). Additionally, convolutional filters have been used to segment breast
segments on MR images (5). In contrast to these heuristic algorithms, atlas-based methods
have been developed for propagating the structures from a reference patient to a specific target
patient (6, 7).

Recently, machine learning techniques such as random forests (8) and neural networks have
emerged to prominence in medical image segmentation. More specifically, deep learning as an
advanced machine learning algorithm has been frequently applied to similar problems (9). For
example, fully convolutional neural networks have been used to segment organs in the head and
neck region (10), in the thorax (11), abdomen (12) and pelvis (13, 14).

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.00675
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.00675&domain=pdf&date_stamp=2020-05-14
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jan.schreier@varian.com
https://doi.org/10.3389/fonc.2020.00675
https://www.frontiersin.org/articles/10.3389/fonc.2020.00675/full
http://loop.frontiersin.org/people/674726/overview
http://loop.frontiersin.org/people/713839/overview


Schreier et al. Generalization vs. Specificity

One common challenge in any automatic segmentation
approach is the inter-observer variability (6). This inter-site
variability leads to differing performances of the same algorithm
among different hospitals (15). A study for a deep neural network
on MRI showed that a multi-site model is more robust to unseen
data than a single-site model (16). However, the differences
between different MR scanners and acquisition protocols might
explain part of the difference (17).

This study first compares the performance of a multi-site,
single-site, and third-party model based on the different patient
populations of various hospitals in different geographies. Here,
the structures are created by the same group of experts to
mitigate differing contouring practices. Finally, we compare
the performance of the three different types of models on the
male pelvis with the contours being created by the respective
hospitals. Thus, the effect of the differences in contouring
practice are visible.

METHODS

Data
Female Breast

CT datasets from the databases of four institutions were selected
for this study, one from North America (Clinic B) with 64
patients and three from Europe (Clinic A, C, and D) with
83, 86, and 47 patients respectively. The completed dataset
consisted of heterogeneous CT breast scans to ensure balance
with respect to diagnosis, age and body mass index. All patients
were scanned in the supine position and immobilized either
with breast boards (flat or low-angled) or vacuum cushions.
Patients from Clinic B, C, and D were scanned with both arms up
instead of the traditional one arm up used in Clinic B. All OARs
were delineated according to RTOG guidelines (18) by three
experienced dosimetrist and comprised left breast, right breast
and heart. A summary of the data set together with the average
volumes for each structure per clinic can be seen in Table 1.

TABLE 1 | Displayed is information for each of the clinics of the female breast data set. The volumes are in cubic centimeters.

Clinic Geography #Patients #Scans Volume Left Breast Volume Right Breast Volume Heart

Clinic A UK 83 83 1200 ± 556 1214 ± 566 654 ± 101

Clinic B US 64 64 1240 ± 559 1271 ± 586 680 ± 103

Clinic C Italy 86 86 808 ± 449 806 ± 446 597 ± 77

Clinic D France 47 47 947 ± 461 958 ± 455 626 ± 101

TABLE 2 | Displayed is information for each of the clinics of the female pelvis data set. The volumes are in cubic centimeters.

Clinic Geography #Patients #Scans Volume Bladder Volume Rectum Volume Uterus

Clinic A Europe 79 298 226± 310 62± 34 114± 70

Clinic B Europe 14 33 165± 127 51± 23 150± 148

Clinic C India 7 84 278± 130 47± 22 108± 49

Clinic D North America 92 184 115± 83 62± 36 179± 117

Female Pelvis

The dataset for the female pelvis contains both CT, CBCT,
and generated pseudo CBCT images from four different clinics.
Clinic A and B are located in Europe with 79 and 298 scans
from 14 and 33 patients respectively. Clinic C is located in
India with 84 scans from 7 patients and Clinic D is located in
North America with 92 CT scans and from these 92 generated
CBCT scans. Clinic A, B, and C contain one to two CT scans
and between one and 20 CBCT per patient. While some CT
images contained structures from the original hospital, the CBCT
scans did not have contours created by the clinics. Therefore,
all contours have been either curated or redrawn by a group of
five experienced dosimetrists. A summary of the data set together
with the average volumes for each structure per clinic can be seen
in Table 2.

Male Pelvis

The dataset for the male pelvis contains CT images with
structures for the bladder, rectum, prostate and seminal vesicle
from four different clinics. Clinic A, C, and D are located in
North America with 76, 25, and 55 patients respectively. Clinic
B is located in Europe and provided 20 patients. For each patient,
there is one 3D CT image with structures in the dataset. The
structures are provided by the hospitals and are used unmodified
with the exception of the seminal vesicles. Here, the original
structure covered only the proximal part and was extended to
cover the full organ. A summary of the data set together with
the average volumes for each structure per clinic can be seen
in Table 3.

Architecture and Training
The BibNet architecture is used as its performance has been
proven previously both for segmentation of female breast and
heart on CT images (19) and for segmentation of OARs in the
male pelvic region on CT and CBCT (15). For both models
parametric rectified linear unit layers (PRelU) and dropout layers
with a dropout rate of 0.5 are used.
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TABLE 3 | Displayed is information for each of the clinics of the male pelvis data set. The volumes are in cubic centimeters.

Clinic Geography #Patients #Scans Volume Bladder Volume Prostate Volume Rectum Volume Seminal Vesicle

Clinic A North America 76 76 389± 193 47± 21 80± 39 12± 4

Clinic B Europe 20 20 294± 207 54± 21 71± 33 17± 6

Clinic C North America 25 25 165± 106 43± 12 64± 19 9± 4

Clinic D North America 55 55 256± 182 47± 20 52± 15 15± 6

FIGURE 1 | Shown are segmentations of the general models (dark) and the ground truth (bright) for example patients from Clinic A (top left), Clinic B (top right), Clinic

C (bottom left) and Clinic D (bottom right) for the female breast (A), the female pelvis (B), the male pelvis (C).

The female breast model is trained on patches of size 256 ×

256× 32. During each training, 8models were random initialized
and the best performing one trained until 40,000 iterations. The
Jaccard loss is used as a loss function for all models.

For the female and male pelvis the model is trained on patches
of size 192 × 192 × 32. During each training, eight models are
random initialized and the best performing one trained until
25,000 iterations. In most cases, the Jaccard loss is used as a
training loss. However, in the case of a mode breakdown, that is
to say if one structure is not contoured at the end of the training,
the loss is switched to a Tversky loss with α = 2 and β = 0.5.
Through this, false negatives are weighted more strongly than
false positives, which circumvents the mode break down.

Experiments
For all anatomical sites, a multi-site model is trained using
training data from all clinics. Further, for each clinic a single-
site model is trained using only its own data and a “third-party”
is trained using all but its own data. To increase the statistical
significance of the results, 5-fold cross validation is used for
the single-site and the multi-site model. Additionally, a multi-
site model is trained using only subsets of the training cases,
while maintaining the same splits in test, validation and train
set. As 5-fold cross validation is used in the before described
experiments, each patient is once used in the test set, while not
being present in validation or training.

For the size test on the breast data set the first split is trained
using different sizes of 25, 50, 75, 100, 150, and 200 patients.
This is due to the long training time for the breast models (∼3
days/model on a Nvidia K80). On the female pelvis region 5-fold
cross validation is used. The pelvic model is trained using 5 (38±
13), 10 (41± 10), 25 (115± 12), 50 (208± 57), and 75 (327± 18)

patients, and training scans respectively. On the male pelvis, the
sizes 10, 25, 50, 75, and 100 each one model is trained using the
first training split of the above mentioned cross-validation.

Evaluation
For the comparison between themulti-site and single-site models
as well as for the difference between image-specific and multi-site
model and position-specific and multi-site model a paired t-test
is performed with the critical value set to 5%.

RESULTS

Female Breast
All trained models are able to segment both breast and the
heart. Example segmentations from themulti-site model together
with the ground truth for one patient per clinic can be
seen in Figure 1A.

The box plots of the comparisons are shown in Figure 2A.
For clinics, all of the organs are combined in the plot, and for
the organs, all of the clinics are combined. The median dice
scores together with the results of the statistical tests can be
found in Table 4.

Overall the multi-site model performs statistically
significantly better for Clinic B, C, and D than both the
third-party and the single-site model. On Clinic A, the single-site
model performs best, while being statistically significantly
compared to the third-party model but not the multi-site model.

With respect to the heart, the multi-site model performs best
for all except Clinic D, where the third-party model performs
better. For the latter, the difference is statistically significant
toward the single-site model but not the multi-site model.
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FIGURE 2 | Boxplots of the multi-site, third-party and single-site model per clinic and per organ for the female breast (A), the female pelvis (B), and the male pelvis

(C). Here, for the plots per clinic, all organs are combined, whereas for the plots per organs, all clinics are combined.
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Concerning the breasts, the single-site model performs best
for Clinic A and on the left breast on Clinic C. For these cases,
the difference between the single-site and the third-party model
is statistically significant but not toward the multi-site model.
On the other hand, the multi-site model performs better than
the other two on Clinic B and D and for the right breast of
Clinic C. The differences to the third-party model are statistically
significant for Clinic B and C and toward the single-site model for
the left breast on Clinic B and the right breast on Clinic C. The
differences in Clinic D are not statistically significant. On Clinic
B, the single-site model performs better than the third-party
model on the right breast but worse on the left breast. Whereas,
on Clinic D, which has the smallest data set, the third-partymodel
performs slightly better but not statistically significant than the
single-site model.

The results of the size test can be seen in Figure 3A.

Female Pelvis
All trained models are able to segment bladder, rectum and
uterus. Example segmentations from the multi-site model
together with the ground truth for one patient per clinic can be
seen in Figure 1B.

The results of the multi-site, third-party and single-site model
can be found inTable 5. Further, a box plot of the results is shown
in Figure 2B.

The mean dice score for the multi-site and single-site model
respectively are 0.81 and 0.76 for the bladder, 0.71 and 0.63
for the rectum and 0.77 and 0.69 for the uterus. The average
dice score per clinic over all three organs for the multi-site and
single-site model respectively are 0.64 and 0.56 for Clinic A, 0.79
and 0.72 for Clinic B, 0.79 and 0.63 for Clinic C, and 0.76 and
0.73 for Clinic D. The differences between the multi-site and
the single-site model are statistically significant for all clinics
and organs.

Overall, the multi-site model performs best for all four clinics
with the difference being statistically significant toward the
single-site model in all cases and toward the third-party model
for Clinic B and D. The multi-site model performs statistically
significantly better than the single-site and third-party model for
all organs compared separately onClinic B andD as well as for the
Bladder on Clinic A. Even though the multi-site model performs
best on the rectum for Clinic I and the bladder for clinic C, this
difference is only statistically significant compared to the single-
site model but not the third-party model. On Clinic A and C the
third-party model performs best on the uterus and on clinic B on
the rectum, with the differences being statistically significant only
compared to the single-site model.

The results of the size test can be found in Figure 3B.

Male Pelvis
All trained models are able to segment bladder, prostate, rectum
and seminal vesicle. Example segmentations from the multi-site
model together with the ground truth for one patient per clinic
can be seen in Figure 1C.

The results of the multi-site, third-party and single-site model
can be found inTable 6. Further, a box plot of the results is shown
in Figure 2C. T
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FIGURE 3 | The median dice score of single-site model with standard deviation (dots) and the results of the size test per clinic and overall (lines) for the female breast

(A), the female pelvis (B), and the male pelvis (C).

The results of the size test can be found in Figure 3C.
The multi-site model provides overall the best performance

for Clinic A, with the difference being statistically significant only
toward the third-party model. On Clinic B and C, the third-
party model, which has here the largest training set size of 140
and 136 respectively, performs best. The difference is statistically
significant toward the single-site model. For Clinic D, the single-
site model performs best. When comparing the third-party and
the single-sitemodel, we can see that onClinic A, the prostate and
the seminal vesicles are contoured better by the single-site model.
On Clinic D, the rectum and prostate are contoured better by the
single-site model. On Clinic B, the single-site model performs
better on the bladder, while not being statistically significant.
For the remaining Clinics and organs, the third-party model
performs better than the single-site model.

DISCUSSION

The population-based experiment on the female breast and
female pelvis show that there seems to be no advantage for
a site-specific model for the organs of the female pelvis and
the heart. However, for the female breast there is an advantage
of a site-specific model compared to a third-party model if
the training set is sufficiently large. This could be explained
through the larger inter-population variation of the female breast
compared to the internal organs of the female pelvis and the
heart. As the shape and size of the breasts correlates with
factors such as geography (20) and body mass index (21) of the
patient population, the breasts of patients from clinics, which
are in different geographies, differ. This impact of geography is
observed in the differences of the average breast volumes in this
study, with the patients from UK and US having on average a
larger breast volume than the patients from Italy and France.
This correlates with the differing average body mass indices in
the respective countries, with US and UK having larger average
body mass indices than France and Italy (22). Therefore, a model,
which has not been trained with patients of a certain geography,
suffers from an inferior quality compared to a site-specific model,

which has seen patients from its geography. This study suggests
that this is the case even if the training set size is smaller. In
contrast to this, the anatomy of the heart and the organs of the
female pelvis are less anatomically variable and the anatomical
boundaries are better defined than for the breast.

The experiment based on different clinical practice on the
male pelvis relies on the conclusion drawn from the population-
based experiment. There, we could see that for internal organs the
population difference does not play a significant role. Therefore,
the differences between the different model types in the male
pelvis experiment are mainly based on the different training set
sizes and differing clinical practices. We can see that for the two
smallest hospitals, the site-specific models perform worse when
compared to both the third-party and the multi-site model. This
is most likely due to their small training set sizes of 14 and 17
patients. In the other two hospitals, we can see that overall the
multi-site model is either better (Clinic A) or equivalent (Clinic
D) to the site-specific model. When comparing per structure the
site-specific to the third-party model, we can see that for the
Clinic A the prostate and seminal vesicles perform worse. For
Clinic D, the rectum performs worse on the multi-site and third-
partymodel compared to the single-sitemodel. Thismight be due
to a varying contouring practice of this hospital, e.g., a different
inferior and superior end of the rectum. For both Clinic A and D,
the third-party model is outperformed overall by the site-specific
model. One might note here that the site-specific models have
less data available for training than the third-party model and
increasing the data set size might increase the described effect.

Our experiments show that the multi-site model performs
equally or better than a model trained specifically for each clinic.
For the female breast, this is true even when comparing models
trained with similar training set sizes. For the female pelvis,
the difference is ambiguous when comparing equal number
of training patients. This result is influenced by the varying
number of scans per patient. When considering the average
number of training scans in each split, there is no clear difference
between the single-site and the multi-site model. For the male
pelvis, the site-specific models perform better than the multi-site
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TABLE 5 | The median dice score with standard deviation for the organs of the female pelvis and the three different model types.

Clinic A Clinic B Clinic C Clinic D

multi-site Third-party Single-site multi-site Third-party Single-site multi-site Third-party Single-site multi-site Third-party Single-site

Bladder 0.791 ±

0.249

0.726 ±

0.277

0.663 ±

0.266

0.873 ±

0.113

0.850 ±

0.150

0.861 ±

0.188

0.908 ±

0.056

0.904 ±

0.069

0.869 ±

0.181

0.797 ±

0.171

0.768 ±

0.260

0.789 ±

0.144

Rectum 0.702 ±

0.172

0.693 ±

0.139

0.631 ±

0.148

0.733 ±

0.110

0.667 ±

0.127

0.682 ±

0.130

0.720 ±

0.107

0.726 ±

0.120

0.583 ±

0.216

0.738 ±

0.093

0.703 ±

0.144

0.686 ±

0.162

Uterus 0.648 ±

0.237

0.726 ±

0.280

0.514 ±

0.247

0.821 ±

0.103

0.789 ±

0.118

0.746 ±

0.140

0.808 ±

0.158

0.813 ±

0.170

0.665 ±

0.255

0.840 ±

0.136

0.730 ±

0.278

0.816 ±

0.137

Combined 0.724 ±

0.229

0.714 ±

0.244

0.628 ±

0.233

0.809 ±

0.120

0.768 ±

0.150

0.756 ±

0.165

0.817 ±

0.134

0.808 ±

0.147

0.691 ±

0.253

0.793 ±

0.141

0.724 ±

0.236

0.763 ±

0.159

For each clinic, a multi-site model, which was trained using data from all four clinics, a third-party model, which is trained on data from all clinics but the one it is evaluated on, and a single-site model is shown. In bold is the best

performing model per organ and clinic. The cell is shaded in gold if the difference between the best and the second-best model per category is statistically significant and in grey if the difference between the best and the worst model

per category is statistically significant.

TABLE 6 | The median dice score with standard deviation for the organs of the male pelvis and the three different model types.

Clinic A Clinic B Clinic C Clinic D

multi-site Third-party Single-site multi-site Third-party Single-site multi-site Third-party Single-site multi-site Third-party Single-site

Bladder 0.948 ±

0.091

0.945 ±

0.134

0.944 ±

0.161

0.927 ± 0.02 0.931 ±

0.021

0.932 ±

0.034

0.921 ±

0.032

0.924 ±

0.036

0.900 ±

0.056

0.928 ±

0.178

0.925 ±

0.079

0.917 ±

0.142

Prostate 0.837 ±

0.061

0.808 ±

0.056

0.834 ±

0.087

0.838 ±

0.034

0.842 ±

0.047

0.813 ±

0.061

0.868 ±

0.066

0.867 ±

0.052

0.857 ±

0.125

0.826 ±

0.064

0.819 ±

0.070

0.824 ±

0.146

Rectum 0.799 ±

0.064

0.790 ±

0.074

0.778 ±

0.076

0.799 ±

0.078

0.839 ±

0.071

0.775 ±

0.073

0.805 ±

0.069

0.842 ±

0.078

0.775 ±

0.070

0.775 ±

0.074

0.787 ±

0.078

0.795 ±

0.071

Seminal

vesicle

0.663 ±

0.125

0.630 ±

0.140

0.690 ±

0.144

0.723 ±

0.077

0.755 ±

0.086

0.721 ±

0.158

0.614 ±

0.177

0.672 ±

0.135

0.631 ±

0.201

0.681 ±

0.101

0.679 ±

0.116

0.662 ±

0.174

Combined 0.825 ±

0.123

0.804 ±

0.138

0.811 ±

0.132

0.834 ±

0.096

0.841 ±

0.093

0.801 ±

0.135

0.852 ±

0.165

0.854 ±

0.139

0.792 ±

0.175

0.814 ±

0.118

0.809 ±

0.115

0.816 ±

0.126

For each clinic, a multi-site model, which was trained using data from all four clinics, a third-party model, which is trained on data from all clinics but the one it is evaluated on, and a single-site model is shown. In bold is the best

performing model per organ and clinic. The cell is shaded in gold if the difference between the best and the second-best model per category is statistically significant and in grey if the difference between the best and the worst model

per category is statistically significant.
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model, when the number of training patients is equal. Thus, the
improved performance previously mentioned seemed to be due
to the increase number of training cases.

For the female pelvis on Clinic D, the third-party model
performs worse than a single-site model. Here, the difference
might be caused through the lower number of CT scans in the
training set of the third-party model. The comparison between
the third-party model and the multi-site model showed that the
multi-site model performs better for all clinics on the bladder and
for all but one clinic on the rectum. Interestingly, the third-party
model performs better on the uterus than the multi-site model
for Clinic A–C but worse than the multi-site and the single-
site model for Clinic D. The reason for this could be similar to
the uterus result on CBCT: During the training of the multi-
site model, 30% of the Clinic D, which contains 61% of the CT
scans, is excluded from the training set. Therefore, less accurate
ground truth for uterus delineation exists in the multi-site model
compared to the third-party model, which uses the full data set
from Clinic D as training and validation set. The opposite holds
true for the third-party model for Clinic D: Here, only 39% of the
CT scans can be used in training and the majority of the training
set contains CBCT scans. Thus, the performance on Clinic D is
deteriorated such that both the multi-site model and the single-
site model, which had access to less scans, perform better than the
third-party model.

On the male pelvis, the multi-site model performs best for
Clinic A, the third-party for Clinic B and C and the results
are not statistically significant for Clinic D. This result suggests
that overall the performance is dictated by the training set size
and not by the specificity toward one clinics practice. While
the training set for the multi-site model contains on average
122 patients, the third-party and the single-site training set
for Clinic A contain only 90 and 53 patients, respectively. In
contrast to this, the training set for Clinic B (Clinic C) for
the third-party contains 140 (136) patients, and for the single-
site model 14 (17), respectively. For Clinic D the data for the

third-party model contains 109 patients and for the single-site
model 38 patients.

CONCLUSION

The study suggests that a third-partymodel can be readily applied
to organs with low inter-hospital variability; in our data sets

the organs of female pelvis as well as the heart were examples
where the contouring practices and anatomies were consistent.
However, the performance of a third-party model is poorer
compared to both a single-site and a multi-site model on the
breasts as here a higher variability in the patient anatomy exists.
Further, if a clinic possesses a sufficient number of training
cases a site-specific model can outperform a third-party model
in the case if the clinical practice differs. Examples for this are
the boundary of the prostate and seminal vesicle as well as the
definition of the superior and inferior end of the rectum.
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