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Model-Based Design of a Decision Tree for Treating
HER21 Cancers Based on Genetic and Protein
Biomarkers
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Human cancers are incredibly diverse with regard to molecular aberrations, dependence on oncogenic signaling pathways,
and responses to pharmacological intervention. We wished to assess how cellular dependence on the canonical PI3K vs.
MAPK pathways within HER21 cancers affects responses to combinations of targeted therapies, and biomarkers predictive of
their activity. Through an integrative analysis of mechanistic model simulations and in vitro cell line profiling, we designed a
six-arm decision tree to stratify treatment of HER21 cancers using combinations of targeted agents. Activating mutations in
the PI3K and MAPK pathways (PIK3CA and KRAS), and expression of the HER3 ligand heregulin determined sensitivity to
combinations of inhibitors against HER2 (lapatinib), HER3 (MM-111), AKT (MK-2206), and MEK (GSK-1120212; trametinib), in
addition to the standard of care trastuzumab (Herceptin). The strategy used to identify effective combinations and predictive
biomarkers in HER2-expressing tumors may be more broadly extendable to other human cancers.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, e19; doi:10.1002/psp4.19; published online on 4 March 2015.

Oncologists have long recognized that patients bearing
tumors within similar histolopathologies and clinical features
can respond vastly differently to chemotherapies. Data
emanating from large-scale cancer genomics projects such
as the Cancer Genome Atlas (TCGA) are now unveiling the
molecular basis of this phenomenon. The genome of every
cancer is essentially unique, such that even histologically
identical tumors can emerge from completely nonoverlap-
ping patterns of genetic alterations.1 Molecular information
is thus increasingly used to inform treatment decisions, as
oncology drug development has shifted from broadly cyto-
toxic therapies targeting DNA replication and metabolism,
to molecularly targeted agents which inhibit specific molec-
ular aberrations (oncogenes) and biochemical pathways.
Meaningful responses to single targeted agents are, how-
ever, rare and often transient in nature.2 At the cellular
level, robustness to drug intervention arises from the multi-
ple redundancies and feedback regulatory circuits embed-
ded in the oncogenic pathways driving cancer cell growth
and survival.3 Realizing the full potential of targeted agents
thus requires approaches to rationally combine therapies
and select patients most likely to respond to such combina-
tions.4 Quantitative models relating the molecular features
of tumors to pharmacologic response patterns are thus
essential for achieving the vision of precision medicine.

Mechanism-based models of signaling transduction, often
based on mass action kinetics-based ordinary differential
equations (ODEs), have proven extremely valuable in
advancing our fundamental understanding of cell biology.5

Such models have also enabled the rational design of
drugs that inhibit aberrant receptor signaling in cancer.6–9

However, the output is typically short-term biochemical
changes, limiting the ability to simulate more clinically rele-

vant tumor responses which occur over days to weeks. On
the other hand, empirical models of tumor growth kinetics
have been employed for decades as tools to interpret
dose–response relationships and compare agents, and
more recently for predicting outcomes of clinical trials
based on preliminary tumor size measurements.10,11 Such
empirical formulations, however, are incapable of predicting
drug combination effects or response biomarkers, two
pressing needs in oncology. To address such limitations,
hybrid translational models have more recently been devel-
oped to bridge the gaps between these two classes, using
established knowledge of molecular cell biology to link
pharmacodynamic responses to cell proliferation and sur-
vival.12,13 These have proven capable of extrapolating clini-
cally effective dosing regimens and pharmacodynamic
biomarkers from preclinical data,14–19 and predicting combi-
nation effects between novel agents.20,21 A common limita-
tion of such models arises from the use of a single, or at
most a small number of immortalized cancer cell lines to
serve as prototypic experimental models of the disease,
neglecting the extensive patient-to-patient variability in the
molecular features of tumors and responses to therapy.

The ErbB network is one of the most extensively studied
areas of signal transduction, serving as an archetype for
both systems modeling and molecular oncology.22 The
ErbB family proteins consist of four receptors (ErbB1–4,
also known as HER1–4). In response to extracellular ligand
binding, combinatorial patterns of receptor dimerization
result in activation of the phosphatidylinositol-4,5-
bisphosphate 3-kinase/Akt (PI3K) and mitogen-activated
protein kinase/Erk (MAPK) signaling cascades, which pro-
mote cell survival and proliferation.23 ErbB signaling is fre-
quently dysregulated in human cancers, one of the most
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common mechanisms of which is amplification of the
ERBB2 gene,24 resulting in overexpression of the surface
receptor HER2 and constitutive signaling. The monoclonal
antibody trastuzumab (Herceptin; Genentech/Roche, South
San Francisco, CA) is standard of care in HER21 disease,
and could be considered the prototype for molecular tar-
geted drugs. Many HER21 cancer patients, however, do
not respond to Herceptin, and those that do respond initially
often develop resistance and relapse, particularly in the
metastatic setting.25 Exposure to the HER3 ligand heregulin
(HRG; NRG1), for example, induces HER2/HER3 hetero-
dimer signaling and resistance to Herceptin in preclinical
models.26 A wide variety of targeted therapies are currently
undergoing clinical evaluation for treating Herceptin-
refractory HER21 disease, including tyrosine kinase inhibi-
tors of HER2, PI3K, and MAPK pathway components, and
biologics against HER3.27 However, the molecular and
genetic determinants of sensitivity to such combinations
remain obscure.

We have previously developed a semi-mechanistic model
of ErbB signaling in HER21 cancer cells, linking receptor
engagement, via PI3K and MAPK pathway activation, to
tumor growth kinetics. This was, however, parameterized
using data from a single breast cancer cell line (BT-474),
which is largely dependent on PI3K signaling. While the
PI3K and MAPK pathways are aberrantly activated in the
majority of human cancers,28 addiction to either (or both)
varies widely both across and within cancer indications.29

We wished to explore whether differential dependence on
PI3K vs. MAPK signaling cascades affect pharmacologic
response patterns, and whether this information could be
used to inform treatment strategies for HER21 disease.

Based on these objectives we devised the following
simulation-based strategy (summarized in Figure 1).
Starting with our previously published model (representing
a single prototypic cell line), we created two functional
classes of cancer cells, PI3K or MAPK pathway-dependent,
by tuning a logic gate linking the activation of these cas-
cades to cell growth. Within each group, model parameters
representing protein expression, gene mutations, and bio-
chemical rates were randomized so as to generate syntheti-
cally heterogeneous populations. Randomized parameters
thus serve as putative molecular biomarkers. Responses to
32 combinations of five clinically relevant drugs were then
simulated across the synthetic populations, and optimal
treatments defined based on median tumor growth inhibi-
tion. The PI3K and MAPK groups were then subdivided
based on response (or lack thereof) to the population-
optimal treatments. Biomarkers defining the outlier nonres-
ponding cells were identified by comparing the underlying
model parameters to that of the responsive group, and the
biomarker-defined resistant groups subsequently analyzed
to identify active drug treatments. Model predictions were
assessed using in vitro proliferation assays in panels
molecularly characterized cell lines, and clinical relevance
using publicly available cancer genomic data.

Through this strategy, we defined molecular subtypes
within HER21 cancers based on a combination of genetic
mutations (PIK3CA and KRAS) and microenvironment con-
text (the HER3-ligand heregulin). By matching optimal drug

combinations to these molecular subtypes, we specify a
six-arm decision tree to stratify patients for treatment with
combinations of the agents MM-111, lapatinib, MK2206,
and GSK1120212. While this study was focused on five
specific drugs within HER21 cancer, we believe the
approach may be more widely applicable to designing treat-
ment strategies in other cancer indications.

RESULTS
Triple targeting of the HER2/HER3 complex is broadly
effective regardless of downstream pathway
dependence
Human cancer cells display a diverse spectrum of depend-
encies on PI3K and MAPK signaling pathways, and thereby
sensitivity to agents targeting canonical components of
these cascades, their upstream regulators, and downstream
effectors. Here we sought to first explore whether dependen-
cies on these two pathways in HER2-overexpressing can-
cers predict sensitivity towards combinations of targeted
inhibitors. Five such agents were considered; the standard
of care Herceptin, the HER2-targeted small molecule
tyrosine kinase inhibitor (TKI) lapatinib (Tykerb, GSK), an
antibody-based HER3 inhibitor MM-111,7 and small mole-
cule inhibitors against the canonical PI3K and MAPK cas-
cades MK2206 (an AKT inhibitor; AKTi), and GSK1120212
(trametinib, an MEK inhibitor; MEKi). A previously published
computational model connecting HER2–HER3 signaling,
via PI3K/AKT and MAPK/ERK signaling cascades, to
tumor growth was utilized to assess all 32 possible combina-
tions of the five agents.21 Two distinct classes of cancers
were simulated based on preferential dependence of cell
growth on the PI3K vs. MAPK cascades. These functional

Figure 1 Simulation-based strategy to identify effective drug
combinations and predictive biomarkers using a mechanistic
model.
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classes were specified by tuning parameters in the logic
gate connecting pathway activity to cell growth regulation.
Within each of the two classes, interindividual variability was
simulated by randomizing 14 parameters (protein and gene-
based putative biomarkers) within biologically feasible
ranges (Supplementary Table S1). Monte Carlo simulations
were then used to assess growth inhibitory responses to the
drugs across the population, and combinations rank ordered
by median antitumor efficacy (Figure 2).

Unsurprisingly, the dominant pattern that emerges is that
layering on more drugs is predicted to increase efficacy.
The model does not account for toxicity, which places con-
straints on the number of therapies, the specific combina-
tions, and doses administered. While we cannot simulate
toxicity associated with the various regimens, a few rules of
thumb can be gleaned from clinical experience to date with
combinations of targeted inhibitors. In general, combina-
tions of biologics rarely produce unexpected or off-target
toxicities, while combinations of small molecule kinase
inhibitors often produce enhanced single agent-associated
and unexpected toxicities.30

Examining the contribution of individual agents, as
expected the AKTi-containing regimens were significantly
more effective in PI3K-dependent tumors, while MEKi-
containing regimens were more effective in the MAPK-
dependent tumors. Regardless of pathway dependence, tri-
ple targeting the HER2/HER3 complex with the combination
of MM-111, Herceptin, and lapatinib (MHL) was the most
effective three-drug regimen when considering median
growth inhibitory responses. We have previously assessed

the tolerability of the MHL combination in mice as com-
pared to other active regimens (AKT 1 MEK inhibition),
and found it to be both well tolerated and effective preclini-
cally (using a BT-474 xenograft model of HER21 breast
cancer), producing synergistic antitumor activity as com-
pared to single agents.21 Twenty-nine patients with HER21

solid tumors have also been treated with the regimen as
part of a multiarm phase I safety study. Adverse events
were similar to standard of care, and no maximum tolerated
MM-111 dose was identified.31

While the MHL combination appears to be well tolerated
and effective in both classes of HER21 cancers, large var-
iability in response to the regimen (3 orders of magnitude)
was observed within both synthetic populations. To identify
biomarkers underlying this response variation, in each
class we separated nonresponding outliers (top 10%) from
the median responding population (bottom 50%), and
examined differences in parameter values (biomarkers)
between the groups. Heightened expression of the ligand
heregulin (HRG) emerged as a resistance mechanism
shared by both tumor subclasses, consistent with its estab-
lished role in mediating both Herceptin and lapatinib resist-
ance26 and the mechanism of action of MM-111 as a
competitive ligand antagonist. The top predictors of resist-
ance in the PI3K and MAPK-dependent cells were found to
be constitutive activating mutations within the respective
signaling cascades (P 5 2 3 10216 and 3 3 10215, rank-
sum test; Figure 3). It is notable that biomarkers of
resistance to MM-111, lapatinib, and Herceptin monothera-
pies were quite diverse, and the MHL combination markers

Figure 2 Triple targeting of the HER2/HER3 complex with MM-111, lapatinib, and Herceptin is broadly effective in both PI3K and
MAPK-dependent cells. In silico screening of relative tumor growth in PI3K vs. MAPK-dependent cells in response to 32 combinations
of five drugs (black 5 present, white 5 absent from regimens). MM-111, lapatinib, Herceptin (MHL) combination is indicated by asterisk.
Relative growth (1 – Tumor growth inhibition).
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were not linear derivatives from the individual agents
(Figure S1).

PI3K and MAPK pathway activation mutations
frequently co-occur in HER21 disease
To assess the clinical relevance of these genetic alterations
in HER21 cancer, copy number and mutational profiles for
the genes ERBB2, and commonly mutated components of
the PI3K (PIK3CA, PIK3R1, and PTEN) and MAPK cas-
cades (BRAF, KRAS, HRAS, NRAS) were extracted from
primary tumor genome sequence data in the Cancer
Genome Atlas (TCGA) using cBioPortal.32 We then exam-
ined co-occurrence of HER2-amplification with nonsynony-
mous PI3K and MAPK pathway mutations (Figure 4a). The
majority of primary HER21 cancers harbored significant
frequencies of PI3K and/or MAPK pathway mutations, rela-
tively consistent with frequencies of de novo Herceptin
resistance.26 Samples in TCGA are largely primary tumor
resections, and thus treatment-naive. As activating mutations
in PI3K and MAPK pathways are established mechanisms of
acquired resistance to ErbB targeted therapies,33,34 we
expect these frequencies to be significantly larger in
Herceptin-refractory tumors.

We next parsed the response profiles within the PI3K-
mutant and MAPK-mutant groups to find combinations with
greater activity in these genetically defined subpopulations.
Simulations predicted that switching out lapatinib in the
MHL combination for an AKT inhibitor or MEK inhibitor in
the respective PI3K and MAPK-mutant tumors would be
significantly more effective than the MHL triplet as com-
pared to the wildtype counterparts (Figure 4b). We next
sought to test these biomarker-response predictions experi-
mentally using a panel of genetically characterized HER21

cancer cell lines.

PI3K and MAPK-activating mutations confer resistance
to HER2/HER3 inhibitor combinations, but sensitivity
to AKT and MEK inhibitor-containing regimens
In vitro proliferative dose responses to combinations of
MM-111, Herceptin, lapatinib, MK2206, and GSK112012
were assessed in seven HER21 cell lines, in the presence
and absence of 5nM exogenous HRG ligand. This panel
included cells harboring PIK3CA mutations (E545K and
H1047R), KRAS mutations (G12D/C), as well as PI3K and
MAPK “wildtype” (WT) cells. One WT cell (NCI-N87) was
genetically engineered to express the PIK3CA mutants,
providing a syngeneic platform to assess the effect of these
single point mutations. The E454K and H1047R mutants

had identical effects on drug response patterns, and were

thus treated as replicates in the analyses. The panel also

covers a diversity of indications, including breast (BT-474,

MDA-MB-175-VII, MDA-MB-361), stomach (NCI-N87), colon

(COLO-678), and esophageal (KYSE-410) cancers.
Due to different growth kinetics, microenvironment condi-

tions, and time frames, a linear relationship between in vitro
(cell) and in vivo (tumor) growth responses to drug treat-
ment is unlikely. However, if drug effects are cancer cell-

autonomous (i.e., not dependent on microenvironment or

immunologic effects) the rank order of treatment responses

should be consistent. Thus, we may use relative in vitro

growth inhibitory responses to assess model predictions.

Consistent with predictions, both PIK3CA and KRAS muta-

tions significantly reduced the activity of the MHL combina-

tion and correspondingly enhanced sensitivity to AKT and

MEK inhibitors (Figure 5a). Focusing on the engineered

NCI-N87 cells, the single point mutations were sufficient to

shift sensitivity from the lapatinib to the AKTi-containing

treatments. Also note that sensitivity to AKT and MEK

Figure 3 Biomarkers predictive of MHL regimen resistance in PI3K and MAPK-dependent tumors. (a) Cartoon schematic of ErbB sig-
naling network model, connecting receptor activity, via PI3K and MAPK cascades to cell growth regulation. The 14 model parameters
selected to vary in the Monte Carlo simulations are indicated numerically. Blue arrows indicate stimulatory relationships, and red inhibi-
tory. (b) Median differences between each of the 14 model parameters (“biomarkers”) between the top 10% of resistant vs. 50%
responsive tumors were compared. Shown are the Rank Sum P-values of those differences, expressed as –Log10. PI3K and MAPK
pathway activating mutations emerge as the most significant biomarkers in the two classes.
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inhibition varied significantly between WT cells, represent-

ing differential dependence on the PI3K and MAPK

pathways.
To distill the drug–response relationships from this multi-

dimensional data (only a subset of treatments at a single
dose (1 mM) is shown in Figure 5a; full data are provided
in Supplemental File S1), multivariate regression models
were parameterized for each cell line, simulating percent
cell growth inhibition as linear combinations of the five input
drug concentrations. Regression coefficients (BETAs) thus
capture the relative responsiveness of each cell to the indi-
vidual drugs. Average values of these five parameters were
computed for each genetic subgroup (WT, KRAS-, and
PIK3CA-mutant) in the presence and absence of exoge-
nous HRG stimulation, resulting in 5 3 2 3 3 5 30 summary
parameters (Figure 5b). This model formalism was chosen

due to its simplicity, as a data compression tool (7 cell lines
3 124 treatments 3 4 replicates 5 3,472 measurements,
reduced to 30 summary parameters). The model implicitly
assumes drug effects display log-linear dose responses
and additive effects. Examination of the residuals reveals
these assumptions are not drastically violated (Figure S1).
The model parameters (BETAs) can thus be used to evalu-
ate consistency between model predictions and the experi-
mental data.

Across all three genetic subgroups HRG stimulation
increases sensitivity to MM-111, and decreases sensitivity
to all four remaining drugs, particularly lapatinib. This is
consistent with the known role of HRG-HER3 signaling as
mediating resistance to multiple anticancer therapies
(including HER2 inhibition),35 and the mechanism of action
of MM-111 as a competitive HRG antagonist.7 Consistent
with model predictions (Figure 4b), KRAS-mutant cells are
the most sensitive to the MEK inhibitor, WT cells to lapati-
nib, and PIK3CA-mutant cells to the AKT inhibitor. The dif-
ferential sensitivity of the PIK3CA mutant cells to AKT
inhibition, however, is less pronounced than predicted. We
attribute this to a limitation in our model’s simplifying
assumption as AKT being the sole effector of PI3K signal-
ing. While AKT is the canonical output of the cascade,
PI3K also activates MAPK signaling36 and MTOR.37 It is
also notable that despite its well-established clinical benefit,
Herceptin showed relatively little in vitro activity in any of
the cell lines tested. Herceptin’s activity in vivo is in part
attributable to immunological rather than cell signaling
effects,25 a facet not captured using in vitro proliferation
assays.

We devised a simple decision tree summarizing our
results as a guide for treating HER21 disease with these
agents (Figure 5c). As Herceptin (rather than lapatinib) is
standard of care in HER21 cancers and well tolerated, this
is a backbone of all combination regimens. Relative sensi-
tivity to the three small molecule kinase inhibitors (KI) con-
sidered was determined by genetic status of the PI3K and
MAPK pathways, and due to the expected toxicity of small
molecule KI combinations,30 we allowed for inclusion of
only one of the three as part of a combination. Regardless
of genetic status, MM-111 overcomes HRG-mediated ther-
apy resistance, and should therefore be included if HRG is
present. It is notable that this treatment stratification is
based on a combination of both cell-autonomous genetic
(PI3K and MAPK mutations) and microenvironment (HRG)
determinants.

The accuracy of the decision tree in assigning maximally
effective treatment (see File S1) for each of the 14 samples
considered in Figure 5a is 50% (compared to 1/6 expected
by chance, P 5 4.1 3 1023; binomial test), or 93% in choos-
ing one of the top two most effective treatments (13/14 vs.
1/3 expected by chance, P 5 6.1 3 1026). Misclassifications
are largely attributable to an added benefit of MM-111 in
the absence of exogenously provided HRG, which may
emanate from autocrine secretion of the growth factor, and/
or inhibition of ligand-independent HER2/HER3 signaling.
Taking this into account, accuracy in assigning optimal
treatments is 79% (11/14 vs. 1/3 expected by chance,
P 5 6.9 3 1024).

Figure 4 Co-occurrence of ERBB2 gene amplification with PI3K
and MAPK pathway activating mutations, and predicted treat-
ment strategies for the respective subpopulations. (a) ERBB2-
amplified cancers represented in TCGA were segregated by
PI3K (PIK3CA, PIK3R1, PTEN) and MAPK (KRAS, HRAS,
NRAS, BRAF) pathway activating mutations. Those with neither
are annotated as “wildtype” (WT). (b) Simulated relative growth
(1-TGI) of PI3K-mutant, MAPK-mutant, and wildtype (WT) cells
to select combinations of the five drugs considered. Shown are
median responses, error bars indicate population quartiles.
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DISCUSSION

Through the strategy outlined in Figure 1 we were able to
define pharmacologically distinct subtypes within HER21

cancers based on a combination of genetic mutations
(PIK3CA and KRAS) and microenvironmental context (the
HER3-ligand Heregulin). Optimal drug combinations were
matched to these molecular subtypes in silico, validated in
vitro, and the results used to design a six-arm decision tree
for the treatment of HER21 cancers with combinations of
MM-111, lapatinib, MK2206, and GSK1120212. While the
focus of this study was limited to HER21 cancers and the
five drugs considered, the general framework and approach
may be expandable to other cancer indications. Success
largely depends on choosing appropriate and representa-
tive experimental platforms; the cell lines, pathway inhibi-
tors, and quantitative molecular assays necessary for

model parameterization and testing. Given the range of
modeling approaches available to draw from38 the “optimal”
choice, particularly related to the degree of mechanistic
detail to include and modeling formalism, depends on the
specific questions at hand and data available.39,40 Given
the large gaps in current understanding of cell signaling
networks,41 we bias toward using minimal mechanistic
details and embedded assumptions, and gradually built out
complexity as dictated by necessity.

Key predictions emanating from the model simulations
were validated by in vitro pharmacologic response patterns.
First, the ErbB3 ligand heregulin (HRG) drives resistance to
HER2-inhibition, which can be overcome with an HRG
antagonist such as MM-111. Second, constitutive activating
mutations in PIK3CA and KRAS can drive resistance to
dual HER2/HER3-targeted therapies, which can be over-
come by switching the HER2 inhibitor lapatinib for AKT or

Figure 5 Resistance to PI3K and MAPK activating mutations can be overcome by switching lapatinib for AKT or MEK inhibitor-
containing regimens, respectively. (a) In vitro proliferative responses (% growth inhibition at 1uM) to select drug combinations across
seven cell lines, with and without stimulation by 5 nM heregulin (HRG). The heatmap is organized and labeled by treatment regimens
(lapatinib (LAP), MK2206 (AKTi), and GSK1120212 (MEKi)-containing) and cell genotype (WT, KRAS, PIK3CA-mutant). (b) Average
regression coefficients (BETA) for each drug across the three genetic ally defined cell populations, 1/2 heregulin (HRG). (c) Treatment
decision tree based on the above results.
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MEK inhibitors. Genomic profiles from primary tumor sam-
ples suggest these genetic mechanisms to be clinically rel-
evant within HER21 disease. While not tested
experimentally in this study, tumors harboring activating
mutations in both cascades may require treatment with
both AKT and MEK inhibitors, a possibly effective yet poorly
tolerated combination.42

The use of individually tailored drug combinations has
been widely touted as a solution to improve the effectiveness
of anticancer drug therapy.43 However, the design of such
biomarker-based regimens through empirical screening
alone is largely unfeasible. Consider that the Cancer Cell
Line Encyclopedia (CCLE) annotates 57 cell lines as
ERBB2-amplified (copy number�4N).44 Molecular informa-
tion available on these cells includes targeted sequencing of
1,060 cancer-associated genes, and whole-genome mRNA
expression profiles (�20,000 genes). This exemplifies the
“large P small N problem”; the number of features (potential
biomarkers) far exceeds the number of samples available for
testing. Paradoxically, the availability of Big Data makes
data-driven computational approaches alone insufficient for
biomarker identification. Quantitative systems pharmacology
models provide an alternative platform for rapidly screening
hypotheses in silico, and thus focusing efforts on the most
relevant experiments to perform. Model simulations guided
our selection of the specific drug combinations, and the
genetically defined cell lines to test the effect of PIK3CA and
KRAS mutations on drug combination response patterns.

The decision tree (Figure 5c) neatly summarizes our
experimental results, but ultimately may be useful to guide
clinical development of the combination regimens. Patients
are diagnosed with HER21 cancer based on the
immunohistochemistry-based HercepTest and FISH-based
gene amplification assays performed on biopsied tumor tis-
sue. Multiple additional assays may be run on the tissue
sample, including an assessment for mutations in the genes
PIK3CA and KRAS (or other pathway activating mutations
such as in PTEN or BRAF), and expression of HRG (either
protein via immunohistochemistry, or the surrogate mRNA
transcript NRG1 via quantitative reverse-transcription poly-
merase chain reaction (qRT-PCR) or in situ-hybridization).
Based on the results of such tests, patients would be classi-
fied into the six HER21 subcategories defined in Figure 5c.
As genomic profiling is becoming an increasingly routine
part of clinical practice45 and NRG1 transcript expression
can be quantified from tumor biopsies,46 measurement of
the three biomarkers is indeed clinically tractable. While
measuring the biomarkers in tumor tissue may be feasible,
clinical trial designs capable of assessing multiple hypothe-
ses (the efficacy of six combination treatments, and the pre-
dictive value of three biomarkers) would be required to
clinically validate our findings. The optimal design of such
multiagent, multibiomarker “basket trials” remains an open
problem in clinical oncology,47 well beyond the scope of this
study. So while multiple factors are required to advance pre-
clinical results such as these into clinical practice, we believe
that our work serves as proof of principle that model simula-
tions, incorporating clinically relevant genetic and protein bio-
markers, can be employed to advance the vision of precision
medicine in oncology.

METHODS
Translational model and in silico drug combination
screening
The semimechanistic model connecting ErbB receptor signal-
ing, through PI3K/AKT and MAPK/ERK cascades to tumor
growth is depicted schematically in Figure 3a. The underly-
ing assumptions, mathematics, and data used for model
parameterization have been previously described in extensive
detail21 and are summarized in the Supplementary
Methods. A logic OR gate was implemented to specify cell
survival as dependent on phopsho-AKT and -ERK, the rela-
tive balance determined by empirical weighting parameters
wAKT and wERK. PI3K pathway dependence was thus simu-
lated by setting wAKT 5 0.95 and wERK 5 0.05, and conversely
for MAPK pathway dependence. Tumor heterogeneity was
simulated via Monte Carlo sampling of the model parameters
(prospective biomarkers) listed in Table S1 from log-uniform
distributions.

For drug screening, tumor growth was simulated over 2-
week periods, with lapatinib administered daily at 1250 mg
and MM-111 weekly at 20 mg/kg, as per clinical regimens.
As MK2206,48 GSK1120212,49 and Herceptin50 are cleared
relatively slowly, and given uncertainties in their PK-PD rela-
tionships, the pharmacokinetics of these agents were
ignored and in vivo effects simulated by constant target sup-
pression (95% inhibition of phospho-AKT, -ERK, and
-HER2). Tumor growth inhibition (TGI) is defined as the
change in tumor size from baseline 2 weeks posttreatment
as compared to matched untreated control. The 2-week
timepoint chosen for analysis is shorter than the typical time
between tumor scans (bimonthly); however, longer simulated
treatment durations did not affect rank order of treatment
effects, the metric used to experimentally assess predictions.

In vitro cell growth assays
Cellular responses to MM-111, Herceptin, lapatinib, MK-2206,
and GSK1120212 were evaluated by CellTiter-Glo lumines-
cent cell viability assays (Promega, Madison, WI). Cells were
seeded at 700 cells per 384-well plate in 10% fetal bovine
serum (FBS) cell growth medium and treated with the five
drugs separately and in combination at 1, 0.1, 0.01, and
0.01 lM, with and without 5 nM HRG-b1 prestimulation (for 4
hours). Cell viability was determined 72 hours posttreatment,
and Cell Growth Inhibition (CGI) defined as cell viability in the
treated conditions compared to matched, untreated control.

Multivariate linear regression models of drug
combination effects
CGI was described using a multivariate linear regression
function of the Log10 drug concentrations (Ci):

CGI5
XN

i51

bi � log10Ci

where N 5 number of input drugs (5: MM-111, lapatinib,
Herceptin, MK-2206, and GSK-1120212), and bi 5 regression
coefficients, estimated by maximum likelihood estimation, and
errors by computing the Hessian matrix. Goodness-of-fit was
assessed by examining the distribution of residuals and their
correlations with input parameters (Figure S2).

Model-Based Design of a Treatment Decision Tree
Kirouac et al.

7

www.wileyonlinelibrary/psp4



All model simulations and computational analyses were
performed in MATLAB R2013b (MathWorks, Natick, MA).
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?

� All cancers, including molecularly defined classes such as
HER21 tumors, are extensively diverse with respect to
molecularly aberrations, pathway dependencies, and
responses to drug treatment. Computational models relat-
ing these features could enable personalized medicine.

WHAT QUESTION DID THIS STUDY ADDRESS?

� How do genetics, molecular variability, and PI3K vs.
MAPK pathway dependence affect pharmacologic
responses and mechanisms of resistance to combina-
tion therapy in HER21 cancers?

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

� Activating mutations in the PI3K and MAPK signaling
pathways (PIK3CA and KRAS genes), combined with
expression of the HER3-ligand Heregulin determine
sensitivity of HER21 cancers to combinations of inhibi-
tors targeting the kinases HER2 (Herceptin, lapatinib),
HER3 (MM-111), AKT (MK-2206), and MEK (GSK-
1120212; trametinib).

HOW THIS MIGHT CHANGE CLINICAL
PHARMACOLOGY AND THERAPEUTICS

� Systems pharmacology model-based simulations can be
used to predict effective anticancer drug combinations
and biomarker-based treatment stratifications.
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