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Abstract

Background: DNA methylation was suggested as the promising biomarker for lung cancer diagnosis. However, it is
a great challenge to search for the optimal combination of methylation biomarkers to obtain maximum diagnostic
performance.

Results: In this study, we developed a panel of DNA methylation biomarkers and validated their diagnostic efficiency
for non-small cell lung cancer (NSCLC) in a large Chinese Han NSCLC retrospective cohort. Three high-throughput DNA
methylation microarray datasets (458 samples) were collected in the discovery stage. After normalization, batch effect
elimination and integration, significantly differentially methylated genes and the best combination of the biomarkers
were determined by the leave-one-out SVM (support vector machine) feature selection procedure. Then, candidate
promoters were examined by the methylation status determined single nucleotide primer extension technique
(MSD-SNUPET) in an independent set of 150 pairwise NSCLC/normal tissues. Four statistical models with fivefold
cross-validation were used to evaluate the performance of the discriminatory algorithms. The sensitivity, specificity and
accuracy were 86.3%, 95.7% and 91%, respectively, in Bayes tree model. The logistic regression model incorporated five

78%, 97%, 87%, and 0.91, respectively.

gene methylation signatures at AGTR1, GALRT, SLC5A8, ZMYND10 and NTSR1, adjusted for age, sex and smoking,
showed robust performances in which the sensitivity, specificity, accuracy, and area under the curve (AUC) were

Conclusions: In summary, a high-throughput DNA methylation microarray dataset followed by batch effect elimination
can be a good strategy to discover optimal DNA methylation diagnostic panels. Methylation profiles of AGTR1, GALRI,
SLC5A8, ZMYND10 and NTSR1, could be an effective methylation-based assay for NSCLC diagnosis.
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Background

Lung cancer, a complex disease involving both genetic and
epigenetic changes, is the leading cause of cancer deaths
worldwide [1]. About 80% of primary lung cancers are
non-small cell lung carcinoma (NSCLC), which is charac-
terized by a long asymptomatic latency and poor progno-
sis. While the overall 5-year survival rates for late stage III
and IV of NSCLC patients were just 5% to 14% and 1%,
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respectively, the rate could increase to 50% for the early
stage of the NSCLC patients who are typically treated with
surgery [2]. Many imaging and cytology-based strategies
have been employed in NSCLC diagnosis; however, none
of them have yet been proven completely effective in redu-
cing the mortality. The advances in molecular profiling of
NSCLC over the past decade have made a paradigm shift
in its diagnosis and treatment.

Among all the genetic variations, single nucleotides
polymorphisms (SNPs) have been considered as the most
stable biomarker for heritable disease, since the status of
the SNPs can be detected with almost 100% accuracy and
unchanged during the entire life. It is specific and power-
ful for a single gene-caused disease. However, for complex
diseases, such as cancers, the prediction power of SNPs is
limited. A plethora of studies have shown that AUCs of
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the prediction model based on significant SNPs can confer
only 0.54 to 0.55 for non-small cell lung cancer [3] and
0.54 to 0.60 for thyroid cancer [4], which has been consid-
ered as one of highest familial-risk carcinomas among all
kinds of cancers. Molecular biomarkers such as mRNA,
microRNA and protein for NSCLC diagnosis have been
developed and investigated in the past decades. How-
ever, their accuracy for diagnosis of NSCLC is far from
reaching clinical implementation, in which >90% sensitiv-
ity and specificity of diagnosis should be guaranteed.

DNA methylation, which is one of the most important
mechanisms involved in gene and microRNA expression
regulation [5] and in alternative gene splicing [6], plays
important roles in the early stage of cancer. Because it is
stable and easily detected qualitatively or quantitatively,
DNA methylation was taken as the most promising diag-
nostic marker for the early detection of cancer [7,8] when
compared with SNP/mutation [4], copy number variations
(CNVs) [9] and gene/microRNA expression [10]. Hun-
dreds of aberrant DNA methylation changes in the early
stage of NSCLC have been identified in the past decades
[11,12]. However, despite several diagnostic panels having
been developed [13], these studies on DNA methylation in
NSCLC were still limited by their small sample size, low
number of selected genes and qualitative rather than
quantitative DNA methylation. These limitations would
cause low reproducibility of the assay and explain why the
majority of these studies could not be replicated.

In our previous study, we found that prediction ability
is limited when the prediction model only includes the
methylation status of a single gene, even for a classic
tumor suppressor gene [14]. A diagnostic panel with sev-
eral genes would be a promising approach to achieve bet-
ter prediction performance for clinical utility. Methylation
microarrays measure the methylation levels of thousands
of genes in a single assay. These arrays are a revolutionary
tool for identifying genes whose methylation changes in
response to a specific situation, such as different develop-
ment stages, physiological status or pathological status,
and provide fundamental data for feature selection to con-
struct the best combination of the predictive variables.
In addition, a large number of public methylation micro-
array datasets have been shared in certain database, such
as Gene Expression Omnibus (GEO). The stability and re-
producibility of the prediction model would be significantly
increased when multiple datasets with the same study de-
sign are pooled together. However, methylation array re-
sults can be greatly affected by a variety of nonbiological
variables, such as methods for DNA isolation, bisulfite
conversion, probe processing and scanning, reagents from
different companies, different technicians or even different
atmospheric ozone levels. Usually, the term ‘batch’ refers
to microarrays processed at one site over a short period
of time using the same platform. The cumulative error
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introduced by these time, place and situation-dependent
variations is referred to as batch effects. In terms of differ-
ent study, the methylation microarray data were created
in different times, places, and by different technicians and
so on; therefore, the main variation among data would be
shown as a batch effect. In our previous study, we found
that the ComBat algorithm could remove such noise
(batch signal or each individual study) from the dataset
with powerful efficiency when adjusted with additional
and multiple effects of the batch information [15,16],
which provide the prerequisite to combine the methyla-
tion array dataset to increase the sample size of the statis-
tical analysis.

In the present study, we first systematically integrated
three independent high-throughput DNA methylation
datasets from the GEO [17] and TCGA projects (Additional
file 1: Table S1). An optimized DNA methylation com-
bination was established through the feature selection
procedure after preliminary normalization and batch ef-
fect elimination with the ComBat algorithm among the
datasets to maximize the NSCLC prediction performance.
Methylation statuses for five genes - AGTRI, GALRI,
SLC5A8, ZMYND10 and NTSRI- were identified as being
the most powerful combination for the NSCLC prediction.
Then, to further evaluate their performance for diagnosis,
we designed a novel methylation status as determined by
the single nucleotide primer extension technique (MSD-
SNuPET) for the simultaneous quantification of methyla-
tion at these five methylated loci. These five significantly
differentially methylated genes were used to validate the
results in 150 pairs of NSCLC and normal tissues from a
Chinese Han population with MSD-SNuPET.

Results

Public dataset collection, batch effect elimination and
candidate gene selection

NSCLC-related public DNA methylation microarrays
were searched through the Gene Expression Omnibus
(GEO), ArrayExpress and TCGA projects. In total, three
independent NSCLC datasets were created with a total
of 458 microarrays, which included 352 NSCLC and 106
normal tissues (Figure 1 and Additional file 1: Table S1).
A batch effect significantly existed among the datasets,
and this was shown in the first and second principle
components. We observed that the samples were clus-
tered mainly by studies rather than by tumor and nor-
mal tissue samples (Figure 2A). ComBat, an empirical
Bayes method, was used to eliminate the batch effects
after quantile normalization in the three datasets. As a
result, the batch effect was largely removed by ComBat
(Figure 2B). In addition, as the hierarchical cluster analysis
showed, biological information was highly preserved after
batch effect elimination (Additional file 1: Figure S2). The
SVM was used to conduct feature selection and assess the
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Figure 1 Sketch of the study design and pipeline. Candidate biomarkers were selected from meta-analysis to multiple high-throughput DNA
methylation microarrays. The significant or best feature combination was screened in an independent validation study of non-small cell lung

cancer (NSCLC) with the methylation status determined single nucleotide primer extension technique (MSD-SNUPET) technique.

J

prediction abilities with leaving-one-out cross-validation.
The accuracy of the SVM for classifying NSCLC was 98.98%,
in the test set. Among the 112 shared probes, five CpG
sites (NTSRI, SLC5A8, GALR1, AGTRI and ZMYNDI0)
were selected in the feature selection stage. We found
these five genes were significantly differentially methylated
between the tumor and normal tissue samples. In de-
tail, meta-analysis of the DNA methylation microar-
rays showed that NTSRI (P =54 x10"%), SLC5A8 (P=
59x107°), GALRI (P=9.9x10"°) and AGTRI (P=6.7 x
10°) were significantly hypermethylated in NSCLC, whereas
ZMYNDIO (P=62x10°) was significantly hypomethy-
lated in NSCLC (Additional file 1: Figure S3). These re-
sults suggested that the selected five predictors would be
potential biomarkers for the NSCLC diagnosis. To further
evaluate their performance for diagnosis of NSCLC, we
developed a panel of these five DNA methylation bio-
markers and validated their diagnostic efficiency in 150
paired NSCLC and normal tissue samples in China.

Methylation status validation with methylation status

determined single nucleotide primer extension technique
In order to validate the results from the meta-analysis,
methylation status of the above five genes were detected

with MSD-SNuPET in 150 pairs of NSCLC and adjacent
normal tissues. The characteristics of patients were
showed in Table 1. Consistent with the microarray data,
the absolute DNA methylation percentage of these five
genes were significantly differentially methylated be-
tween NSCLC and normal tissues (Table 2, Figure 2C-I).
Logistic regression analysis showed that hypermethylated
NTSRI, SLC5A8, GALRI, and AGTRI and hypomethy-
lated ZMYNDI10 were significantly associated with the
NSCLC when risk-adjusted for age, sex and smoking sta-
tus with the P value of 5.9 x 107, 7.8 x 107, 2.3 x 10°®,
1.3%x10° and 52x107%, respectively (Table 2). The
MSD-SNUPET results showed that the methylation of
LINE-1 was significantly lower in NSCLC than normal
tissue (t-test, P = 2.39 x 10™?). Additionally, DNA methy-
lation of LINE-1 was significantly associated with sex
(R* = 0.18, P value = 0.0087), which was highly consistent
with the previous reports about the methylation status
of this gene [18,19] and supports the high credibility of
the MSD-SNuPET. The prediction ability for each gene
separately was also evaluated by logistic regression.
Moderate prediction ability was identified, in which sen-
sitivity ranges from 44.3% to 73.15%, specificity ranges
from 79.59% to 94.56%, and AUC ranges from 0.67 to
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Figure 2 ComBat treatment and methylation status determined single nucleotide primer extension technique (MSD-SNuPET). Principal
component analysis was applied to show the efficiency of the elimination of ComBat. A, B, A total of 120 probe sets with DNA methylation values
after background and quantile normalization in a set of 352 non-small cell lung cancer (NSCLC) and 106 normal samples. X and Y axes represent the
first and second principal components (PC1 and PC2), respectively. C-I were validation of the methylation status of the five candidate markers in an
independent samples. Y-axis represents absolute DNA methylation percentage from MSD- SNUPET. LINE-1 and Reference were taken as the positive
and negative control for MSD- SNUPET.

0.80 (Table 2) were demonstrated. Correlation analysis
showed that there was no co-methylation among the five
genes. In addition, no significant association was observed
between any of the five genes with age, smoking, TNM
stage, lung cancer differentiation and lung cancer subtype
(Ad or Sc) in both the univariate and multivariate associ-
ation models in our study. However, a significant associ-
ation between sex and SLC5A8 (P=0.0001), ZMYNDIO
(P =0.045) was identified, which might indicate a specific
biological mechanism of SLC5A8 and ZMYNDIO in the
tumorigenesis of NSCLC. Protein-protein interaction net-
works from String 9.0 showed that there were comprehen-
sive networks for both NTSRI and GALRI. The majority
of these genes were cancer-related genes, which have been
reported to play important roles in cancer initiation,
progress or therapy, such as SI00A9, NGE, TAC1, CCK,
FPR2, ADRAIB, and CCL2I in the gene-gene inter-
action networks (Additional file 1: Figure S4).

Sensitivity, specificity and accuracy of the diagnosis panel
Several classification methods, including logistic regression
model, random forest, support vector machine (SVM),
and Bayes tree, were used to construct effective diagnosis
models for cancer prediction based on MSD-SNuPET re-
sults. No significant unbalances were found in the train
and test dataset, which suggested the prediction models
were credible and stable. Fivefold cross validation was
used to evaluate the performance of the classifiers. As a
result, the Bayes tree was the most powerful model for the
diagnosis of NSCLC, whose sensitivity (Sen), specificity
(Spe) and classification accuracy (Acc) were 86%, 96% and
91% (Table 3), respectively. Other classification methods
had similar performance, and the worst classifier was the
logistic regression. However, even the logistic regression
model incorporated the same five genes mentioned above,
and in this model, the sensitivity, specificity, classification
accuracy, and area under the curve (AUC) could reach
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Table 1 Characteristics of patients

NSCLC =150
Age 40 (IQR =15 to 65)
Sex
Male 120
Female 30
Smoke Status®
Non-smokers (never) 41
Smokers (ever) 96
Histology
Adenocarcinoma 53
Squamous cell carcinoma 63
Others® 34
Stage®
I (IAIB) 42 (10,32)
I (IAIIB) 48 (16,32)
I (AIIB) 46 (41)5)
Y 2
Differentiation®
Well/Moderate 74
Poor 30

NSCLC, non-small cell lung cancer; *Smokers include former and current smoker
individuals. ®Others include adenosquamous carcinoma (ADSQ), bronchioloalveolar
carcinoma, mucoepidermoid lung tumor, Sarcomatoid carcinoma. TNM Stages
were assessed by the seventh edition of TNM classification criteria. “Qualitative
assessment of tumor differentiation was based on sum of the architecture
score and cytologic atypia score (2 =well differentiated, 3 = moderately
differentiated, 4 = poorly differentiated).

78%, 97%, 87%, and 0.906 (95% CI: 0.89 to 0.91), respect-
ively, after being adjusted for age, sex and smoking.
The logistic regression still showed the potential diagnos-
tic significance of the five methylated genes. In addition,
prediction abilities between smoking and non-smoking,
adenocarcinoma and squamous cell carcinoma, early
stage (I and II) and late stage (III and IV), and well or
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moderately and poorly differentiated populations were
assessed under the Bayes tree model. We found there is no
significant differential performance between smoking (Acc =
92.1%, 95% CIL: 90.6% to 93.6% ) and non-smoking (Acc =
0.939, 95% CI: 0.935 to 0.943), adenocarcinoma (Acc = 0.82,
95% CI: 0.72 to 0.92) and squamous cell carcinoma (Acc =
0.94, 95% CI: 0.87 to 0.95), early stage (Acc =0.87, 95% CI:
0.75 to 0.87) and late stage (Acc=0.92, 95% CI: 0.82
to 0.92), while a significant difference (permutation test,
P <10 to 10) was found between well or moderately (Acc =
0.9, 95% CI: 0.83 to 0.91) and poorly differentiated popula-
tions (Acc=0.73, 95% CI: 0.5 to 0.74), which suggested
further research should be considered.

Discussion

NSCLC early diagnosis and corresponding surgical inter-
vention are taken as the most effective methods for in-
creasing the survival time and for decreasing mortality
from NSCLC death. Since the global change of DNA
methylation occurred in the beginning of the carcinogen-
esis, DNA methylation has been considered as the most
powerful biomarker for early detection, even screening
[20]. In the present study, the two stage biomarker discov-
ery pipeline was applied to optimize the combination of
DNA methylation biomarkers for NSCLC diagnosis. The
optimal biomarker combination was identified using 107
genes in a large discovery dataset. A novel DNA methyla-
tion diagnosis panel of five genes (NTSRI, SLC5AS,
GALRI, AGTRI and ZMYNDI10) was identified. The DNA
methylation diagnosis panel was then validated in another
independent NSCLC study. A multi-loci DNA methylation
detection method (MSD-SNuPET), was conducted to de-
termine the absolute quantitative methylation level of the
five genes in 150 pairs of NSCLC and adjacent normal
tissues from a Chinese Han population. In the validation
stage, the Bayes tree model shows the highest sensitivity,
specificity and accuracy for NSCLC diagnosis based on
the five genes, which is potential for clinical application.

Table 2 Differential methylation in non-small cell lung cancers (NSCLCs)

AMP? (NSCLC) AMP (Control) P value® logso (OR) (95% Cl) P value® Sen® Spe® Auc?

AGTR1 12.88% 4.48% 106x 107 349 (2,08, 491) 130 x 10° 59.73% 79.59% 071
GALRT 1831% 291% 6.58x 107 256 (15, 363) 230 x 10° 46.98% 85.03% 067
NTSR1 937% 0.56% 109% 107 9.02 (548, 12.55) 590 x 107 44.30% 94.56% 0.70
SLC5A8 25.59% 11.66% 477 %1077 3.80 (2,51, 5.09) 7.80 x 107 5235% 88.44% 067
ZMYNDI10 6.95% 12.82% 1.08% 107 461 (-6.27, -2.95) 520 x 10°® 73.15% 9252% 0.80
LINE-1 72.10% 76.76% 239% 1072 103 (-135,-7.2) 180x 107 - - -

Reference® 1.78% 1.83% 285x10" -19.37 (-45.35, 6.62) 0.14 - - -

2Differential methylation analysis was conducted between 150 NSCLC and adjacent normal tissues. AMP represents average methylation percentage. °P value® is
the Bonferroni adjusted P value which is based on paired t-test comparing the intensity of the methylation signals between case and control. “The log;o(OR) and
P value® represent log-transformed odds ratio and P value based on logistic regression adjusted by sex, age and smoking status. 9Sensitivity, specificity and area
under the curve (AUC) were calculated with a logistic regression prediction model without adjustment for sex, age and smoking status. Reference site was a C site
that was not in the CpG site; therefore, no or a low-methylated signal would be detected and a nonsignificant association should be detected between cancer

and normal tissues.
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Table 3 Diagnosis accuracy, sensitivity and specificity based on several classification methods with fivefold cross-

validation

Test Train

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
Logistic regression 0.791 0.993 0.891 0.775 0.969 0.871
Svm? 0.897 0977 0.937 0.855 0.941 0.897
Random forest 0.934 0928 0.931 0.890 0.886 0.886
Bayes tree 091 0976 0.944 0.863 0.957 0.909

2SVM represents support vector machines and Kernel Methods. Sensitivity, specificity and classification accuracy were its mean value in fivefold validations with
1,000 replications. In the main body of the manuscript, sensitivity, specificity and accuracy were derived from training result of the classification.

It is important that five candidate biomarkers have
been investigated widely in cancer research. Neurotensin
receptor-1 (NTSRI) is a G-protein coupled receptor
(GPCR). It has been widely reported to be associated
with carcinogenesis, cancer progression [21] and prog-
nosis [22,23]. Previous evidence showed the potential
use of the NTSRI as a biomarker for cancer progression
and as a component of personalized medicine in select-
ive cancers [24], and this is consistent with our present
result. GALRI, galanin receptor subtype 2, suppresses
cell proliferation in several cancers such as head and
neck [25,26] and oral squamous cell carcinoma [27].
Gene expression inactivation of GALRI can be caused
by promoter hypermethylation [25]. Meanwhile, GALRI
has also been a subtype determining gene in breast can-
cer, which suggests its potentially powerful role in cancer
diagnosis. SLC5A8 (solute carrier family 5, member 8)
is a tumor suppressor gene and is usually suppressed
in colon, and gastric cancers [28-30]. ZMYNDI0 (Zinc
finger, MYND-type containing 10) has recently been iden-
tified as a candidate tumor suppressor gene due to the oc-
currence of mis-sense mutations and loss of its expression
in lung cancer.

Multicellular tissue is a great challenge in epigenetic
studies. On one side, cancer tissues include cancer cells
(epithelial cells), mesenchymal cells and so on. However,
the proportion (at least 70% in general) of the tumor
cells in cancer tissue is always significantly much higher
than that of other cells. On the other side, normal tis-
sues also include epithelial cells, mesenchymal cells and
some others. In the present study, the null hypothesis is
that the methylation level in the cancer tissue (mixed
cells) is the same with normal tissue (mixed cells). The
alternative hypothesis is that the methylation level in the
cancer tissue (mixed cells) is different from normal tissue
(mixed cells). We used the paired t-test to test the differ-
ence in the mean of the methylation between cancer tissue
and normal tissue. The background or the noises from the
adjacent non-cancer cells could be adjusted from the can-
cer cells when the methylation profiles of the correspond-
ing cells were established.

All the results in the present study were based on
quantitative signals of the DNA methylation. We also
conducted analyses that were based on discrete DNA
methylation signals in which beta values <0.2 were de-
fined as the un-methylated CpGs; beta values >0.8 were
defined as the full methylated CpGs, and beta values be-
tween 0.2 and 0.8 define semi-methylated CpGs. In this
condition, five genes were still significantly differentially
methylated between the NSCLC and normal tissues. No
significant changes were found in classification sensitiv-
ity, specificity and accuracy. Also, the sensitivity, specifi-
city and AUC of diagnosis with one gene added to the
model each time are summarized in the Additional file
1: Figure S5; in these cases, we found that sensitivity and
AUC gradually increased, step by step.

Lung cancer diagnosis is a challenging problem. In order
to discover a potential panel of DNA methylation-based
biomarkers for diagnosis of NSCLC, we should perform a
genome-wide search for an optional combination of tens
or hundreds of loci from the genome-wide DNA methyla-
tion profile. Integration analysis of interplatform, genome-
wide DNA methylation datasets with appreciated data
normalization and batch effect elimination could provide
optimal biomarker combinations in a large sample popu-
lation to obtain maximum diagnosis efficiency. With this
approach, we identified a five-gene signature including
AGTRI, GALRI1, SLC5A8, ZMYNDI0 and NTSR1, which
could provide high diagnostic sensitivity and specificity.

Conclusions

Integrated analysis of multiple-platform high-throughput
DNA methylation microarray datasets followed by batch ef-
fect elimination is a good approach to discover diagnostic
biomarker panels for NSCLC. Methylation profiles of AGTRI,
GALRI, SLC5A8, ZMYNDI0 and NTSRI would be an ef-
fective methylation-based assay for the NSCLC diagnosis.

Methods

Study design and pipeline description

Public high-throughput microarray databases that include
GEO and ArrayExpress were searched to collect NSCLC-
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related DNA methylation microarray data. Non-small cell
lung cancer and/or methylation were taken as the key
words in the retrieval procedure. Although a large number
studies have been conducted in NSCLC biomarker re-
search, only two GSE records were retrieved, including
GSE16559 and GSE28094. GSE16559, which included 57
NSCLC and 52 normal tissue samples, was used to dis-
cover aberrant DNA methylation in lung adenocarcinoma
and mesothelioma. GSE28094, with 33 NSCLC and 3 nor-
mal tissue samples, was designed to make the DNA
methylation fingerprint with 1,628 human samples of dif-
ferent tissues and statuses. Both of these two datasets were
based on the Illumina GoldenGate platform, which in-
cludes 371 genes with 1,536 loci. Additionally, the CGA
project is another comprehensive study that included 262
NSCLC and 51 normal tissue samples. Infinium methyla-
tion 27 K with 14,495 genes and 27,578 loci were used to
perform the DNA methylation profiling. The number of
DNA methylation genes shared by these two methylation
microarray platforms was 107 genes (112 probes). Eventu-
ally, DNA methylation profiling data of 458 NSCLC-
associated samples (352 NSCLC and 106 normal tissue)
were obtained from the above three public datasets. These
data will be taken as the primary data in the biomarker
discovery stage (Additional file 1: Table S1).

When the microarray is provided as fluorescent sig-
nals, the gene methylation level was calculated with the
fluorescent signals of methylation and un-methylation
alleles by the traditional function of

max(M,0)

beta = .
max(M, 0) + max(U, 0)

where M and U represent the signal intensities for about
30 methylated (M) and un-methylated (U) probes on the
array. Background-correction was conducted according to
the recommended methods for each platform. K-nearest
neighbor imputation (KNN imputation) was performed to
deal with the missing values. A total of 112 probes were
shared between these two microarray platforms. DNA
methylation signals of these probes were combined for all
the samples. Quantile normalization was applied to com-
bine all the data from different studies. To further reduce
biases, we use the batch effect elimination tool, ComBat,
to eliminate the batch effects that exist in independent
datasets [15]. In the present study, we use the principal
component analysis (PCA) to visualize the extension
of the elimination of batch effect by observing the batch
information distribution in the two-dimension plot of
principle component 1 (PC1) and principle component 2
(PC2). The data adjusted by the Combat was then used for
feature selection procedure in classification and differential
methylation analysis. Feature selection was conducted by
random forest and SVM with leave-one cross-validation.
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Differential methylation analysis was conducted by Wilcox
signed-rank test without normality assumption. The most
powerful panel was identified and the differential methyla-
tion status was estimated. In the validation stage, the
methylation status of genes from the above panel (methy-
lation genes combination) was detected in 150 NSCLC
and normal tissues from the Chinese Han population by
MSD-SNuPET. Logistic regression model, random forest,
support vector machine (SVM), and Bayes tree were used
to classify NSCLC in the validation data with fivefold
cross-validation.

Patients, samples and DNA

NSCLC samples and corresponding normal lung tissues
for validation study in the Chinese population were ob-
tained from 150 patients who underwent pulmonary resec-
tion for primary NSCLC at Changhai Hospital, Shanghai,
China. The study was approved by Fudan University and
Changhai Hospital, and informed consents were obtained
from the patients. Exclusion criteria included subjects
with a family history of lung cancer, previous radiotherapy,
and chemotherapy or adjuvant therapy before surgery.
All tissues were immediately frozen at -80°C after sur-
gical resection. Histological examination and tumor-node-
metastasis classification were conducted according to the
World Health Organization classification criteria [31] and
the AJCC Cancer Staging Manual, 7th Edition [32], re-
spectively. Age, sex, smoking status, histology type, TNM
stage and differentiation status were collected for use as
the covariates when conducting the association between
DNA methylation and disease status. Smoking status was
assigned to a binary status: never and ever smoking. TNM
stage was assigned to early stage (I and II) or late stage (III
and IV) when necessary, so that the sample size can be
big enough to get the efficient statistic power.

Methylation status-dependent single nucleotide primer
extension assay

DNA extraction and bisulfite conversion were performed
as previously described [33,34]. Methylation status deter-
mined by the single nucleotide primer extension tech-
nique (MSD-SNuPET) was designed for the quantification
of methylation at multiple methylated loci simultaneously.
MSD-SNuPET was developed based on SNPshot technol-
ogy to bisulfite converted CpG sites. An unmethylated
cytosine would be converted to uracil when treated with
bisulfite, whereas methylated cytosine maintains as the
cytosine. Therefore, methylation status detection can be
detected by specific primer and PCR amplification. Primer
3.0 was used to design primer sets (called the amplifying
primers) which were applied to amplify genome regions
including the target CpG sites. Allele-specific elongation
primers were used to quantify the copy number of C and
T alleles. Primer pairs were showed in Additional file 1:
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Table S2. PCR was performed in a final volume of 10 pL
containing 1x HotStarTaq buffer, 3.0 mM Mg2+, 0.3 mM
dNTP, 1 U HotStarTaq polymerase (Qiagen Inc. USA),
1 ul DNA template and 1 pl multiple primer set. Amplifi-
cations were conducted in a GeneAmp PCR System 9700
thermal cycler (Applied Biosystems, Foster City, CA) with
the following thermal cycling profile: denaturation for
2 min at 95°C, followed by 11 cycles, each consisting of
20 sec at 94°C, 40 sec at 60°C, 90 sec at 72°C, and a final
extension step for 2 min at 72°C. Negative and positive
controls were included in each run of PCR as described
above. The products of the sequencing reactions were
purified and SNaPshot analysis of single nucleotides ex-
tension for multiple loci operation was shown as in our
previous works [35]. DNA sequencing was conducted
with the 3730 DNA analyzer. GeneMapper 4.1 (Applied
Biosystems, Co., Ltd., USA) was used to analyze the fluor-
escence signals that represent different alleles. DNA
methylation level was positively correlated with the mag-
nitude of the C allele (H¢) and negative corrected with the
magnitude of the T allele (Hr) in MSD-SNuPET technique
(Additional file 1: Figure S1). In order to quantitatively es-
timate the methylation level for each CpG site, a standard
calibration curve was established, in which synthetic DNA
fragments of C and T alleles were mixed with C allele
proportion at 10%, 20%, 30%, 35%, 40%, 50%, 60%,
70%, 75%, 80% and 90%, respectively. Then, a standard
calibration curve could be fitted as a quadratic regression
model: y = fox* + B1x, in which f, and B, are optimized
parameters. x indicates the ratio of H and T alleles
(Hc/Hr). In the present study, one technique and bio-
logical control were set. The reference site was a C site
that was not in the CpG site; therefore, a low methylation
signal should be detected and nonsignificant association
should be detected between cancer and normal samples.
Methylation status of LINE-1 was taken as a biological
control since we are clear that it is hypomethylation in the
cancer tissues.

Statistical analysis and machine learning

We selected methylated genes for classification by ranking
genes with P values for testing differential methylation be-
tween tumor and normal tissue samples. We used three
test statistics: student t-test, Wilcoxon rank sum test and
Wilcoxon signed rank test statistic to test for differential
methylation between two conditions for the normal distri-
bution of methylation level, nonpaired tumor and normal
tissue samples and paired tumor and normal tissue sam-
ples, respectively. False discovery rate (FDR) correction
was used for multiple test correction with the R function
of p.adjust with fdr as a parameter. Euclidean distance and
partitioning around medoids were used to conduct hier-
archical cluster analysis. Logistic regression (Package stats),
support vector machine (SVM, Package e1071), random
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forest based classification (Package randomForest) and
Bayes tree (Package BayesTree) were used to classify the
NSCLC tumor and normal tissues. The optimized predic-
tion model was built with the best prediction accuracy in
the training dataset, and then, the sensitivity, specificity, ac-
curacy were obtained from logistic regression, SVM, ran-
dom forest and Bayes tree model in the test dataset with
previous parameters applied in the training stage. All stat-
istical analyses were conducted in R [36]. Protein-protein
interaction networks were constructed by String 9.0 to
show the function network of the genes in our study [37].

Additional file

Additional file 1: Supplementary Information for primer, dataset
and principle of MSD-SNuPET.
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