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Abstract: Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral
replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for
epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses
suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor
immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA
tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to
the generation of an immunosuppressive microenvironment during cancer development. Recent trials
of immunotherapies have shown promising results to treat multiple cancers; however, a significant
number of non-responders necessitate identifying additional targets for cancer immunotherapies.
Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great
insights for reversing immune suppression to prevent and treat associated cancers.
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1. Introduction

Recent studies have revealed that DNA methylation is associated with many different diseases
including microbial infections and cancers (reviewed in [1,2]). DNA methylation is a potent epigenetic
mechanism to regulate gene expression without altering DNA sequences. Methylation of cytosines
in CpG motifs frequently occurs in promoter regions but is also found in enhancers, insulators,
gene bodies, transposable elements, and repetitive DNA elements (reviewed in [3]). DNA methylation
is most dynamic in CpG islands near transcription start sites. CpG islands, which are typically
hypomethylated, are DNA regions with a greater abundance of CpG dinucleotides compared to the
remainder of the genome. Generally, promoter methylation represses gene transcription, while gene
body methylation induces gene transactivation (reviewed in [3,4]).

DNA methylation is catalyzed by six DNA methyltransferases (DNMTs) that have been
characterized to date: DNMT1, DNMT2, DNMT3A, DNMT3B, DNMT3C, and DNMT3L. Among them,
DNMT3A and DNMT3B produce multiple isoforms by an alternative promoter and an alternative
splicing, respectively, for further regulation of their enzymatic activity (reviewed in [1]). Each DNMT
has distinct functions in its role in gene expression regulation. DNMT1 is responsible for maintaining
heritable DNA methylation by copying methylation patterns from a parental cell to a daughter
cell shortly after mitosis (reviewed in [1]). Whereas DNMT2 is a tRNA methyltransferase [5],
DNMT3A and DNMT3B are de novo methyltransferases that generate new methylation marks on
unmethylated CpG DNA sites (reviewed in [1]). DNMT3C has been recently discovered in mice as a
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DNA methyltransferase involved in fertility [6]. DNMT3L is a catalytically inactive DNMT3 variant
that interacts with and amplifies DNMT3A and DNMT3B activities [7–10]. While the mechanisms
by which DNMTs methylate DNA have been well characterized, no specific DNA demethylase
has been identified to date that reverses DNA methylation. Instead, it has been suggested that
methylated cytosines are removed during DNA repair after the conversion of 5-methylcytosine
to 5-hydroxymethylcytosine by the methylcytosine dioxygenases ten-eleven translocases (TET)
(reviewed in [1,3]).

Gene expression regulation by DNA methylation is intimately linked to chromatin arrangement
(reviewed in [3,11,12]). In fact, chromatin structure is altered when DNA is methylated [11,13,14],
and histone deacetylases (HDAC) interact with DNMT1 [15–17], DNMT3A [18,19], and DNMT3B [18].
Hypermethylated DNA is often associated with hypoacetylated histones and condensed chromatin for
transcriptional repression [11,12].

Previous studies have suggested that DNA methylation functions as an antiviral defense
mechanism by inactivating viral gene transcription and replication. It is well known that most
endogenous retroviruses and retrotransposons in the human genome are inactivated by DNA
hypermethylation [20,21]. Roulois et al. and Chiappinelli et al. have concurrently reported that
treating colon and ovarian cancer cells with demethylating agents activates viral RNA transcription
from dormant endogenous retroviruses and stimulates antiviral interferon (IFN) signaling, which
subsequently activates antitumor immune responses [22,23]. DNA demethylation also activates
retrotransposons and triggers antiviral signaling in zebrafish embryos [24]. In addition to endogenous
retroviruses, the genomes of DNA viruses, such as human papillomavirus (HPV), herpes simplex virus
1 (HSV-1), adenovirus, and hepatitis B virus (HBV), are also frequently methylated and silenced in
infected cells [25–33]. Interestingly, methylation of HPV DNA is commonly detected in infected cervical
lesions, and its methylation levels correlate to disease progression in high-grade premalignant cervical
lesions and cancer [34–38]. Similarly, methylation of HBV covalently closed circular DNA (cccDNA)
markedly reduces viral gene transcription and genome replication during chronic infection [33,39].

Many viruses, particularly small DNA viruses, harbor genomic signatures indicating that
they have evolved for millions of years to evade the antiviral effects of DNA methylation [40–44].
Our study has shown that the prevalence of CpG dinucleotides, the target motif of DNA methylation,
is significantly lower in the genomes of papillomaviruses compared to other dinucleotide motifs [45].
These results suggest that gene expression regulation by DNA methylation may play a critical role in
arms races between viruses and their hosts.

To evade detection and restriction by the host immune response, viruses also employ various
mechanisms to control gene expression related to immunity, including hijacking epigenetic machinery
(reviewed in [46,47]). A recently described mechanism for viruses to epigenetically subvert host
immunity is repression of immune-related gene expression by induction of DNA hypermethylation.
In particular, DNA tumor viruses utilize this mechanism to manipulate host DNA methylation
to alter expression of immune-related genes [48–54]. Indeed, several DNA tumor viruses have
been found to regulate multiple DNMTs, suggesting that aberrant DNA methylation caused by
viruses may be linked to virus-associated carcinogenesis [55]. Particularly in tumor virus infections,
dysregulation of antiviral immune gene expression can have dual consequences. While a virus evades
antiviral immune surveillance to establish a persistent infection, immune impairment induced by
the virus can result in cancer cell evasion from antitumor immune responses during oncogenesis,
as antiviral and antitumor immunity share similar immune mechanisms (reviewed in [56]). Since recent
immunotherapies have shown promising efficacy to treat late-stage cancers [57–61], research regarding
immune dysregulation by tumor virus-induced DNA methylation is of critical importance but largely
understudied. Here, we discuss several compelling studies showing that DNA tumor virus regulation
of host immune-related genes by DNA methylation contributes to cancer progression and is likely a
result of virus-driven immune suppression to evade host antiviral responses.
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2. DNA Tumor Viruses and DNA Methylation of Host Genes

Hijacking DNA methylation machinery by DNA tumor viruses is likely a viral mechanism to
promote virus replication by evading antiviral immunity. Immune suppression caused by aberrant
DNA methylation over time may contribute to cancer development and progression associated with
DNA tumor viruses (Figure 1). In fact, tumorigenesis is enhanced when antiviral immune responses
are dampened [62–65] (reviewed in [56]). Kaposi’s sarcoma-associated herpesvirus (KSHV; also known
as human herpesvirus 8), Epstein-Barr virus (EBV; also known as human herpesvirus 4), HBV, and HPV
induce promoter methylation which downregulates expression of host immune-related genes, as will
be discussed herein. Although here we focus on DNA tumor viruses, regulation of host immune genes
by DNA methylation has also been demonstrated for the RNA virus human immunodeficiency virus
(HIV) [66–69].
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Figure 1. Model for DNA tumor virus-mediated DNA methylation to evade antiviral and antitumor
immunity during viral persistence and carcinogenesis. (A) Cellular detection of viruses activates
immune gene expression to induce an antiviral immune response. Proliferation of infected and
neighboring cells can be blocked (black T bar) by immune-mediated apoptosis and/or cell cycle
inhibition, which prevent cancer development. (B) DNA tumor viruses induce hypermethylation of
immune genes that inhibit expression of antiviral immune genes (denoted by red “×”), resulting in
immune evasion, which promotes (long red arrow) viral replication and persistence. Over long
periods of time (multiple years), immune evasion and viral persistence can promote (short red
arrow) cell proliferation and carcinogenesis. In addition, downregulation of immune gene
expression by viral-induced DNA methylation may also contribute to host cell evasion of antitumor
immune responses.

Many genome-wide methylome and transcriptome analyses have linked DNA tumor virus
infection to the dysregulation of host gene hypermethylation during viral persistence and carcinogenesis.
These DNA tumor viruses include gammaherpesviruses (EBV [70–77] and KSHV [78]), a hepadnavirus
(HBV) [79,80], alphapapillomaviruses (HPV) [53,54,81–85], and polyomaviruses (simian virus 40
(SV40) [86–89], Merkel cell carcinoma virus (MCPyV) [90,91], JC virus (JCV) [92,93]) (Table 1). Frequently,
virus-associated cancers show highly increased levels of DNMT expression [75–77,85,94–99].
In HBV-associated hepatocellular carcinoma (HCC), DNMT expression is inversely correlated with
levels of tumor suppressor microRNAs (miRNAs), including miR-152 targeting DNMT1 [97] and
miR-101 targeting DNMT3A [99]. Virus-induced DNA hypermethylation is commonly found on
several tumor suppressor genes including RASSF1A, p16 (also known as cyclin dependent kinase
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inhibitor 2A (CDKN2A)), TP73, p21 (also known as CDKN1A), and retinoblastoma-associated protein
(pRb) (Table 1). These findings suggest that induction of DNA methylation is likely a viral mechanism
to promote cell proliferation that supports efficient viral replication, particularly for DNA viruses.
Thus, downregulation of these tumor suppressors by promoter hypermethylation during virus
infection could be a determinant of virus-driven tumorigenesis. We summarize host genes with
diverse functions regulated by DNA methylation in cancers associated with DNA tumor viruses in
Table 1. Additionally, DNA methylation-associated pathogenesis for EBV-associated gastric carcinoma
(EBVaGC) [70] and HBV-associated HCC [79,80] have been previously reviewed in detail. Although
definitive identification of particular hypermethylated genes that directly promote oncogenesis remains
elusive, these studies have shown that increased DNA hypermethylation strongly correlates with
disease progression of various virus-induced cancers.

Table 1. DNA methylation associated with DNA tumor virus-induced carcinomas.

Virus Cancer Type Tumor Tissue (TT)
or Cell Line (CL) Methylated DNA/Gene Reference

Herpesviridae

EBV Gastric carcinoma Reviewed in [70]

NPC TT, CL miR-31 [71]

TT DAPK, RASSF1A,
p16 (CDKN2A) [72]

TT RASSF1A [73]

CL Retinoic acid receptor-β2
(RAR-β2) [76]

CL E-cadherin [77]

Burkitt’s lymphoma (BL) CL 4712 differentially
methylated genes [74]

Germinal center (GC) B
cell malignancies,

Hodgkin’s
lymphoma (HL)

TT (GC)
CL (HL) 1745 DMPs [75]

KSHV Primary effusion
lymphoma CL p16 (CDKN2A) [78]

Hepadnaviridae

HBV HBV-associated HCC Reviewed in [79,80]

Papillomaviridae

HPV Head and neck SCC TT NSD1, NOTCH1 [81]

Cervical squamous
intraepithelial lesions TT SIM1, DLX4 [82]

E6/E7 immortalized
keratinocytes CL

hTERT, miR124-2,
PRDM14, FAM19A4,

SFRP2, PHACTR3, MAL,
CYGB, ROBO3

[83]

HPV16/18 keratinocytes,
cervical cancer cells CL hTERT [84]

Head and neck SCC,
cervical carcinoma TT CXCL14 [54]

HPV16/18 immortalized
keratinocytes TT HLA-E, CCNA1, TERT;

5190 DMPs [53]

SCC CL 75 differentially
methylated genes [85]
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Table 1. Cont.

Virus Cancer Type Tumor Tissue (TT)
or Cell Line (CL) Methylated DNA/Gene Reference

Polyomaviridae

SV40 Diffuse large B cell
lymphoma TT DAPK, CDH1, GSTP1,

p16 (CDKN2A), SHP1 [86]

Non-Hodgkin’s
lymphoma/leukemia TT

CDH1, CDH13, CRBP,
p16 (CDKN2A), DAPK,

DcR1, DcR2
[87]

Malignant mesothelioma TT RASSF1A [88,89]

Lung adenocarcinoma TT RASSF1A [88]

MCPyV Merkel cell carcinoma,
small cell lung cancer TT RASSF1A [90,91]

JC virus Gastric carcinoma TT p16 (CDKN2A), p14 [92]

Colorectal cancer TT hMLH1, PTEN, RUNX3,
p16 (CDKN2A) [93]

NPC: Nasopharyngeal carcinoma; SCC: Squamous cell carcinoma; DMP: Differentially methylated position.

In contrast to virus-induced DNA hypermethylation, viruses can also decrease host DNA
methylation to regulate host gene expression. DNA hypomethylation usually results in increased gene
expression. For example, Kaposi’s sarcoma (KS) cell lines display hypomethylation of AXL receptor
tyrosine kinase (AXL), which is linked to oncogenesis [100]. The KSHV viral FLICE-inhibitory protein
(vFLIP) induces AXL expression potentially through AXL gene hypomethylation [100]. Alterations
in DNA methylation status of particular genes by viruses may have profound effects on cancer
development and progression.

3. Herpesviridae

3.1. Oncogenesis by Herpesviruses

Herpesviruses are large double-stranded DNA viruses that persistently infect their hosts, often
for an entire lifetime. Herpesvirus infections generally do not cause any significant disease unless host
immune responses are suppressed [101]. Herpesviruses have both lytic and latent cycles of infection.
Once a lytic infection ensues, herpesviruses undergo a dormant cycle (latency) and occasionally
reactivate from latency to undergo lytic replication. One genus of herpesviruses, gammaherpesviruses,
such as KSHV and EBV, have oncogenic potential [101]. KSHV causes KS, primary effusion lymphomas
(PEL) and multicentric Castleman disease in immunocompromised individuals (reviewed in [102]).
EBV infection is associated with various lymphomas, including Burkitt’s and Hodgkin’s lymphomas,
in addition to carcinomas of the nasopharynx and stomach (reviewed in [103]).

KSHV encodes multiple oncoproteins and oncogenic miRNAs that dysregulate host functions
and promote cancer progression of endothelial and B cells (reviewed in [102,104]). A primary
mechanism underlying KSHV-induced cancers is activation of angiogenesis by KSHV miRNAs and
the oncoproteins vIRF3, K1, K8.1, K15, glycoprotein B (gB), latency-associated nuclear antigen (LANA),
viral G-protein coupled receptor (vGPCR), vFLIP, and viral chemokines (reviewed in [104]). In addition,
KSHV K1, vFLIP, LANA, and viral interleukin-6 (vIL-6) inhibit apoptosis in KSHV-infected cells to
support cell proliferation as well as viral replication and persistence (reviewed in [102,104]). KSHV
also activates the host cell cycle, cell proliferation, migration, and invasion, which contribute to
viral oncogenesis (reviewed in [104]). LANA is consistently expressed in KSHV-positive cancers and
known to induce angiogenesis and activate the host cell cycle by degrading p53 and stabilizing c-MYC
(reviewed in [105]). Thus, KSHV has evolved mechanisms to modulate various aspects of host biology
to drive oncogenesis.

EBV also encodes several proteins and miRNAs that promote transformation of B cells and
epithelial cells, such as latent membrane proteins (LMP1 and LMP2), EBV nuclear antigens (EBNA1-3,
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leader protein (LP)), BamHI fragment H rightward open reading frame 1 (BHRF1), BamHI A
reading frame 1 (BARF1), and BamHI A rightward transcript miRNAs (miR-BART) (reviewed
in [103,106]). Several miR-BARTs, BHRF1, and BARF1 block pro-apoptotic proteins in host cells
(reviewed in [103,106]). EBV LMP activates oncogenic signaling including mitogen-activated protein
kinase, c-Jun N-terminal kinase, phosphatidylinositol 3-kinase, and NF-κB pathways (reviewed
in [106]). EBNAs stimulate cell proliferation through multiple mechanisms. EBNAs inhibit p53
and pRb tumor suppressors, hijack RBP-Jκ and NF-κB transcription factors to express oncogenes,
usurp HDACs (reviewed in [107]), and induce DNA damage by activating recombinase-activating
genes (RAG1 and RAG2) [108].

3.2. Herpesviruses Modulate DNMTs

�Both KSHV and EBV have been shown to stimulate DNA hypermethylation of host genes,
which likely contributes to virus-driven tumorigenesis. KSHV LANA interacts with DNMTs
and recruits DNMT3A to host chromatin [109] (Figure 2A). DNMT3A mRNA expression is also
increased in KSHV-infected cells, which likely results in DNMT3A-mediated repression of host
genes [110]. KSHV vIL-6 enhances DNMT1 expression levels and activity, resulting in global DNA
hypermethylation in endothelial cells [111]. Treatment of vIL-6-expressing cells with the demethylating
agent 5-aza-2′-deoxycytidine reduced aberrant cell proliferation and migration induced by vIL-6.
These results suggest that vIL-6-induced host DNA hypermethylation increases host cell proliferation
and migration [111].

Viruses 2018, 10, x  6 of 24 

 

(reviewed in [103,106]). EBV LMP activates oncogenic signaling including mitogen-activated protein 
kinase, c-Jun N-terminal kinase, phosphatidylinositol 3-kinase, and NF-κB pathways (reviewed in 
[106]). EBNAs stimulate cell proliferation through multiple mechanisms. EBNAs inhibit p53 and pRb 
tumor suppressors, hijack RBP-Jκ and NF-κB transcription factors to express oncogenes, usurp 
HDACs (reviewed in [107]), and induce DNA damage by activating recombinase-activating genes 
(RAG1 and RAG2) [108].  

3.2. Herpesviruses Modulate DNMTs 

Both KSHV and EBV have been shown to stimulate DNA hypermethylation of host genes, which 
likely contributes to virus-driven tumorigenesis. KSHV LANA interacts with DNMTs and recruits 
DNMT3A to host chromatin [109] (Figure 2A). DNMT3A mRNA expression is also increased in 
KSHV-infected cells, which likely results in DNMT3A-mediated repression of host genes [110]. KSHV 
vIL-6 enhances DNMT1 expression levels and activity, resulting in global DNA hypermethylation in 
endothelial cells [111]. Treatment of vIL-6-expressing cells with the demethylating agent 5-aza-2′-
deoxycytidine reduced aberrant cell proliferation and migration induced by vIL-6. These results 
suggest that vIL-6-induced host DNA hypermethylation increases host cell proliferation and 
migration [111].  

 
Figure 2. DNA tumor viruses that promote DNA hypermethylation of immune-related genes. (A) 
KSHV LANA; (B) an unidentified EBV protein; (C) HBV HBx; and (D) HPV E6 and E7 proteins 
upregulate the DNMTs shown to induce DNA methylation and transcription inhibition (indicated by 
red “×”) of the denoted immune-related genes. The outcome of immune gene suppression by the 
viruses promotes virus replication and host cell proliferation. Circled question marks indicate 
potential mechanisms that have not yet been fully defined. 

Figure 2. DNA tumor viruses that promote DNA hypermethylation of immune-related genes.
(A) KSHV LANA; (B) an unidentified EBV protein; (C) HBV HBx; and (D) HPV E6 and E7 proteins
upregulate the DNMTs shown to induce DNA methylation and transcription inhibition (indicated by
red “×”) of the denoted immune-related genes. The outcome of immune gene suppression by the
viruses promotes virus replication and host cell proliferation. Circled question marks indicate potential
mechanisms that have not yet been fully defined.
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EBV can infect and modulate DNMT levels in both epithelial and B cells. Expression of distinct
DNMTs is regulated differently by EBV based on cell/tissue types and latency programs. EBV has
three latency stages (I-III) determined by differential viral gene expression, which influences host
gene expression, including DNMTs [112]. DNMT1 and DNMT3B are upregulated in EBVaGC
(latency I) [94,95] by LMP2A [94]; DNMT1, DNMT3A, and DNMT3B are upregulated in EBV-associated
nasopharyngeal carcinoma (NPC; latency II) by LMP1 [76,77,113]; lastly, DNMT3A levels are increased
in Hodgkin’s lymphoma cell lines (latency II) as well as lymphoblastoid cell lines derived from
EBV-positive germinal center B cells (latency III) by an unknown viral gene [75] (Figure 2B). DNMT1
and DNMT3B expression was shown to be downregulated in EBV-infected lymphoblastoid cells and
Hodgkin’s lymphoma cell lines, which is distinct from that observed for EBVaGC and EBV-positive
NPC [75]. Ectopic expression of EBV LMP1 reduces DNMT1 levels in lymphoblastoid cells [75].
LMP1 effects on DNMT1 levels in lymphoblastoid cells compared to EBVaGC and NPC could be
due to differing EBV latency stages, which are dictated by distinct EBV gene expression patterns.
Upregulation of DNMT1 expression by EBV LMP2a in EBVaGC [94] may be compensatory for the
lack of LMP1 expression in latency I EBVaGC cells. Taken together, these results suggest that EBV
upregulates different DNMT proteins in varying host cell/tissue types to induce hypermethylation
of host genes (Figure 2B). In summary, DNA methyltransferase activity is altered in both KSHV- and
EBV-infected cells, changing the landscape of promoter methylation and host gene expression.

3.3. KSHV and TGF-β Signaling

Downregulation of the transforming growth factor β (TGF-β) type II receptor (TβRII) by
LANA-mediated promoter methylation contributes to development of KSHV-induced PEL [48]
(Figure 2A). Upon binding of the ligand TGF-β, TGF-β type I receptor (TβRI) is recruited to and
heterodimerizes with TβRII to initiate downstream signaling. TβR signaling contributes to embryo
and organ development by regulating cell proliferation, differentiation, apoptosis, homeostasis,
and other cellular processes (reviewed in [114–116]). Furthermore, the TβR signaling pathway
plays important roles in cancer development and progression [117,118]. For example, TGF-β is
considered a tumor suppressor as it inhibits proliferation of colon cancer cells [119], pancreatic
ductal adenocarcinoma cells [120], and hepatocytes [118,121,122]. Interestingly, previous studies
using cancer cell lines and patient tissue samples showed that loss of TGF-β signaling is often
strongly correlated with hypermethylation of the TβRII promoter and poor prognosis for patients with
different types of cancers [123–129]. TGF-β signaling is downregulated by KSHV, which stimulates
cell proliferation and could promote cancer development [104]. KSHV-positive PEL cells were found
to be unresponsive to TGF-β stimulation [48]. TβRII expression and TGF-β signaling activation was
restored in KSHV-positive PEL cells by treatment with 5-aza-2′-deoxycytidine in combination with
an HDAC inhibitor MS-275. Furthermore, reversing the epigenetic silencing of TGF-β signaling
decreases cell proliferation and increases apoptosis [48]. These results suggest that downregulation of
TβRII expression through KSHV-induced DNA methylation abrogates TGF-β signaling and drives
transformation of KSHV-infected cells.

Several studies have revealed that TGF-β signaling is detrimental to KSHV infection,
as KSHV employs various mechanisms to avoid host restriction mediated by TGF-β signaling.
These mechanisms include: (1) vFLIP and viral cyclin (vCyclin) activation of oncogenic host miRNAs
that target SMAD family member 2 (SMAD2), a downstream component of TGF-β signaling [130];
(2) virally-encoded miRNA targeting of TβRII [131], SMAD5 [132], and thrombospondin 1, a mediator
of latent TGF-β activation [133]; (3) viral IFN regulatory factor 1 (vIRF1) binding to and inhibition of
SMAD3-SMAD4 functions in the TGF-β signaling complex [134]; (4) viral K-bZIP disruption of the
SMAD3 interaction with CREB-binding protein (CBP) [135], which is important for transcriptional
activation of TGF-β [136–140]; and (5) cytokine receptor gp130 activation by vIL-6 that leads to
downregulation of TGF-β2 expression [141,142]. These findings strongly indicate that TGF-β signaling
activation potently restricts productive KSHV infection. Taken together, epigenetic downregulation of
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TβRII by KSHV plays an important role for virus evasion of TGF-β signaling-mediated host restriction
during virus persistence and disease progression (Figure 2A).

3.4. EBV and the Antiviral Protein IRF5

EBV induces promoter hypermethylation of IFN regulatory factor 5 (IRF5) during oncogenesis of
Burkitt’s lymphoma and EBVaGC [49] (Figure 2B). IRF5 functions as both an antiviral signaling
factor and tumor suppressor by inducing apoptosis in response to viral infection or DNA
damage [143]. Activation of toll-like receptor (TLR)-myeloid differentiation primary response 88
(MyD88) signaling induces IRF5 phosphorylation, which translocates IRF5 into the nucleus and
transactivates pro-inflammatory cytokines and DNA damage response genes [143–145]. IRF5 is a
potent tumor suppressor. H-Ras transformed mouse embryonic fibroblasts (MEF) expressing IRF5
do not develop tumors in vivo, whereas cells lacking IRF5 readily form tumors [143]. In this model,
IRF5 tumor suppression is likely mediated through induction of apoptosis, as cells lacking IRF5
are resistant to apoptosis compared to IRF5-expressing cells [143]. Additionally, IRF5 expression
is decreased in breast cancer tissues, and overexpression of IRF5 in breast cancer cell lines results
in DNA damage-induced cell death and tumor suppression [146]. A previous study showed that
EBV-induced promoter methylation and repression of IRF5 transcription are linked to gastric carcinoma
development [147]. Dong et al. demonstrated that hypermethylation of the IRF5 promoter was 5-fold
higher in EBVaGC cell lines compared to EBV-negative gastric carcinoma cell lines. In addition, IRF5
expression in EBVaGC cells was rescued by treatment with a demethylating agent [49]. While the
EBV protein that mediates IRF5 DNA methylation remains unknown, these results imply that
downregulation of IRF5 expression by EBV blocks apoptosis of infected cells and contributes to
cell transformation and oncogenesis.

The antiviral activity of IRF5 was first demonstrated in vesicular stomatitis virus (VSV) and HSV-1
infections [143]. IRF5 inhibits proliferation of EBV-infected cells [148] and downregulates expression of
both EBV LMP1 mRNA [149] and the latency BART mRNAs [150]. In fact, LMP1 was recently shown
to inhibit IRF5-mediated apoptosis during infection [151]. Interestingly, another study showed that
although TLR7 signaling is activated during EBV infection, downstream IRF5 expression is repressed
by induction of an IRF5 dominant-negative splice variant [152]. Overall, these results suggest that
EBV has developed several mechanisms to block IRF5 induction of apoptosis in EBV infected cells.
Thus, EBV-induced DNA methylation of IRF5 may play an important role in evasion of host immunity
during virus persistence and oncogenesis (Figure 2B).

4. Hepadnaviridae

4.1. HBV Oncogenesis

HBV is a small, partially double-stranded DNA virus that infects hepatocytes and causes
hepatitis, cirrhosis, and HCC. Nearly 4% of the worldwide population is chronically infected with
HBV, which contributes to HCC being the fifth most common cancer worldwide (reviewed in [153]).
HBV persistently infects hepatocytes as cccDNA, which is the genomic template for viral replication.
HBV-driven HCC development is thought to occur through multiple oncogenic mechanisms including:
(1) HBV DNA integration into the host genome; (2) cellular stress induced by accumulation of HBV
surface antigen (HBsAg) in the endoplasmic reticulum; and (3) the multiple oncogenic functions of
HBV X-protein (HBx). HBx interferes with proteasomal protein degradation, induces host miRNA
expression, dysregulates host epigenetics, activates oncogenic signaling (e.g., Ras, Src and Wnt
signaling), and stimulates the host cell cycle by inhibiting tumor suppressors such as p53 (reviewed
in [153,154]). Altogether, persistent HBV infection presents a myriad of mechanisms that predispose
cells to transformation. Here, we describe the roles of host DNA methylation in HBV infection and its
impact on oncogenesis.
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4.2. HBx Modulation of DNMTs

The HBV oncoprotein HBx upregulates expression of DNMT1 and DNMT3A, which leads to
promoter methylation and transcriptional repression of several tumor suppressor genes [96,155–161]
(Figure 2C). HBx activates the host cell cycle by upregulating DNMT1 through a positive feedback
mechanism [158]. HBx represses expression of the cyclin dependent kinase (CDK) inhibitor p16
by DNMT1-mediated promoter methylation. Downregulation of p16 expression leads to cell cycle
activation through inhibition of pRb and upregulation of E2F1. This ultimately results in increased
DNMT1 levels and creates a positive feedback loop to further reduce pRb expression by p16 promoter
methylation [158]. HBx also promotes cell cycle progression through hypermethylation of other CDK
inhibitors, p21 and p27 [157,162]. These results suggest that manipulation of the cell cycle by HBV HBx
through enhanced DNA methylation may contribute to HCC development [157,158,161,162].

Several studies have demonstrated that expression of DNMT1 and DNMT3A/B are upregulated
in HBV-associated HCC tissues compared to adjacent normal liver tissues from patients [96–99].
On the other hand, studies using mice expressing HBx in hepatocytes revealed roles for HBx in DNA
hypomethylation, which involve altered DNMT expression or promoter binding and may promote the
development of HCC [163–165]. HBx repressed expression of DNMT3A and DNMT3L in HBx-expressing
mice by binding their promoters in conjunction with HDAC1, which leads to global hypomethylation
of CpG regions in the host genome [163]. Additionally, epithelial cell adhesion molecule (EpCAM)
expression is upregulated in HBV-associated HCC by HBx-induced hypomethylation of the
EpCAM gene by an uncharacterized mechanism, which involves DNMT3L [164]. Despite the well
established role of DNMT3L in enhancing DNMT3A and DNMT3B activity [7–10], DNMT3L can
also negatively regulate DNA methylation by competing with DNMT3A and DNMT3B binding to
polycomb-repressive complex 2 (PRC2) to prevent de novo DNA methylation at histone 3 lysine
27 trimethylation (H3K27me3) sites [166]; this may explain the role of DNMT3L in HBx-mediated
upregulation of EpCAM expression. In addition, the cyclooxygenase-2 (COX-2) promoter is
hypomethylated in HBV-positive cells with reduced binding of DNMT3B to the COX-2 promoter.
HBx transgenic mice display elevated COX-2 expression as compared to mice lacking HBx, indicating
that HBx is critical for increasing COX-2 expression in hepatocytes [165]. These results suggest that
HBV HBx employs multiple mechanisms to induce or inhibit DNA methylation on different genes
during hepatocarcinogenesis.

4.3. HBV and IL-4R Signaling

In addition to hypermethylation and downregulation of the tumor suppressors p16, p21 and
p27, HBx also induces methylation of the IL-4 receptor (IL-4R) gene, leading to downregulation of
its expression [50]. The ligand of IL-4R, IL-4, is an anti-inflammatory cytokine that suppresses host
cell growth and induces apoptosis [167]. IL-4R signaling primarily functions in hematopoietic cells;
however, its activity has been observed in hepatocytes as well [168–170]. Interestingly, Zheng et al.
found that expression of several genes downregulated by HBx is restored when DNA methylation is
inhibited by treatment with 5-aza-2′-deoxycytidine [50]. The authors further revealed that HBx binds
DNMT1 and DNMT3A. Notably, HBx binds the IL-4R promoter to facilitate its DNA methylation and
silencing of IL-4R expression is DNMT3A-dependent [50]. These results indicate that IL-4R expression
is repressed by HBx in HBV-infected hepatocytes through promoter methylation (Figure 2C).

IL-4R signaling limits HBV infection [171,172]. Activation of IL-4R signaling in HBV-infected
hepatocytes inhibits viral replication and reduces HBsAg and HBV e antigen (HBeAg) expression.
IL-4 represses expression of C/EBPα, a transactivator of the HBV genome core promoter, to inhibit
HBV replication [171]. Consistently, production of both HBsAg and HBeAg is decreased by IL-4
treatment [172]. Altogether, these results suggest that HBV replication and viral gene expression is
inhibited by IL-4. Thus, downregulation of IL-4R expression by HBx-induced promoter methylation is
likely an immune evasion mechanism of HBV [50]. Since IL-4-mediated signaling is pro-apoptotic [173],
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HBV downregulation of IL-4R expression via promoter methylation may contribute to cell proliferation
and HCC development.

5. Papillomaviridae

5.1. HPV Oncogenesis

HPVs are small double-stranded DNA viruses that infect cutaneous and mucosal keratinocytes.
While infection with low-risk HPV genotypes (e.g., HPV6 and -11) leads to development of benign skin
lesions such as warts, several high-risk genotypes (e.g., HPV16 and -18) are causally associated with
cervical, anogenital, or head and neck cancers (HNC). HPV associated cancers account for over 5% of
all cancers worldwide [174]. While the majority of initial HPV infections are cleared within a few years,
about 10% of infected people establish persistent HPV that likely exists for their lifetime [175,176].
Persistent infection with high-risk HPV genotypes and continuous expression of the HPV oncogenes,
E6 and E7, are required for HPV-associated cancer progression and maintenance [177,178]. E6 and E7
contribute to cancer progression through various oncogenic mechanisms including inactivation of the
tumor suppressors p53 and pRb, respectively [179]. Recent studies have suggested that dysregulation
of DNA methyltransferase activity may also affect HPV-associated carcinogenesis.

5.2. HPV Modulation of DNMTs

HPV E6 and E7 enhance promoter methylation by upregulation of DNMT1 expression through
p53 degradation and a direct interaction with the DNMT1 protein, respectively [180,181] (Figure 2D).
Our studies have shown that dysregulation of host DNA methylation by HPV16 E7 is associated with
host immune suppression during HPV-associated cancer progression [53,54,182]. Interestingly, a recent
clinical trial revealed that treatment with DNA methylation inhibitors suppressed HPV-positive HNC
growth. Notably, HPV-positive HNC is more sensitive to treatment with the DNA demethylating
agent 5-aza-2′-deoxycytidine compared to HPV-negative HNC [183]. These findings suggest that HPV
dysregulation of DNA methylation can be reversed using demethylating agents as a targeted therapy
for HPV-associated cancers. Here, we discuss several immune genes regulated by HPV through
promoter hypermethylation.

5.3. High-Risk HPV and IFNκ Signaling

Dysregulation of immune-related gene expression by high-risk HPV-mediated DNA methylation
was first demonstrated with IFN-kappa (IFNκ) [51,52] (Figure 2D). IFNκ is a type I IFN that is
constitutively expressed in human keratinocytes, the natural host cell type for HPV infection [184].
IFNκ is an antiviral factor that restricts HPV replication in keratinocytes [185]. Previous studies
showed that IFNκ expression is significantly downregulated in cells harboring high-risk HPV genomes
(HPV16, -18 or -31) or expressing HPV16 E6 [51,52]. IFNκ expression in HPV-positive cells is restored
by treatment with the demethylating agent 5-aza-2′-deoxycytidine, indicating that HPV induces
methylation of IFNκ to reduce its expression. HPV16 E6, but not E7, is necessary and sufficient for
induction of IFNκ promoter methylation [51,52]. Consistently, HPV16-positive cervical intraepithelial
neoplasia and cervical cancer tissues are devoid of IFNκ expression, whereas HPV16-negative normal
mucosal tissues display strong IFNκ expression [51]. Furthermore, ectopic expression of IFNκ in
HPV16-positive cells restores antiviral signaling as determined by induction of IFN-stimulated gene
expression and suppression of VSV replication. This indicates that the downstream signaling of IFNκ

is still intact despite decreased IFNκ expression by HPV16 E6 [51]. These results suggest that high-risk
HPV E6 interferes with expression of type I IFN to promote HPV persistence in host cells.

5.4. High-Risk HPV and CXCL14 Expression

In previous gene expression studies using cervical and HNC patient tissue samples, we have
revealed that numerous immune-related genes are dysregulated in HPV-positive cancers compared to
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normal tissue and HPV-negative cancers [54,186,187]. To determine if HPV directly affects expression
of these immune-related genes, we recently performed a global gene expression analysis using normal
keratinocytes with and without the HPV16 genome [53,54]. The two most downregulated groups of
genes were those involved in immune regulation and extracellular matrix organization. Furthermore,
many of these immune-related genes were specifically downregulated by the HPV16 oncoprotein E7,
which was previously suggested to suppress antitumor immune responses [53,54,188]. Interestingly,
our recent study showed that HPV16 E7 significantly downregulates the chemokine (C-X-C motif)
ligand 14 (CXCL14) through promoter hypermethylation [54].

CXCL14 is a relatively novel chemokine, and its native receptor is still unidentified. CXCL14
inhibits angiogenesis and directly recruits several types of immune cells such as dendritic, natural
killer (NK), and T cells [54,189,190]. We and other groups have shown antitumor activity of CXCL14
in cancers of the lung, head and neck, colon, and liver [54,191–195]. Consistently, the levels
of CXCL14 expression are reduced in these and other cancers [54,187,193,195–197]. Our study
revealed that HPV16 E7 is responsible for CXCL14 downregulation by facilitating hypermethylation
of the CXCL14 promoter, which is reversed by 5-aza-2′-deoxycytidine treatment [54] (Figure 2D).
Restoration of CXCL14 expression in HPV-positive cancer cells significantly increases NK and T
cell recruitment and dramatically suppresses tumor cell growth in vivo. These results suggest that
CXCL14 is a tumor suppressing chemokine, which is downregulated by HPV E7-induced promoter
hypermethylation [54]. Similarly, CXCL14 is also downregulated by promoter methylation in HCC
cells and patient tumors [195,198]. Consistently, ectopic expression of CXCL14 in HCC cells decreases
colony formation, cell viability, cell invasion, and tumor growth in vitro and in vivo [195]. As HBV
infection is a major driver of HCC, this suggests that HBV might similarly downregulate CXCL14
expression during persistence and HCC development.

Although a direct antiviral role of CXCL14 has not been demonstrated, CXCL14 may play
a protective role at the cutaneous and mucosal skin layers to prevent HPV infection. CXCL14 is
highly expressed in normal keratinocytes and structurally similar to antimicrobial proteins such
as defensins [199], which restrict HPV infection [200,201]. Taken together, these results imply that
downregulation of CXCL14 by HPV E7-induced DNA methylation to evade host immunity contributes
to suppression of host antitumor immune responses during HPV persistence and cancer progression.

5.5. High-Risk HPV and HLA-E Expression

We have recently discovered that high-risk HPV E7s, but not low-risk HPV E7s, downregulate
HLA-E expression in keratinocytes by promoter hypermethylation, as shown by restoration of
HLA-E expression using a demethylating agent (Figure 2D) [53]. HLA-E is a non-classical major
histocompatibility complex I (MHC-I) protein that presents T cell epitopes on the cell surface and
regulates NK and CD8+ T cell activation (reviewed in [202]). Peptide presentation, usually of self
antigens, to NK cells by HLA-E inhibits NK cell-mediated cytolysis; however, pathogen antigen
presentation by HLA-E typically prompts the killing activity of CD8+ T cells, including NK T cells,
a subset of CD8+ T cells (reviewed in [202,203]). Therefore, downregulation of HLA-E by high-risk
HPV E7 [53] implies that HLA-E may present HPV peptides to CD8+ T cells, resulting in elimination
of infected cells. There is precedence for HLA-E presentation of viral peptides, but a clear antiviral
mechanism has not been studied. A recent study showed that HLA-E interacts with and presents
a conserved HIV-1 envelope peptide to activate NK cells to kill virus-infected T cells [204]. Thus,
it is possible that downregulation of HLA-E expression by HPV-induced promoter hypermethylation
is a viral mechanism of avoiding immune detection and cell-mediated cytotoxicity by decreasing
viral peptide presentation to CD8+ T cells. This may lead to viral persistence and HPV-associated
cancer development.
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6. Other DNA Tumor Viruses

In addition to the viruses described above, other DNA tumor viruses alter promoter methylation
of host genes. Adenovirus-5 E1A upregulates DNMT1 expression and also directly interacts with
DNMT1 protein. Interestingly, a transformation-deficient E1A mutant that cannot bind DNMT1
abrogates virus-induced DNA methylation [181]. This suggests that the interaction of E1A with
DNMT1 and induction of DNA methylation is linked to cellular transformation. Additionally,
infection with the polyomavirus SV40 stabilizes DNMT activity and increases host DNA methylation
in immortalized fibroblasts by unknown mechanisms [205]. Moreover, SV40 antigens are associated
with aberrant DNA methylation in tumor tissues (Table 1) [86–89], suggesting that its stabilization
of DNMT activity might promote tumor progression. Similarly, the presence of antigens from two
other polyomaviruses, Merkel cell polyomavirus and JC virus, correlated with DNA hypermethylation
in tumor tissues [90–93]. Polyomavirus-induced DNA hypermethylation is often found on tumor
suppressor genes (Table 1). Altogether, these results suggest that viral-induced host DNA methylation
may be a common mechanism to repress host gene expression to facilitate persistent viral infection
and potentiate virus-induced cancer progression (Figure 1).

7. Conclusions

Recent studies in virus-driven dysregulation of host immune-related gene expression through
DNA methylation presents a novel viral mechanism to inhibit immune responses. This field is largely
understudied, and several important questions remain: (1) Is alteration of host DNA methylation a
major mechanism generally employed by diverse viruses, including RNA viruses, to regulate immune
responses? (2) Are specific antiviral immune genes prone to virus-driven DNA methylation? (3) Are
there specific hot spots in host genomes that viruses target utilizing DNA methylation to alter gene
expression? Parallel analyses of global gene expression and the cellular methylome altered by virus
infection may be useful to determine whether viral evasion of host immune responses is associated
with aberrant DNA methylation induced by diverse viruses. These analyses would also reveal whether
certain immune-related genes are commonly targeted by different viruses to evade host immunity.

One factor that increases the probability of DNA methylation in a promoter region is the presence
and abundance of CpG islands. Additionally, DNA methylation site specificity can be facilitated
through multiple mechanisms: (1) specific transcription factors and DNA binding proteins that recruit
DNMTs to distinct genomic regions; (2) DNMT interactions with HDACs to enhance chromatin
packaging and gene silencing; (3) three-dimensional DNA structural changes that alter DNA binding
protein accessibility; and (4) nucleosome stability and positioning in the nucleus (reviewed in [11,12]).
However, the exact signals or mechanisms that drive specificity of genes affected by DNA methylation
are mostly unknown. Defining how particular genes are targeted by virus-induced DNA methylation
would significantly impact our understanding of cellular gene regulation not only by viruses, but also
different cellular stimuli or processes, through DNA methylation. In addition, the majority of viruses
discussed above upregulate DNMT expression and/or activity; however, these viruses can also
modulate other factors involved in epigenetic reprogramming linked to DNA methylation, such as
histone modifications (reviewed in [206]). This may provide additional means to control host gene
transcription through DNA methylation independently of DNMT upregulation. It is of interest to
understand how cellular gene transcription is affected by the interplay between DNA methylation
and other epigenetic factors. For instance, KSHV-induced downregulation of TβRII was not fully
reversed using a demethylating agent or HDAC inhibitor alone, but a combination of the two fully
restored TβRII expression [48]. These results suggest that some host genes are not silenced simply
through promoter hypermethylation or histone deacetylation alone, and therefore, viruses may have
evolved mechanisms to ensure host gene downregulation through multiple epigenetic modifications.
Similar transcriptional regulation occurs in cells to regulate gene expression, but the mechanisms
remain elusive [3]. Using viruses, or viral proteins mediating host epigenetic changes, could also
be useful in dissecting how DNA methylation alters chromatin structure, or vice versa. In addition,
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viral studies on transcriptional regulation by DNA methylation and chromatin modifications may help
reveal which epigenetic change initiates gene silencing, as this is still largely unclear.

Further mechanistic understanding is necessary to define the role and result of virus-driven
aberrant DNA methylation of particular genes in oncogenesis. These studies would be of great
interest and may provide useful targets for novel treatments for these virus-associated cancers.
Since many DNA tumor viruses stimulate DNA methylation of host genes, including tumor
suppressors and immune regulators, demethylating agents could be used to treat virus-associated
cancers. In fact, 5-aza-2′-deoxycytidine treatment of HPV-positive HNC cells resulted in cell cycle
arrest, p53-dependent apoptosis, activation of IFN signaling, and inhibition of metastasis [183].
5-aza-2′-deoxycytidine treatment also decreased HPV gene expression within infected cells, which
may result from the aforementioned effects of 5-aza-2′-deoxycytidine treatment on cell proliferation
and IFN signaling [183]. Additionally, recent studies have shown that inhibition of DNA methylation
significantly induces antitumor immune responses in colon and ovarian cancers [22,23]. Treatment
with 5-aza-2′-deoxycytidine reactivates endogenous retroviruses that are recognized by cellular innate
immune receptors and stimulate antiviral IFN responses [22,23]. Accordingly, demethylating drugs
are generally being considered for cancer treatment in combination with other therapeutics to combat
aberrant DNA methylation in oncogenesis (reviewed in [1]) and may be a highly effective strategy to
treat virus-associated cancers. Therefore, a better understanding of virus-mediated dysregulation of
host DNA methylation is of critical importance.
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