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Abstract

Three decades of research in hematopoietic stem cell transplantation and HIV/AIDS fields have 

shaped a picture of immune restoration disorders. This manuscript overviews the molecular 

biology of interferon networks, the molecular pathogenesis of immune reconstitution 

inflammatory syndrome, and post-hematopoietic stem cell transplantation immune restoration 

disorders (IRD). It also summarizes the effects of thymic involution on T cell diversity, and the 

results of the assessment of diagnostic biomarkers of IRD, and tested targeted immunomodulatory 

treatments
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Introduction

Alterations in the balanced recovery of innate and adaptive immunity represent the immune 

restoration disorders. The spectrum of them have been grown throughout the past decade, 

and their pathology somewhat clarified. The common theme among them is that they 

occurred in lymphopenic individuals, who can be divided into two large groups: 1. In 

patients with primary immunodeficiency state due to advanced HIV infection, who initiated 

antiretroviral therapies (ART), and 2. In transplant patients after high-dose chemo-radiation-

therapy who underwent hematopoietic stem cell transplantation. These poorly defined 

conditions require prolonged infection surveillance, careful choice of anti-inflammatory 

medications, as well as expensive laboratory monitoring throughout the immune 

reconstitution phases. Because these patients experience either prolonged and severe 

immune deficiency due to HIV, or acute myeloablation due to treatment, the immune 

reconstitution kinetics differ, but the T cell immunity is particularly affected in both.

High occurrence of inflammatory immune restoration is exclusively reported in patients who 

initiated antiretroviral therapy after the onset of severe immunodeficiency. This disorder is 
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reported as immune reconstitution inflammatory syndrome (IRIS), or immune 

reconstitution/restoration disease (IRD). IRIS is a common complication in AIDS patients 

who initiated ART. It can be described as a paradoxical inflammatory reaction that occurs in 

response to persistent opportunistic pathogens: mycobacterial, viral, fungal, or parasitic 

[1,2]. Among diverged clinical symptomatology, one common denominator is that the 

patient’s immune system begins improving due to ART and subsequently deteriorate [3]. 

Since the antigen-specific T cell-mediated immunity is nearly wiped out by HIV, the 

restoration of it after therapy initiation trigger a dysfunctional response against persisting 

antigens, whether present as whole microorganisms, or in the form of pathogen-associated 

molecules, which trigger a highly inflammatory immune activation [4].

The allogeneic hematopoietic stem cell transplantation (allo-HSCT) has proven to be 

lifesaving for many patients recovering from immuno-hematological malignancies [5]. 

Outcomes however are dependent on the eradication of malignant cells, donor compatibility, 

and on how successful is the reconstitution of recipients’ immuno-hematopoiesis [6]. The 

phases of immune reconstitution are usually assessed at several milestones, such as 

neutrophil engraftment, the innate immune recovery, and eventually an adaptive immune 

recovery, which may finalize by 24 months post-transplantation [7]. Delayed or incomplete 

immune reconstitution has been associated with significant morbidity and mortality, 

especially in adults due to infections, transplant rejection, or malignant disease relapse [8]. 

The restoration of T cell immune responses is increasingly recognized as the main 

determinant which sets apart favorable immune reconstitution from pathological one, which 

is accompanied by immune exhaustion, pathogenic autoimmune activation, or graft versus 

host reactions (GVHD) [9].

Three decades of research in transplantation and HIV fields have shaped a picture of 

immune restoration disorders. In the absence or poor recovery of T cells, other immune cells 

synergize their effort to control infections while preventing excessive inflammation or 

autoimmunity. Particularly, monocytes, natural killer cells (NK) or B cells are able to 

undergo faster homeostatic expansion and produce and overlapping repertoire of immune 

mediators (e.g. cytokines of interferon family). It remains unclear whether complete T cell 

immune reconstitution ever occurs in older individuals who are most susceptible to immune 

reconstitution disorders.

Thus, cumulative knowledge about innate and adaptive immune cells and the secretions of 

cytokines during immune recovery has an important clinical implication for assessment of 

favorable or the diagnosis of pathological immune reconstitution. One of the cytokine family 

we are going to highlight in this review is type I/II interferons, which exhibit defined 

kinetics during immune reconstitution phases. Type I/II interferon networks play a unique 

role in the connection between innate and adaptive immunity, therefore essential in normal 

and pathological immune reconstitution.

Interferon Signaling

Interferons (IFNs) are a group of signaling proteins that are being made and released by 

immune and non-immune cells to heighten their defenses against intracellular pathogens 
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[10]. The release of interferons causes a range of flu-like symptoms from subfebrile fever, 

mild muscle or body aches, to cytokine storm-like symptoms when IFNs are overproduced 

along with other cytokines and pro-inflammatory molecules resulting in multiple organ 

failure. IFNs play a dual role in inflammation: pro- and anti-inflammatory [11]. IFNs 

enhance antigen presentation by virtue of increasing the expression of human leukocyte 

antigens (HLA) on antigen-presenting cells and enhancing lysis potentials of natural killer 

(NK) cells [12]. Interferons display protective anti-inflammatory functions via direct 

inhibition of pro-inflammatory cytokines, inductions of cytokine antagonists or re-directing 

the signaling through negative feedback loops [13]. All types of IFNs bind to a specific 

heteromeric cell surface receptor complexes known as the IFN receptors (IFNR) that play a 

crucial role in direction of many cellular processes toward pro- or anti-inflammatory 

outcomes [14]. Based on the type of receptor through which they signal, human interferons 

have been classified into three major types [15,16].

Interferon Type I, III

IFNs are long known to inhibit viral replication in virus-infected cells, thus represent one of 

the most important anti-viral innate immunity defenses [17,18]. Additionally, type I IFNs 

play a significant role in the response to bacterial infections [19]. Type I IFNs are composed 

of IFNB, IFNA that can further be classified into 13 different subtypes, and the extended 

family of IFN E/K/W [18]. A number of cells produce IFNA and IFNB, including 

macrophages/monocytes, fibroblasts, and endothelial cells also called natural interferon-

producing cells. Additionally, plasmacytoid dendritic cells (pDCs) are able to secrete up to 

one thousand times more interferons type I than the others above [20].

Type I IFNs and more recently discovered type III IFNs (IFN-lambda, IFNL1–4) signaling 

rely on a group of intracellular transcription factors STAT 1–4 (signal transducer and 

activator of transcription 1–4). Activated through IFN receptors, these cells quickly secrete 

type I IFNs to enhance the cytotoxic function of NK, B, and T cells, which links innate and 

adaptive immune responses. Type I IFN binds to IFNAR receptor and activate a robust 

transcriptional pathway through a JAK-STAT signaling, interferon response factors (IRF 1–

9), or partially overlapping but distinct interferon stimulated genes (ISGs), to action [21,22]. 

The transcriptional complexes activated by type I IFN signaling bind to specific interferon 

stimulating responsive element (ISRE) and gamma interferon activation sites (GAS) 

sequences within promoter regions of ISGs and lead to the expression of numerous genes 

important for cell death, cell proliferation and immune responses [23].

Although the specifics of IFN immune activation are complex, it appears to begin with 

activation of innate phagocytic leukocytes by antigens. Type I IFN synthesis is induced by 

two groups of antigenic challenges: the pathogen-associated molecular patterns (PAMPs) 

and danger-associated molecular pattern (DAMPs) through the pattern recognition receptors 

(PRRs). These antigen-sensor receptors can be found in the cytosol or in the endosome of 

cells. The signal is transmitted through four smaller networks of PRRs:

1. Toll-like receptors, TLRs1–11.

2. Nucleotide-binding oligomerization domain (NOD)-like receptors, NLRs.
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3. Retinoic acid-inducible gene-1 (RIG1)-like receptors, RLR.

4. C-type lectin receptors, CLRs.

All these receptors utilize the common downstream serine/threonine protein kinases (e.g. 

TBK1 and IKKE) to transfer signals to IFN regulatory factors (IRFs) and nuclear factor 

kappa B (NFkB), and thus activating type I IFN transcription.

TLRs are cytoplasmic and endosomal receptors that are specialized in detecting specific 

PAMP molecules. For example, expression of type I and III IFNs can be induced upon 

recognition of viral components by TLR3, 7, or 9. TLR signaling is transmitted through 

TRIF (TRL3 and TLR4) or Myd88 (TLR4, 7, 8, and 9), and multiple IRFs to activate 

transcriptions of IFNA and IFNB in infected cell [24]. NLRs family is also activated by the 

same PAMPs (e.g. pathogen derived lipopolysaccharides, peptidoglycans, glycoproteins, 

RNA and DNA). The NOD2, for example, activates the downstream TBK1 and IRF5 

signaling pathway, leading to the production of type I IFN [25].

However, NLR signaling frequently leads to the synthesis of absent in melanoma 2 (AIM2), 

interleukin 1 beta (IL1B) and IL18, the protein products of NLRP3-inflammasome 

activation. NLRP3 (NOD-like receptor family pyrin domain containing 3) pathway has been 

reported to negatively regulate the type I IFN production and set a pro-inflammatory state 

accompanied by necrosis [26]. Thus, NLR-inflammasome represents an alternative (to 

interferon type II) and very damaging route of responses to PAMPs [27]. The RLR activation 

by RNA viruses in numerous non-immune cells also leads to type I and III interferon 

production [28,29]. The upregulation of interferon and interferon response pathways helps 

limit viral replication, but since these defense pathways are accompanied by apoptosis it 

may contribute to slow immune reconstitution and immune complication, such as IRIS [30].

Recent information demonstrates the importance of type III IFNs in not only viral [31–33], 

but also in some fungal infections [34]. IFNLs are potent antiviral agents, with very mild 

pro-inflammatory effects, since they are not expressed in macrophages [35]. This fact may 

suggest important, yet unknown, role of IFNL in AIDS immune reconstitution. The 

production of IFNA and IFNB can be induced after recognition of fungal antigens through 

CLR signaling and IRF5. Sensing of some bacterial and fungal pathogens by C-type lectin 

receptors has also been reported to induce type I IFN production by innate immune cells, 

which may represent a clinically relevant path to understand the pathophysiology of immune 

reconstitution [36].

Interferon Type II

Type II IFN has only one representative, IFN gamma (IFNG). IFNG, originally known as the 

immune interferon, plays a key role in host defense against cellular and intracellular 

pathogens, including fungal, viral, bacterial and parasitic [37]. This cytokine plays a major 

role in mammalian adaptive immune responses, as it is secreted by activated CD8+ cytotoxic 

T cells and CD4+ T helper cells type 1 (Th1) [38]. IFNG possesses diverse biological 

properties, including immunomodulatory activities on innate immune cells, such as 
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macrophages, monocytes, NK cells, and neutrophils [39,40]. The B and NK cells are also 

able to produce this cytokine, yet to a lesser extent [41,42].

Macrophages, activated by IFNG, exhibit improved microbial killing ability via heighten 

pinocytosis and phagocytosis. IFNG can also act as a cell growth inhibitor, via autocrine 

activation loop, directly triggering apoptosis in target cells (infected or transformed) by 

activating cytotoxic CD8+ T cells producing granzymes [43]. IFNG signals are transmitted 

via IFNG receptors (IFNGR1,2) which dictate the strength of interferon signaling [12]. 

Upon engagement with IFNG, IFNG receptors activate Janus-activated kinase 1 (JAK1), 

JAK2, and STAT1 signaling to regulate the transcription of many IFNG-inducible genes 

through activation of interferon-regulatory factors IRF1 and IRF2 [44,45]. The IRFs 

translocate to the nucleus members where they interact with interferon-stimulated response 

element (ISRE) to regulate expression of numerous interferon-stimulated genes (ISG) 

resulting in various physiological responses ranging from cell apoptosis, cell senescence to 

cell proliferation [46]. Involvement of IFNG in autophagy, inflammasome formation in 

target cells, or antibody-mediated complement activation is just beginning to be reported 

[47,48].

Interferon response comprises a series of reactions that alter the expression of a variety of 

human genes [49]. Since interferons shared signaling molecules downstream the receptors 

and common transcription factors, the overall effect on target cells depends on the density of 

different receptors, how well intracellular signaling is transmitted, and the level of soluble 

IFNs produced [50,51]. Interferons are of high importance for proper communication 

between innate and adaptive immunity (Figure 1). IFNG, for example, induces transcription 

of IL15 in monocytes which in turn promote the proliferation of memory CD8+ T cells, NK, 

and natural killer T (NKT) cells re-direct immune responses toward pro- and anti-

inflammatory depending upon cellular milieu [52]. IFNG is activated by IL12 and IL18 

which are secreted by dendritic cells, monocytes, macrophages, neutrophils and epithelial 

cells [53].

IL27 plays an important role in naïve T cells clonal proliferation and differentiation into the 

Th1 lineage [54]. Cooperatively with IL12, it increases IFNG production by naïve T cells 

[55]. Human peripheral blood cells treated with type I IFN can increase dendritic cell 

maturation and IL12 production which increases priming and production of IFNG by T cells 

[56]. IL4 and IL10 are examples of negative regulators of IFNG production [57]. Addition of 

IFNB at the time of infection has been shown to negatively affect IFNG production via 
IL10-dependent- and independent mechanisms [58]. Conversely, IFNA acts synergistically 

with IFNG in development of T effector cells [59].

Interferons are required for communication between lymphocytes and macrophages, and 

play a unique role in macrophage M1-M2 polarization [60]. M1-IFNG type predominantly 

occurs during acute infection when proinflammatory M1 macrophages are stimulated by 

IFNG (along with PAMPs and TLRs). M1 type macrophages express CD86 and secrete 

inflammatory mediators like tumor necrosis factor alpha (TNFA), IL1B, IL6, IL8, IL12 and 

IL23 [61,62].
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Activated M1 macrophages travel to the site of infection, induce inflammation via nitric 

oxide (NO) and reactive oxygen intermediates (ROI), and damage infected cells. 

Subsequently, polarized into M2 type by IL4, IL10, IL13, and transforming growth factor 

beta (TGFB), macrophages phagocytose cellular debris in order to resolve inflammation and 

to facilitate wound healing [63,64]. M2 macrophages abundantly express mannose receptor, 

dectin-1, CD163, CD209, scavenger receptor A and B1, CCR2, CXCR1, and CXCR2.

Additionally, M2 exhibit different metabolic profile: high production of ornithine and 

polyamines through the arginase pathway. The proper switch between M1/M2 phenotype is 

important to pro-resolution of inflammation, restoring Th1/Th2 balance and immune 

homeostasis during immune reconstitution [58,65–67]. However, inappropriate polarization 

drives disease pathology. In the absence of IFNG signaling (IFNR knockout), macrophage 

activation by type I IFNs is likely to take over, and this justify the beneficial effects of IFNA 

treatment in patients with compromised IFNG responses [68].

Thymic Involution and Effect on Interferon-Producing Cells

Thymus is a vital organ of the adaptive immune system. Thymopoiesis is a fundamental 

route for generation and maturation of naive T cells into CD4+ helper, CD8+ cytotoxic 

effector and CD4+CD25+ and Forkhead Box protein 3 (FOXP3+) regulatory T cells, among 

others [69,70]. The bone marrow-derived T cell progenitors traverse to the thymus, become 

committed to the T cell lineage, and undergo proliferative expansion and maturation [69]. 

During thymopoiesis, the T cell receptor (TCR) diversity is generated through recombinant 

rearrangement of variable, diversity and joiner genes, resulting in a broad antigen-specific 

repertoire of T cells [71].

At every stage of T cell development and maturation, T cells are sensitive to signals from 

cytokines. Age-related regression of thymus is a well-known phenomenon associated with a 

decline in naive T cell output and changes cytokine profiles [72]. Regression escalates 

during chronic HIV infection, or by treatments with chemo- or radio-therapeutic agents. 

When peripheral T cell populations are severely depleted, a renewal of thymic activity is 

essential to T cell reconstitution. Thymic involution is presented as a decrease in total 

thymic cellularity, increase in perivascular space, and disruption of the thymic architecture, 

which thought to contribute to the reduction in naïve T cell diversity and restriction in the 

peripheral TCR repertoire [73,74]. As seen in older individuals, thymic involution is linked 

with increased susceptibility to infections, autoimmune diseases, and cancer. Since T 

lymphocytes are major producers of IFNG, the health of thymus is the utmost importance 

for the development of IFNG-producing cells.

The immunosuppressive nature of pre-allo-HSCT conditioning therapies is toxic to pre-

thymic, thymic, and post-thymic stages of T-cell development. Following the resolution of 

the acute insult, the thymus is somewhat capable of intrinsic recovery in younger patients, 

however the restoration of thymopoiesis in adults is highly questionable [75,76]. 

Myeloablative conditioning (MAC) consists of high doses of radiation or chemotherapy and 

aims to eradicate resistant cancer cells. MAC regimens result in the destruction of bone 

marrow cellularity and are lethal in one hundred percent of patients without immediate 
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hematopoietic stem cell transplantation. However, many patients are unable to tolerate 

MAC, even with allo-HSCT. The reduced-intensity conditioning (RIC) was offered to older 

patients and to those with increased comorbidities [77]. Subsequent clinical studies 

comparing MAC and RIC showed no significant difference in overall survival (OS) between 

MAC and RIC groups [78,79].

The leukemia-free survival and non-relapse mortality also did not differ significantly 

between the compared groups. Moreover, the cumulative incidence of chronic GVHD and 

all types of infectious complications were less frequent with RIC than with MAC [78,79]. 

Avetisyan et. al. showed that allo-HSCT recipients receiving MAC had a higher CMV viral 

load and weakened T cell reconstitution as detected by low IFNG production than those 

receiving RIC [80]. Thus, RIC regimens are more favorable toward the thymic recovery and 

shorten the duration of post-transplant immunodeficiency, thereby reducing susceptibility to 

viral infections [81].

The homeostatic expansion of the peripheral T cell pool can facilitate T cell recovery within 

several months post-transplantation, although clearly the TCR repertoire diversity never 

recovers [69,82–84]. Immunosuppressive therapies to prevent graft versus host diseases 

(GVHD) during the post-transplant period also impairs thymic function and thus increase 

the risk of infections. Anti-thymocyte globulin (ATG) regimens used to prevent GVHD after 

allo-HSCT showed a significantly prolonged thymic dysfunction and delayed recovery of 

total CD4+ T cells in ATG-treated patients [85].

The post-HSCT thymic activity has conventionally been monitored radiologically and 

through immunophenotyping [86,87]. Peripheral naive and memory T cells can be 

distinguished by their expression patterns of cell surface markers, including CD62L, CCR7, 

CD27, CD45RO, CD45RA, CD28, CD103, or alpha E beta 7 integrin [88]. The 

quantification of recent thymic emigrants (RTEs) can be detected as TCR rearrangement 

DNA excision circles (TRECs) [89]. TRECs are indicators of recovery of naïve and memory 

T cell that significantly correlate with virologic suppression and improved long-term clinical 

outcome in adult allo-HSCT recipients [66,90].

Thymus regression is a feature of AIDS pathogenesis. Chronic HIV infection induces a 

substantial suppression of thymocyte proliferation. Resulted loss of generations of naïve T 

cells contributes to dysbalanced immune restoration in patients commencing ART [91]. For 

example, the disproportionate ratio of Th17/Treg (T helper 17/FOXP3+ T regulatory) yield 

T cell immune responses ineffective towards opportunistic infections, enhancing pro-

inflammatory state and predisposing to IRIS [92]. An abnormal overrepresentation of cells 

with CD127 low FOXP3+ CD25+ Tregs phenotype, due to significant expansion, and a 

higher ratio of Tregs to effector/memory T cells was found in IRD patients as the main 

contributor to dysregulated of T cell repopulation [93]. The lower absolute number of Tregs 

pre-ART commencement was noted in patients who later develop IRIS [94]. The defects in 

IL7/IL7R(CD127) pathway are maybe behind poor reconstitution of thymic cell lineages, as 

IL7 cytokine is essential in primary T cells development [95].
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Akilimali et al. reported that dysregulated production of IL7 and expression of IL-7R lead to 

aberrant T cell responses to cryptococcal antigens as an underlying factor in the 

immunopathogenesis of IRIS [96,97]. There have been attempts to restore thymic function 

and improve thymopoiesis with growth hormone (GH) in HIV-infected immunodeficient 

adults. GH treatment is associated with the significant increase in thymic density, the 

number of circulating TRECs and naive CD4+ T cells within peripheral blood monocyte 

population (PBMC) when co-administered at the initiation of antiretroviral therapy [98]. The 

use of GH is limited due to arthralgia, alteration in glucose metabolism and other harmful 

side effects in a significant number of patients [99].

Immune Reconstitution Inflammatory Syndrome in AIDS Patients

Normal and pathological kinetics of immune reconstitution have been observed in AIDS 

patients after initiation of antiretroviral therapy (ART). Unlike a normal immune system, 

which clears infection and returns to quiescence after being activated, the ART-related 

restoration of the immune function is often associated with a spike of pro-inflammatory 

responses to opportunistic pathogens. Immune reconstitution inflammatory syndrome (IRIS) 

is a prevalent complication in AIDS patients in sub- Saharan Africa and a significant cause 

of morbidity and mortality [100,101]. It can be described as a severe inflammatory reaction 

that occurs in response to numerous subclinical, latent, undiagnosed, or previously treated 

opportunistic infections. IRIS manifestations have multifaceted symptomatology, from 

meningitis or focal neurological signs to development of lymphadenopathy, pneumonitis, 

enlargements of Kaposi sarcoma lesions, etc. [102]. Paradoxically, IRIS symptoms develop 

in spite of the longitudinal decrease of HIV viral load, increased CD4+ T cell counts, and 

microbiologic treatment success as evidenced by improved antigen clearance [103,104]. 

Thus, one common denominator is that the patient’s immune system begins improving due 

to ART and subsequently deteriorates. The predominant morbidity occurs in patients’ 

populations that are co-infected with Mycobacterium tuberculosis and Cryptococcus species 

[105]. Therefore, AIDS clinicians and researchers are searching for better approaches to 

diagnose and treat these forms of IRIS.

Two common features put patients at risk for IRIS development are: 1. profound baseline 

immunosuppression with a median CD4+ T cell count of around 25 cells/uL; 2. high antigen 

burden in blood or cerebrospinal fluid (CSF) [106–108]. Few associations between levels of 

pro-inflammatory mediators at baseline followed by IRIS onset have been established in 

blood and CSF [109–111]. At presentation, IRIS is highly inflammatory, with the 

involvement of multiple mediators that appear systemically in blood as well as locally in 

organs such as lungs or CSF [110].

However, specific laboratory tests that can be used for IRIS detection have still not moved 

into routine patient care. The mechanisms that underlie the development of IRIS is still 

poorly understood. Patients with IRIS seem unable to control pathological inflammatory 

reactions, or properly regulate the immune activation pathways during reconstitution. 

Several immune pathways, including interferon regulatory pathways, are implicated in IRIS 

pathogenesis, suggesting a pathological switch from severe immunodepression to 

pronounced inflammatory state that occurs during IRIS event [112].
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Interferon Signaling in the Immunopathogenesis of AIDS and IRIS

There is a wide array of evidence for the importance of interferons in the clearance of 

opportunistic infections, such as cryptococcosis or tuberculosis [113–115]. In 

immunocompetent patients, the pathogens activate the pathogen recognition receptors, 

which elicit intracellular signaling cascades in immune cells that rapidly lead to the 

activation of transcription factors, such as nuclear factor kappa B (NFkB) and IRFs, and 

secretion of interferons. This ultimately shapes the adaptive immune response and 

coordinate the elimination of pathogens and infected cells [116]. Primary immunodeficiency 

state, driven by CD4+ T cell loss, results in severe impairment of all branches of the immune 

system. In immunocompromised patients with CD4+ T cell count <50 cells/uL, low T cell 

responses, as evidenced by low production of IFNG, IL8, IL6, and TNFA, leads to 

inefficient cytotoxic response, macrophage activation and pathogen clearance [117].

Several immune abnormalities were identified before ART commencement in patients who 

developed IRIS in comparison with those who did not [118]. The predominant abnormality 

was the down-regulation of interferon-response genes in individuals who went on to develop 

IRIS. Poor cellular interferon responses in CSF and paucity of anti-viral gene expression in 

the blood at the time of ART initiation have been previously suggested to predispose patients 

to IRIS [119,120] and was also associated with higher mortality from IRIS [121].

Several studies reported very low interferon levels secretion by PBMC in response to 

antigenic stimuli prior to and after ART initiation as predictors of subsequent IRIS events 

[92,122]. Low concentration of IFNG at baseline may be explained by severe depletion of 

interferon-producing cells. Patients who exhibit such signature may require a longer course 

of antimicrobial therapy before initiation of ART to achieve clearance or supplemental 

immunotherapy [123]. Thus, an ineffective baseline immune response characterized by low 

production of interferons and interferon-response genes leads to poor antigen clearance and 

worsen outcomes.

In advanced AIDS the innate immune defense becomes the primary branch that is able to 

combat opportunistic infections. However, in the absence of T cell regulation, the antigen 

presentation is compromised by opportunistic diseases and skewed toward alternative M2 

macrophage activation pathway [124,125]. Such macrophages/monocytes are unable to 

secrete protective concentrations of proinflammatory chemokines and cytokines (e.g. TNFA, 

CCR2 or IL6) at the site of infection in an attempt to attract lymphocytes during immune 

restoration, thus become more permissive to infection relapse [126]. After initiation of 

antimicrobial therapy and ART, the reduction of microbial load may result in re-polarization 

of monocyte/macrophage population toward M1, however, they become hyper-reactive 

toward regulatory stimuli, such as IFNG [127].

Kinetics of Immune Reconstitution on ART

The role for IFNs in AIDS immune reconstitution has been described in two studies. One 

was conducted in peripheral blood from advanced stage HIV-infected patients without 

opportunistic infections who were commenced on ART and did not exhibit IRIS. The other 

Mohei et al. Page 9

Int J Biomed Investig. Author manuscript; available in PMC 2020 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was conducted in the South African cohort of patients with opportunistic cryptococcal 

infections [118]. Both cohorts exhibited an upregulation of IFN I/II-STAT and NFkB 

pathways at baseline, followed by a subsequent decline as early as 4 weeks after ART 

initiation [128].

Similar gene expression is noticed in patients with active tuberculosis: they have initial 

upregulation of IFN genes that down-regulated following successful treatment [129,130]. 

Evidence of macrophage activation and protective levels of IL6 and IFNG, IL4, IL10, and 

IL17 in CSF or plasma associated with favorable baseline signature for subsequent recovery 

on ART [109,131]. The most plausible mechanism for this is maintaining innate host 

defenses in an active state through the direct stimulation of the immune system by the virus 

itself [132]. During favorable immune reconstitution, the longitudinal upregulation of 

cytokines such as IL7, IL2, HLA molecules during 12 weeks on ART reflect the effective 

immune recovery in lymphocyte populations and improvement of the antigen-presentation.

On the contrary, IFN pathway along with IL6 was upregulated within first few weeks on 

ART, and at the time of IRIS events, perhaps due to activation of cytotoxic NK cells and 

monocytes [103]. PBMCs from tuberculosis-IRIS patients exhibit high expression of 

cytotoxic mediators (perforin and granzyme B), which also suggest the involvement of 

cytotoxic natural killer T cells [133]. Longitudinal increase of plasma levels of IL2, IFNG, 

TNFA, IL17, and IL8 preceded IRIS and remained elevated at the time of IRIS [134]. It is 

unclear which immune cells are primarily responsible for the rise of cytokine levels. It is 

suggested that unbalanced restoration of T cell subpopulations and miscommunication with 

innate immune responses may play a role.

Majority of conducted studies described IRIS events that occurred during the first 3 weeks 

on ART, and thus called early IRIS. High levels of IL1, IL6, IL7, IL8, granulocyte colony 

stimulation factor (GCSF), or IL18 cytokines can be detected in patient’s plasma or serum at 

the time of early IRIS events [50,119,135]. During the first 2–3 months on ART, the gain in 

absolute numbers of CD4+ T cells rarely occurred more than 30 cells per microliter per 

month [136,137]. Thus, it is not surprising that immune activation occurs via NLR-

inflammasome pathways, representing exaggerated innate cells response toward ongoing 

viral replication and microbial antigens.

It had been recently shown that the inflammasome pathway drives CD4+ T cell depletion in 

HIV-1 infection and delayed immune reconstitution [138]. Thus, inflammasome pathology 

seems to be behind the IRIS symptoms [139]. In IRIS patients involving the deterioration of 

the central nervous system, the inflammasome activation may represent a peripheral 

biomarker of brain inflammation that crosses the blood-brain barrier [137,140,141].

The similarity of transcriptomic biomarkers between cryptococcal IRIS and tuberculosis 

IRIS suggests that the symptoms of deterioration may involve activation of patrolling 

monocytes and neutrophils [142,143]. Triggered by PAMPs, these cells secrete pro-

inflammatory mediators that can be observed in blood at the time of IRIS events [144]. 

Thus, during poor restoration of adaptive T cell immunity, the innate immune system 
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activation is redirected via NLR-inflammasome route, resulting in more damage to target 

organs and accumulation of cellular debris.

The clinical manifestations of IRIS usually begin within the first four weeks of ART 

initiation; however, late presentation beyond 8 weeks has also been reported [105,145]. We 

recently described peripheral blood changes during cryptococcal late IRIS events that 

occurred after 10 weeks of immune reconstitution on ART [118]. The screening analysis 

revealed biomarker genes that encode a variety of molecules in T, B, NK cells and 

neutrophils. Significant differences in gene expression between early IRIS and late IRIS 

events suggest that late IRIS has distinct molecular phenotypes. High level of expression of 

IFNG and IL27 were discovered as biomarkers of late IRIS. In our study both Th1 and Th2 

response genes were upregulated in late IRIS, other studies showed that Th2 responses were 

predominant [146].

The upregulation of numerous chemokines, chemokine receptors, and adhesion molecules 

preceded late IRIS events. The CSF chemokines expression was predictive of IRIS in other 

studies as well [109]. Thus, late IRIS showed a signature of heightened T cell proliferation, 

cytokine, and chemokine production, but delayed T cell maturation, leading to inability to 

resolve inflammation. The innate immune system activation is still present in late IRIS, due 

to impaired communication between players of activation/suppression in innate and adaptive 

immunity, and unresolved inflammation. The clinical implication of these findings is that the 

onset of late IRIS can be detected in peripheral blood through monitoring aberrant kinetics 

of immune reconstitution. This may provide an opportunity for intervention before clinical 

deterioration occurs.

Potential Treatment Approaches for Immune Reconstitution in AIDS

During immune reconstitution in AIDS patients the chronic inflammation which has not 

been resolved for years, derails the protective immune responses toward damaging. The 

clearance of opportunistic pathogens requires robust mobilization of Th1 type immunity and 

sufficient production of IFNG at the site of pathology. Thus, the addition of short-course 

IFNG to standard treatment may be beneficial to restore impaired communication between 

innate and adaptive immune branches. The assessment of the efficacy of adjunctive IFNG 

for the treatment of HIV-associated opportunistic infections has been performed by several 

groups of clinical investigators.

Adjunctive IFNG (given in addition to antimicrobial treatment) has been shown to be safe, 

with no adverse effect on CD4+ T cell count or viral load [147,148]. This is especially 

important since AIDS patients showed impaired type I IFN signaling [149]. A recent pre-

clinical study provided evidence for the development of macrophage innate memory through 

IFNG priming which may lead the way to pathogen-specific vaccine development [150]. 

Adjunctive IFNA treatment in chronic HIV patients resulted in modest reductions of viral 

load, but poor recovery of CD4+T cells, prompting the majority of IFNA clinical trials to 

stop for futility [151].
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Anti-TNF agents such as antibodies, chloroquine, pentoxifylline, or thalidomide can be 

useful if administered with ART to prevent or treat certain forms of IRIS [152–154]. The use 

of prednisone has successfully utilized for the treatment of TB-IRIS to reduce acute 

symptoms in the short term [152,155]. However, a combination of corticosteroids with 

intermittent regimens of IL2 increased T lymphocyte deaths [156,157]. Immunotherapy with 

IL2 alone was insufficient to improve immune restoration in AIDS patients, thus, proved to 

be low efficacy [158]. A deeper understanding of the pathophysiology of immune 

reconstitution and the immunopathogenesis of IRIS would perhaps shed light not only on the 

choice of immunomodulators [159] but also on the timing of ART initiation [160,161].

Kinetics of Immune Reconstitution in Allo-HSCT Recipients

Slow and dysbalanced immune reconstitution is a deprecatory issue for patients who 

undergo allo-HSCT, as it is associated with the increased risk of infection-associated 

mortality [162–170]. Allo-HSCT from HLA-matched sibling donors (MSD) generally 

provides the best clinical outcomes and thus is regarded as the gold standard for 

transplantation [171]. However, because only one-third of patients have an MSD, many 

patients receive allo-HSCT from banked umbilical cord blood (UCB) [172]. In adults, the 

UCB transplantation is associated with lower rates of GVHD [172], but with a significantly 

higher frequency of viral infections and delayed immune cell reconstitution. UCB immune 

cells are considered more immature and antigen-inexperienced, which may explain the poor 

recovery of T cell immunity and the higher risk of viral infections caused by human Epstein-

Barr virus, adenovirus, baculovirus, herpes viruses or cytomegalovirus (CMV) [173–176]. 

To evaluate quantitative immune recoveries several studies have been conducted [167,177–

181].

Recent comparisons of immune reconstitution rates in 157 adult recipients who received 

MSD or UCB revealed that natural killer (NK) cells and B cells exhibited higher quantitative 

rates of recovery in UCB recipients during the first 6 months to 1 year after transplantation 

[178]. However, UCB recipients had slower T cell subset recovery, with lower numbers of 

CD3+CD8+ (naïve and effector), CD4+ (naive and memory), and regulatory T cells than 

MSD recipients from day 60 to one year of observation. Delayed quantitative recoveries of T 

cell most likely explain the increased rate of reactivation of latent viral infections in UCB 

recipients. The observation of rapid quantitative recovery of NK and B cells in UCB patients 

support the hypothesis that other immune cells synergize their effort to control latent 

infections, but in the absence of thymic function and the full recovery of T cells, the immune 

reconstitution is inefficient.

It is hypothesized that the increased rate of viral infections could be due to delayed 

quantitative or functional recovery of immune cells, or both. Cytomegalovirus (CMV) 

specific response can be used to evaluate the functional role of T cells derived from the 

homeostatic proliferation of the graft and the T cells generated by thymic T cell neogenesis 

in the adult recipient.

Several studies used enzyme-linked immune absorbent spot assay (ELISPOT) to evaluate the 

IFNG production by CD4+ and CD8+T cells toward CMV antigens [182,183]. Results 
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showed that patients with high IFNG production were protected from developing CMV 

infection, whereas patients with low IFNG production were significantly more prone to 

CMV disease progression and in need of antiviral therapy. A study [90] showed that 

although naive cord blood T cells transferred to adult UCB recipients could initiate immune 

responses to CMV and become CMV specific effectors as early as 8 weeks after 

transplantation. Yet, they failed to clear CMV viremia. Thus, assessment of IFNG responses 

may be clinically relevant to differentiate the uneventful immune recovery from the 

pathological immune reconstitution that leads to viral reactivation.

Treatment Approaches for Improvement of Allo-HSCT Immune Recovery

A number of immunotherapeutic approaches using T cell transfer to combat viral 

reactivation, improve the rates of immune reconstitution, as well as to prevent GVHD or 

disease relapse after allo-HSCT. There is clear evidence that infections can be treated by the 

adoptive transfer of T cells specifically targeting viral antigens [184]. Heslop et al. [185] 

showed that adoptively transferred EBV-specific cytotoxic CD4+ and CD8+ T lymphocytes 

can reconstitute the patient’s immune responses against EBV. Similarly, donor-derived 

adenovirus-specific T cells have been used for the treatment of patients with adenovirus 

infections after allo-HSCT [186]. Also, drug-refractory CMV infections after allo-HSCT 

have been successfully treated with CMV-specific T cells [187,188]. Invasive fungal 

infections, in particular, aspergillosis, represent another opportunistic life-threatening 

infection during immune reconstitution [189]. A clinical trial using aspergillus-specific T 

cell therapy showed suppression of antigenemia and prevention of invasive aspergillosis in a 

considerable number of patients [190]. Thus, the adoptive cellular immune therapy 

demonstrates high efficacy in restoring the anti-infectious T cell immunity after allo-HSCT 

[191].

Considering the importance of cytokine receptors in IFNG signaling cascade, several early 

phase clinical studies test cytokine agonist-receptor complexes. For example, IL15/IL15R 

complexes enhance immune activation in patients who relapsed within 60 days after allo-

HSCT. The agonist complex was well-tolerated and did not increase the rate of adverse 

events [192]. Preclinical and clinical studies demonstrated the effectiveness of IL15 analogs 

to stimulate cytotoxic functions of CD8+ T cells and NK cells toward tumor antigens [193]. 

However, the limitation to its use is due to NK cell-mediated hyper-cytotoxicity though 

CD95, granzymes, and perforins, which is driven by abnormal IFNG production as shown in 

the settings of contact-dependent cardiac allograft rejection [194]. A phase 1 clinical trial of 

recombinant human IL7 (hIL7) in recipients of T cell-depleted allogeneic HSCT showed 

that CD3+, CD4+ and CD8+ counts are increased in hIL7 treated patients [195]. Exogenous 

administration of IL7 was found to enhance antigen-specific T cell responses to viral 

infections [196]. Thus, carries a promising potential for new treatment approaches for 

immune reconstitution disorders.

The efficacy of mesenchymal stem cells (MSC) transfer had been assessed to combat GVHD 

in ongoing clinical trials [197,198]. MSC are spindle-shaped multipotent progenitor cells 

with immunomodulatory capacities that reside in the bone marrow [199]. A pre-clinical 

study in mice showed that IFNG was required to initiate MSC efficacy. Recipients of T cells 
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with poor IFNG secretion did not respond to MSC treatment and succumbed to GVHD. 

MSC, pre-treated with IFNG, became immediately active and suppress GVHD more 

efficiently [200]. Therefore, MSC may require activating signals from proliferating T cells to 

induce their suppressive effects. Gao et al. showed that repeated infusions of MSC might 

inhibit chronic GVHD symptoms in allo-HSCT patients, due to improved quantitative and 

functional recovery of T, B, and NK cell subtypes, leading to the acquisition of immune 

tolerance [198].

Adoptive transfer of Tregs has been additionally shown to be effective in the prevention and 

treatment of GVHD in preclinical models [201,202]. Tregs are able to inhibit immune 

responses without proinflammatory side effects and regulate immune cells from the adaptive 

and innate compartment including NK cells and antigen presenting cells (APCs) to prevent 

inflammation [203]. Clinical studies already revealed the potential of treatment with in vitro 

expanded Tregs [204–206]. Phase one clinical study presented that after Tregs transfusion, 

two of five patients showed clinical response with an improvement of chronic GVHD 

symptoms [205].

Conclusion and Future Prospective

Deciphering the pathogenesis of immune reconstitution disorders remains a challenge [1]. 

Lower levels of interferons, but higher levels of other cytokines have been suggested as a 

risk factor. Thus, it becomes rational to consider the possibility of simultaneous 

supplementation of some cytokines and neutralization of the others to provide long-term 

control of inflammation [207].

Adjunctive IFNG treatment has been investigated with various outcomes, depending upon 

regimens. Interferons are potent inducers of other cytokines and numerous interferon-

response genes, many of which are key hematopoietic transcription factors. However, the 

chronic and excessive production of IFNG or repetitive supplementation with downstream 

cytokines (e.g. IL15) induces cell exhaustion, bone marrow failure, accompanied by anemia 

[208]. The definitive data supporting the beneficial effect of interferons in host protective 

immunity during homeostatic repopulation are still lacking.

There still several unanswered questions concerning the role of interferon networks during 

immune recovery [209]. Which phase of immune reconstitution would benefit from 

interferon therapy the most? Which cell type should be targeted early during immune 

reconstitution, and which one is later? Are systemic interferon biomarkers as informative as 

those measured at the site of inflammation? In cells, the secretion of endogenous interferons 

and expression of interferon-response genes can be regulated by other molecules through 

transcriptional, posttranscriptional, and posttranslational mechanisms [132,210–214]. Thus, 

the investigations to search for novel drugs to timely alter the kinetics of immune 

reconstitution will have significant implications to optimize outcomes [215].

The evidence suggests that immunoregulatory success will depend not only on suppression 

of inflammation but also on re-directing the immune response toward resolution. The 

assessment of metabolic signaling in the maintenance of immune homeostasis and the 
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settings of immune reconstitution is also under intense investigation [216]. Assessment of 

host IFN or IFNR genes polymorphism as factors that influence thymic recovery and 

resistance to latent infections may lead to the development of novel therapeutic strategies to 

combat immune reconstitution disorders [217].
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Figure 1: 
Role of cytokines in mediating communication between immune cells. Cytokines mediate 

cross-regulation of numerous signaling pathways between innate and adaptive immune cells. 

Outward arrows represent cytokine release. Point arrows represent cytokine activation 

function. The dull arrows represent cytokine inhibitory function. Cell’s names are shown in 

boxes. Interferons are highlighted in dark grey. This network diagram was built using 

Qiagen Pathway Assistant software.
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