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the mutations in Pfk13 gene and modulation of the unfolded protein response pathway.
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find the majority of P. falciparum parasites are transcriptomically converged within each

geographic site with two broader physiological profiles across the Greater Mekong Subregion

(GMS). We report 8720 SNP-expression linkages in the eastern GMS parasites and 4537

in the western. The minimal overlap between them suggests differential gene regulatory

networks facilitating parasite adaptations to their unique host environments. Finally, we

identify two genetic and physiological backgrounds associating with artemisinin resistance

in the GMS, together with a farnesyltransferase protein and a thioredoxin-like protein which

may act as vital intermediators linking the Pfk13 C580Y mutation to the prolonged parasite
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P lasmodium falciparum, the causative agent of the most
severe form of human malaria is once again threatening
human health around the world1. After the largely suc-

cessful world-wide elimination efforts that reduced malaria-
related mortality and morbidity over the last decade, resistance
of P. falciparum to the currently used artemisinin-based
chemotherapeutics presents a new challenge for the future2,3.
P. falciparum strains resistant to artemisinin were first reported
in western Cambodia in 20094, and was subsequently detected in
other parts of Southeast Asia5 including regions near India6. It is
generally understood that an import of artemisinin resistance
to Africa (presumably via India) will have a devastating effect,
causing millions of deaths and other severe social and economic
setbacks7,8. Hence, it will be crucial to understand all biological
aspects of artemisinin resistance, particularly its emergence and
spread9,10. This knowledge will not only help to manage the
current situation but possibly also to guide future deployments
of new malaria chemotherapies.

The current phenotype of artemisinin resistance is associated
with nonsynonymous single nucleotide polymorphisms (SNPs) in
the sequence encoding the Kelch13 (PfK13) propeller domain of
P. falciparum11. The causative pfk13 SNPs were detected in P.
falciparum isolates in western Cambodia as early as 2009 and in
other regions of the Greater Mekong Subregion (GMS) in the
following years12,13. Up to 26 nonsynonymous SNPs of the pfk13
gene, linked to artemisinin resistance, were identified in P. falci-
parum isolates from Southeast Asia between 2009 and 20145,9,14.
Using haplotype analyses, Takala-Harison et al.15 demonstrated
that at least 12 of the pfk13 SNPs emerged independently in
several regions of Laos, Myanmar and Cambodia and spread
locally. Only two of the identified mutations, C580Y and Y493H,
exhibited a long distance transmission pattern from Cambodia to
Vietnam. C580Y has only recently reached a state of fixation in
many parts of the GMS, being transmitted in the context of two
distinct long-range haplotypes, one of which originates in Cam-
bodia and the other in Myanmar16. Hence, the currently
spreading phenotype of artemisinin resistance appears to be a
consequence of a selection process that maximizes survival and
transmission of the most efficient genotype/genetic background
of P. falciparum parasites.

Only limited information exists about the putative genetic and
transcriptomic backgrounds supporting the pfk13 mutations in
conferring artemisinin resistance. First, the malaria parasite
cohort in the western Cambodian province, Pailin, the epicenter
of artemisinin resistance, exhibits a highly unusual structure
characterized by skewed allele frequency spectra and high hap-
lotype homozygosity; indicating a strong founder effect17. Second,
GWAS studies identified at least five SNPs that are strongly
associated with artemisinin resistance and presumably contribute
to the resistance-driven phenotype18. Third, an additional set of
SNPs co-segregated with the pfk13 SNPs (particularly with
C580Y) across the GMS between 2001 and 201419. Finally,
artemisinin resistance is associated with a specific transcriptional
profile that is characterized by induction of the unfolding protein
response (UPR) and deceleration of the intraerythrocytic devel-
opmental cycle (IDC)20,21.

To explore this further, we carried out a large-scale bioinfor-
matics analysis combining whole genome sequences and tran-
scriptomes from 773 P. falciparum field isolates collected across
seven countries in Southeast Asia between 2011 and 20135,18,20

during the Tracking Resistance to Artemisinin Collaboration
(TRACI). Utilizing eQTL analysis, we captured two distinct
physiological and genetic makeups that are different between the
e- and w-GMS. Furthermore, using an eQTL analysis, we iden-
tified distinct set of genetic/physiological background for
artemisinin-resistant parasites in e-GMS and w-GMS with key

proteins, the farnesyltransferase protein of PF3D7_1242600 and
the thioredoxin-like protein of PF3D7_0717900, which may
mediate the Pfk13 C580Y effect on artemisinin-resistant parasites.
Overall, we outline new genetic and transcriptional factors that
contribute to the emergence and spread of artemisinin resistance
in the GMS and beyond.

Results
Population transcriptomics of the GMS P. falciparum. Initially,
we re-analyzed the TRACI P. falciparum transcriptome dataset of
773 isolates20 in order to dissect transcriptional changes that
reflect physiological states of individual parasites within the
patients. Principal component analysis (PCA) revealed that the
major transcriptional differences among the field isolates are
reflections of the parasite IDC progression (the 1st and 2nd PCs)
and gametocytogenesis (the 1st and 3rd PCs, Supplementary
Fig. 1a, b). Hence, we estimated the dominating IDC stage (hour
post invasion, HPI) and the proportion of the sexual forms
(gametocytes, GAM) in each parasite sample using a mathema-
tical model based on maximum likelihood with the reference
in vitro transcriptional profiles of the IDC22 and stage IV/V
gametocytes (Methods). This allowed us to estimate the life cycle
representation (HPI and GAM) of P. falciparum parasites in the
peripheral blood samples at the individual TRACI field sites. We
found that the isolates collected in Pailin, Shwe Kyin, and Ramu
presented increased GAM proportions (median > 5%). Con-
versely, parasites from Attapeu, Preah Vihear, Rattanakiri, and
Mae Sot exhibited decreased GAM proportions (median < 2%)
(Fig. 1a). Also, the parasite cohorts from Attapeu, Ratanakiri and
Binh Phuoc were skewed towards younger ring stages (median
HPI ~6.6–7 h) while the parasites from Mae Sot and Ramu
seemed older (median HPI ~7.8–8.5 h). Interestingly, the
increased GAM proportion coincided with a high occurrence of
artemisinin resistance in Pailin, while a decreased GAM pro-
portion and advanced HPI coincided with the high level of
artemisinin resistance in Mae Sot.

In the next step, we adjusted the transcriptome dataset for the
HPI and GAM biases using a linear regression model by
extracting residual expression values (Methods). This allowed
us to construct a transcriptional dataset that reflects the actual
adaptation of the individual parasites to its host environment. As
expected the PCA of these adjusted transcriptomes showed much
more dispersed GAM and HPI distribution (Supplementary
Fig. 1c, d) and revealed additional components that are associated
with the individual site cohorts (Supplementary Data 1).
Inspecting the standard deviation of the corrected expression
we observed that greatest transcriptional variability is generally
exhibited by genes related to host-parasite interactions, such as
host cell remodeling, cytoadhesion, antigenic variation, and host
cell invasion; and also to metabolic and cellular processes, such as
lipid metabolism, glycolysis, protein trafficking, and endoplasmic
reticulum (ER) stress (Supplementary Fig. 2). Regarding the genes
encoding surface antigens, we particularly detect most variable
expression for the phist gene family, rifins, stevors, knob-
associated histidine-rich protein (kahrp), mature-parasite-
infected erythrocyte surface antigen (mesa), ring-infected ery-
throcyte surface antigen (resa), surfins, and genes encoding
Maurer’s cleft components. This indicates the pivotal role of these
genes in general adaptation of P. falciparum parasites to their host
environment at the regional level.

To investigate transcriptome regionalization, we measured
transcriptome differentiation within each geographic location/site
for each individual parasite cohort. For this, we developed the
Transcriptome Local Convergence index (Tcvs), which is derived
as a normalized ratio of the transcriptome distance between local
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and global/distal sample sets using the transcriptome dataset
adjusted for HPI and GAM (Methods). The Tcvs showed a
marked regional conservation of transcriptomes with the majority
(89%) of GMS P. falciparum isolates forming positive Tcvs peaks
at individual sites (Fig. 1b, blue and Supplementary Data 2). The
highest local convergence was observed in Preah Vihear (p-value
= 1e–16, Mann–Whitney U test of Tcvs against the entire GMS),
Shwe kyin (p-value= 5e–13, Mann–Whitney U test) and Binh
Phuoc (p-value= 2e–4, Mann–Whitney U test). On the contrary,

a smaller proportion of the GMS P. falciparum isolates (11%)
exhibited local divergence from their counterparts (Fig. 1b,
magenta). The most significant divergence was observed in Pailin
where 32% of the isolates presented zero or negative Tcvs
(p-value= 2.8e–10, χ2 test against the expected frequency of
11%); and Pursat where Tcvs scores are the most close to zero. A
Gene Set Enrichment Analysis (GSEA) revealed that the
geographical transcriptome convergence is driven predominantly
by genes involved in ribosome biogenesis and structure,
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Fig. 1 P. falciparum transcriptome in the GMS. a Violin plot representing the distribution of estimated gametocyte proportion (GAM Prop.; left) and asexual
parasite age (HPI; right) for all the GMS sites arranged in order of median parasites clearance time (in response to artemisinin treatment) (middle) from
high to low. Black dot within violin indicates the statistical mean of each category. Magenta (blue) asterisks denote significantly high (low) values at p-
value < 0.05 (Wilcoxon rank-sum test). b Distribution of Tcvs is displayed in density plot to show the local convergence of parasite transcriptome at each
TRACI-study sites of the 773 isolates. The color from magenta to gray to blue represents the Tcvs scores from negative to zero to positive. The isolates
number with Tcvs > 0 (blue number) and Tcvs≤ 0 (magenta number) are shown together with the density plot at each site. The geographic map of
Southeast Asia is originally downloaded from [https://freevectormaps.com/world-maps/southeast-asia] and modified using Photoshop
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ubiquitin-dependent protein catabolic process, translation, RNA
processing, DNA damage repair, glycolysis, redox homeostasis,
and phospholipid metabolism. Conversely, transcriptome diver-
gence seems to be determined by genes involved in cytoadhesion,
ER-associated protein catabolic process, GPI anchor biosynthesis,
DNA replication, and exported proteins such as the PHIST gene
family. Significant transcriptome diversion in Pailin and Pursat
was also found to be associated with genes in involved in rosette
formation, cellular redox homeostasis, ER stress, fatty acid
biosynthesis, mitosis, and merozoite invasion (Supplementary
Data 3).

There was a high level of genetic relatedness of the individual
cohorts in all sites including those with the transcriptionally
diverse parasites such as Pailin and Pursat and to some degree
Ranong and Ramu (Supplementary Fig. 3a). This suggests that
while some of the observed transcriptional differences are linked
to the local genetically driven adaptations, others (especially those
with the greatest variations) are related to other processes, such as
stress response which is discussed in the section of eQTL
mapping and association studies of artemisinin resistance.
However, the founder-like (sub)populations defined genetically
in some of the study sites17 do not correlate directly with the
transcriptional differences (Supplementary Fig. 3b-f). This is
consistent with our initial hypothesis suggesting that (some)
transcriptional variations might have preceded the genetic
diversion within the individual sites. Some epidemiological
aspects such as drug resistance could drive the local transcrip-
tional diversion. This is demonstrated by the increased diversion
(Tcvs < 0) of Pailin parasites that carry the piperaqine resistance
marker, amplification of plasmepsin II–III23, that reached 50%
prevalence in this (sub)regions in 2011–2013 (Supplementary
Fig. 3g)3.

Diverged physiological backgrounds in the GMS. Previous
genetic studies have suggested a strong separation of P. falci-
parum populations between the western and eastern parts of
Southeast Asia (w-GMS and e-GMS)18. The w-GMS includes
Bangladesh, Myanmar, western and southern Thailand, while the
e-GMS includes the core GMS including Cambodia, Laos and
their border regions with Thailand and Southern Vietnam.
Multidimensional scaling analysis of the genotypes of 773 P. fal-
ciparum isolates confirmed this geographical separation (Sup-
plementary Fig. 4 and Methods). Moreover, phylogenetic tree
construction based on pairwise transcriptome distances also
revealed a general separation between the w-GMS and e-GMS P.
falciparum parasites, albeit to a lesser degree (Fig. 2a). The w-
GMS sub-branch included the majority of P. falciparum isolates
from Bangladesh and Myanmar (72%) but also a small propor-
tion (12%) of e-GMS isolates. The e-GMS branch contained 85%
of the parasites from Cambodia, 84% from Thailand, 99% from
Vietnam, and 100% from Laos. Peculiar population stratification
was formed by the parasites from the western border regions of
Thailand (Mae Sot), which were genetically close to w-GMS
populations but transcriptionally intermixed with e-GMS popu-
lations almost equally.

To parse the physiological differentiation, we designed an
index of gene expression Frequency (geF) denoting the propor-
tion of isolates with increased mRNA levels compared to the
average level across the GMS based on the HPI and GAM
adjusted data. K-means clustering (k= 6) of geF on 5061 genes
mainly presented two patterns (Fig. 2b). First, isolates from the e-
GMS showed increased geF for genes involved in early ribosome
biogenesis, hemoglobin digestion, nuclear import/export, and
mitochondrial antioxidant system (Grp1), as well as purine/
pyrimidine metabolism and organization of the kinetochore

(Grp2). On the other hand, the w-GMS isolates showed
significantly higher geF values for genes involved in DNA
mismatch repair and DNA replication complex formation,
nucleosome assembly, and proteasomal degradation (Grp6).
Similar geF values were observed in e-GMS and w-GMS isolates
for genes in Grp3, Grp4, and Grp5 (Supplementary Data 4). These
results suggest that the genetic differences in geographically
delineated P. falciparum populations may be converted into
transcription-driven physiological states and are characterized by
the probability of transcriptional upregulation/downregulation of
individual genes potentially reflecting the adaptation of malaria
parasites to varying epidemiological aspects. These processes may
reflect such global regional groupings (e.g., w- and e-GMS) but
also potentially more localized adaptation processes within each
site that could be masked in this analysis by the global sample
grouping. Data provided in this manuscript could facilitate future
studies within the individual site-specific cohorts to uncover the
transcriptomic-driven adaptation in a greater detail.

eQTL mapping. Next, performed eQTL analyses to understand
the genetic determinants of physiological variations in the two P.
falciparum GMS populations. Essentially, we mapped the
expression of 5061 genes onto 28,594 high-confidence SNPs with
minor allele frequency (MAF) > 0.01. The SNP dataset included
17,589 (62%) SNPs from protein-coding regions and 11,005
(38%) SNPs from introns or intergenic regions. The expression
data was normalized to minimize non-genetic component effects
through the removal of top-selected PCs using linear regression
analogously to other reported eQTL analyses in other eukaryotic
systems24–28. Finally, the eQTL mapping was carried out in two
independent panels for w-GMS and e-GMS populations with 229
and 544 genotyped parasites represented in the each group
(Methods). Overall, we uncovered 8,720 SNP-expression linkages
in e-GMS (Supplementary Data 5) and 4537 linkages in w-GMS
(Supplementary Data 6) at p-value < 1e–05 (FDR < 0.25 by
expression permutation). For subsequent functional analysis, we
selected the highest confidence 5575 linkages (Supplementary
Data 7) that showed no contradictory associations between e-
GMS and w-GMS (Fig. 3a and Methods). These 5575 linkages
represented associations between 3972 polymorphisms (eQTLs)
and 2350 transcripts. We found 47% of the eQTLs appear to be
physically linked, being enriched in up to 58 chromosomal
clusters (Fig. 3a and Supplementary Data 8). The strongest
clustering was observed on chromosome 10 (134,0673 bp to
1,511,622 bp) with 171 eQTL occurrences and an over-
representation of intergenic eQTLs (p-value= 3e−07, binomial
test against overall SNPs). However, only 3% of eQTLs associated
with more than three transcripts. The top eQTL had 41 putative
transcript targets and it was located at 730, 268 on chromosome 7
within an eQTL cluster (Pf3D7_07_v3: 706,086–772,669 bp)
representing a nonsynonymous SNP producing a L721F sub-
stitution for gene PF3D7_0716700. In the future, it will be
interesting to study these eQTLs hotspots for their potential
functions as key transcriptional regulatory mechanisms.

Next, we categorized the 5575 linkages into local and distal
linkages (Supplementary Table 1) at the cutoff of 15 kb between
an eQTL and its regulated target(s) based on the stronger linkages
(Fig. 3b) and a higher gene density (Supplementary Fig. 5)
observed within this range. The interval of 15 kb within the P.
falciparum genome contains on average three or less genes and
thus linkages within this window may reflect direct physical
contacts of DNA regulatory elements. This assumption is based
on the recently revealed 3-D architecture of the P. falciparum
genome, which appear to reflect a folded chromosomal structure
that strongly promotes local linkages29,30. This criterion yielded
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360 local linkages (7%), which linked 344 SNPs (local eQTLs) to
transcriptional variations of 171 genes. Among the local eQTLs,
134 fell into the adjacent intergenic regions, from which 77 were
located directly within the potential promoters upstream to their
target genes. The intergenic eQTLs were more frequently linked

to genes encoding PHIST proteins (PHISTa, PHISTb, PHISTc,
RESA, LSAP2), protein kinases and proteins related to protein
phosphorylation or trafficking (p-value < 0.05, hypergeometric
test). Nonetheless, the identified eQTL set was dominated by
distal linkages. To better capture the potential effects of distant
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regulatory elements like long-range enhancers, we further
separated the distal linkages into 507 distal cis (intra-chromoso-
mal) and 4708 distal trans (inter-chromosomal) linkages. The 507
distal cis linkages linked 483 SNPs (distal cis eQTLs) to 337 genes
that were enriched for genes coding chaperones and their
regulators as well as ER stress and genes related to peptidases/
proteases. Similar functional biases were y observed in the 4708
distal trans linkages which linked 3381 SNPs (trans-eQTLs) to
2147 genes. Moreover, the rotein-coding distal trans-eQTLs
preferentially regulated genes of basic metabolic and growth-
related cellular functions, such as DNA repair, protein synthesis
and folding, pyruvate metabolism, and transcription regulation
and RNA processing. On the other hand, genes involved in
autophagy, transcriptional regulation, mRNA processing, and
redox processes were mainly associated with intergenic distal
trans-eQTLs (for details see Supplementary Data 9).

Crucially, there appears to be major differences in the distal
eQTLs obtained from e-GMS as compared to w-GMS. This is
demonstrated by a mutually exclusive pattern of the distal eQTL
regulations represented by the logarithm odds ratios (LOD)
differentiation between e-GMS and w-GMS (Fig. 3c, blue).
Essentially, no distal linkages manifesting on one side of the
GMS (west or east) exhibited a similar association on the other.
This is in contrast to the local linkages for which concordant
associations can be observed on both sides of the GMS (Fig. 3c,
yellow). Note, the LOD scores differentiation of the distal linkages
is not a result of sample size or PCs normalization as randomized
sub-samplings resulted in significantly high correlations (Fig. 3c,
inset and Methods). Importantly, the mutually exclusive pattern
of the e- and w-GMS segregation was observed for both cis- and
trans-acting distal eQTLs, separately (supplementary Fig. 6). This
pattern is also preserved across multiple MAF thresholds and
eQTL significance cutoffs. Overall, this dramatic difference in the
distal eQTL profiles further strengthens the above-mentioned
concept of the division of P. falciparum populations between w-
GMS and e-GMS showing even a stronger separation than those
demarcated by the genomic and transcriptomic profiles alone.

Association studies of artemisinin resistance. Taking the
regional differences into consideration, we performed a genome-
and transcriptome-wide association study (G/TWAS) of artemi-
sinin resistance with the 229 w-GMS and 544 e-GMS isolates
separately (Fig. 4). The clinical phenotype of artemisinin resis-
tance was expressed as the parasite clearance time5,18,31,32.
GWAS in the e-GMS confirmed a strong association with the
pfk13 C580Y and three previously identified SNPs18 producing a
N96D substitution in gene PF3D7_1343100 of unknown func-
tion, N821K in pfrad5 (DNA repair protein PF3D7_1343400)32

and a synonymous substitution of 103L in pfap2-o4 (ApiAP2
transcription factor PF3D7_1350900), but also a previously uni-
dentified intergenic SNP between gene PF3D7_1412400 and actin
II (PF3D7_1412500) (Fig. 4a and Supplementary Table 2). In the
w-GMS, GWAS identified two polymorphisms including a
synonymous SNP of 501 T in gene PF3D7_0827600 and a

nonsynonymous SNP, H511R, in pfripr (PF3D7_0323400)
encoding for a Rh5-interacting protein involved in host cell
invasion (Supplementary Table 3). In contrast, the TWAS iden-
tified as many as 365 genes whose transcriptional levels were
associated with artemisinin resistance in either or both the e-GMS
(Supplementary Data 10) and w-GMS (Supplementary Data 11)
with equal statistical significance cutoff of p-value < 0.01 (Spear-
man’s rho test) and FDR < 0.25 (Benjamini & Hochberg correc-
tion) (Fig. 4b). Crucially, the majority of the artemisinin
resistance-linked transcripts differed between e-GMS and w-GMS
with only 19 genes upregulated and four genes downregulated
commonly between the two GMS divisions at FDR < 0.25 (Fig. 4b,
black circled). These included pfmdr1, pfap2-tel, pfap2-sp, pfprp2,
and pfmsp7-like. However, in spite of the major differences there
was a general agreement in the functional assignments of dif-
ferentially expressed genes involved in artemisinin resistance,
which include factors of ribosome biogenesis, RNA metabolism
and exported proteins (Supplementary Fig. 7). Similarly, autop-
hagy, DNA replication, cell adhesion, cell redox homeostasis and
ribosomal structure exhibited down-regulation in both divisions.
Interestingly, there was also common upregulation for several
global cellular processes; albeit different sub-components detected
in either of the division. The main example is the UPR, a putative
effector of artemisinin resistance20, with factors related to ER
stress upregulated in e-GMS and ubiquitin-related processes and
proteasome-mediated degradation upregulated in w-GMS.
Finally, we also observed distinct regional differences in artemi-
sinin resistance-associated upregulation including genes involved
in models for ubiquitin chain amputation in e-GMS and intra-
cellular protein transport in w-GMS (Supplementary Data 12).
Overall, the TWAS showed a stronger correlation of transcription
levels to artemisinin resistance in e-GMS with 275 genes com-
pared to 113 genes in the w-GMS (p-value < 0.01 and FDR <
0.25).

To better understand the causality of artemisinin resistance, we
investigated further the results from GWAS, TWAS and eQTLs.
We found that two out of the five SNP markers identified by
GWAS, the pfk13 C580Y and a synonymous SNP in pfap2-o4,
were linked with transcription in e-GMS (Fig. 4c). In particular,
pfk13 C580Y was positively correlated with the expression of
farnesyltransferase (PF3D7_1242600) at p-value= 9e−06 (FDR
= 0.006, permutation test) and negatively correlated with that of
thioredoxin-like protein (PF3D7_0717900) at p-value= 2e−06
(FDR= 0.03, permutation test). Transcription of genes coding for
farnesyltransferase and thioredoxin-like protein were also related
to artemisinin resistance at p-value= 1e−05 (FDR= 0.006,
permutation test) and p-value= 2e−04 (FDR= 0.03, permuta-
tion test), respectively (Fig. 4c). On the other hand, the putative
interaction between pfap2-o4 and 5′–3′ exonuclease
(PF3D7_0204600) (eQTL p-value= 2e−06 and FDR= 0.02,
permutation test) appears independent of artemisinin resistance
(TWAS p-value= 0.4, Spearman’s rho test) (Fig. 4d). The other
three SNP markers associated with artemisinin resistance in e-
GMS showed no eQTLs-like effects on any P. falciparum gene
(Fig. 4e). However, our eQTL analysis detected a set of 363 SNPs,

Fig. 2 Genetic and transcriptomic population structure of P. falciparum isolates by geography. a Neighbor-joining tree showing parasite transcriptome
population structure across GMS using HPI and GAM adjusted expression data. A magnified view of the branch structure is shown in the circular subpanel
below the tree. Colored asterisks on branching point indicate an over-representation of cohort isolates from the respective sites (n > 10 and p-value < 0.05,
hypergeometric test). The black dotted line is drawn at the main branch separating the majority of the w- and e-GMS samples. b Heat map of geF for 5061
genes across 11 field sites of the GMS. The length of scale bar is 0.1 as shown in bottom. Six groups (Grp1 to Grp6) were used to characterize the expression
differences between w- and e-GMS which was obtained by K-mean clustering based on Euclidean distance. Density plot of geF was generated to compare
expression prevalence of each group in w-GMS (blue curve) and e-GMS (black curve shaded in gray) isolates. Enriched MPM pathways for Grp1, Grp2, and
Grp6 shown on the right were determined by hypergeometric test at p-value < 0.05. Full list of the enriched pathways are shown in Supplementary Data 4
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eQTL positions along chromosome (3972 eQTLs)
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Fig. 3 eQTL analysis for P. falciparum isolates in the GMS. a Scatter plot of 5575 high-confidence SNP-expression linkages with 2350 gene expression
(y axis) against 3972 eQTLs (x axis). The statistical significance of each linkage is represented by the size of dot and the intensity of blue. The bar graph
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which could be linked with artemisinin resistance via regulating
expression of 141 genes (Fig. 4f and Supplementary Data 13).
Two examples of such eQTL-expression pairs are a local linkage
wiring PF3D7_0404800 C9Y (Pf3D7_04_v3-266145) to the 6-
cysteine gene (PF3D7_0404900, p-value= 2e−07) and a distal
linkage wiring PF3D7_1024400 P428A (Pf3D7_10_v3-1023588)
to the MDR1 gene (PF3D7_0523000, p-value= 4e−09). It is
feasible to suggest that at least some of the 363 eQTLs contribute
to the genetic background of artemisinin-esistant parasites. These
polymorphisms could operate together with another 132 genes
whose expression is associated with resistance but are indepen-
dent of genetic control (Fig. 4g). Similarly, w-GMS data defined
another genetic background of 108 eQTLs linking to artemisinin
resistance via controlling transcription variation of 47 genes
(Supplementary Data 14).

Discussion
Earlier studies on in vivo samples of P. falciparum have revealed
that major variation of transcriptional levels occurs in genes
encoding factors involved in host-parasite interactions33,34. This
concept was subsequently expanded into the view of distinct
physiological states of malaria parasites in vivo defined by tran-
scriptional regulation of a broader spectrum of genes with mul-
tiple biological functions35. Specifically, it was proposed that the
parasite cellular physiology could be (at least in part) controlled
by fine-tuned transcriptional profiles of genes regulating active
growth via glycolysis and/or alternative carbon source metabo-
lism as well as other environmental stress responses. Distinct
global transcriptional variations can also be associated with
disease-related phenotypes such as malaria infection during
pregnancy36,37 and severe malaria with cerebral complica-
tions38,39. While pregnancy-associated malaria seems mainly
associated with upregulation of genes encoding specific surface
antigens (such as var and phist genes), the severe infections
involve parasites with more complex transcriptional changes in
processes such as energy metabolism, biosynthesis, protein
synthesis and folding, and cytoadhesion. Global transcriptional
profiles seem to also govern distinct physiologies selected by
transmission40. In particular, genes associated with fast growth
and development such as transcription, translation, DNA repli-
cation, and energy metabolism are upregulated in parasites with
high transmission while factors of sexual reproduction, motility
and lipid metabolism are induced in parasites in low transmission
areas. Following our initial work20, here we show that distinct
transcriptional/physiological states also occur amongst parasite
populations with similar transmission levels and in patients with
similar disease outcome (uncomplicated malaria in semi-immune
individuals)5. These results suggest that transcriptional regulation
underlies parasite adaptation on even a finer scale reflecting local
geographical regions potentially driven by subtle variations in
malaria epidemiological aspects. These reflect the evolution of
genetically distinct P. falciparum sub-populations in Western
Cambodia that are thought to occur due to several factors, such as
inbreeding, low transmission rate, geographical and/or repro-
ductive isolation, high drug pressure and oxidative stress (due to
hemoglobinopathies)31.

This eQTL analysis of P. falciparum in vivo isolates mirrors the
previous in vitro study of the progeny of a genetic cross between
two P. falciparum strains. Both studies showed that the distal
eQTLs are more common compared to the local eQTLs, and that
many of these are clustered within genetic hotspots41. Similarly, a
large portion of these in vitro linkages involved a broad spectrum
of protein functions beyond transcriptional regulation, with
sequence polymorphisms altering their biological properties (e.g.,
missense mutations) and/or expression (e.g., CNV)42,43. These

profiles of P. falciparum eQTLs from both in vitro samples41 and
in vivo samples (shown here) are similar to those observed in
other unicellular organisms such as yeast24. In Saccharomyces
cerevisiae, the majority of transcriptional variations can be linked
to cis- or trans-acting distal genetic loci involving factors of signal
transduction, cytoskeleton, and protein metabolism as well as
enzymes and proteins of other basic cellular function appeared to
regulate transcriptional diversity44,45. Here, we demonstrated that
malaria parasites also possess such a regulatory network that
allows them to acquire differential physiological states and thus
adapt to their unique host environment. The distal (cis- and
trans-acting) linkages appear to facilitate these long-term adap-
tations, likely reflecting unique epidemiological factors that dif-
ferentiate parasite populations in large geographical regions such
as e-GMS and w-GMS. This regional adaptation likely results
from a long-term accumulation of subtle variations of distal
eQTLs involving a broad spectrum of cellular functions ranging
from growth and development to basic metabolism and host cell
remodeling40. However, besides the genetically driven transcrip-
tional changes, some of the detected transcriptional variations are
undoubtedly also controlled epigenetically. This may involve
factors of heterochromatin, such as P. falciparum hetero-
chromatin protein (PfHP1) that was shown to associate pre-
dominantly with transcriptionally variable genes46; and the
histone 4 acetylation at lysine 8 (H4K8ac) marker that was shown
to regulate several factors of growth and host-parasite interaction
in the reverse relationship47. In summary, notwithstanding the
epigenetic effect, it is feasible to speculate that the distal eQTLs
may represent key components of putative genetic background(s)
that maintain specific transcriptional and physiological states,
which could predispose the malaria parasites to major phenotypic
shifts, such as drug resistance18.

Here, we explored this possibility by investigating artemisinin
resistance as the major phenotypic transformation that is cur-
rently ongoing in the GMS5,16,48. Previously, we have shown that
artemisinin resistance (mediated by PfK13 mutations) is more
likely to occur in parasites with upregulated UPR pathways and
decelerated IDC progression20,21. Now, we extend this model
with several additional observations. Firstly, while in most sites of
the GMS the parasite cohorts exhibit a strong physiological
conversion, in Pailin and Pursat, the epicenters of artemisinin
resistance4, the parasites are transcriptionally highly diverse
(Fig. 1b). Such physiological flexibility can boost the likelihood of
initial emergence and local spread of drug resistance by selecting
additional supporting genetic changes. This is consistent with the
observations that PfK13 mutations were initially rising in multi-
ple events along the GMS15 but were ultimately overrun by a
dominating haplotype with C580Y SNP spreading from Western
Cambodia3,16. In the future, it will be crucial to decipher the full
catalog of these putative supportive variations that renders the
Pailin genotypes most successful. This information will be par-
ticularly crucial to understand and monitor the spread of drug
resistance beyond the GMS49 and ultimately to Africa where
currently PfK13 mutations occur in very low frequencies and do
not confer any resistant phenotype50. Second, we observed a
major division in parasite physiology between the east and wes-
tern part of the GMS that is mediated by essentially mutually
exclusive sets of distal eQTLs (Fig. 3c) as well as differential
frequencies of transcriptional upregulations (Fig. 2b). This further
supports the initial genetic studies18, and indicates a potential of
additional genetic/physiological backgrounds that promote the
spread of artemisinin resistance based on distinct genotypes.
These genotypes could include distinct PfK13 mutations such as
F446I first reported in Myanmar51. Third, while the PfK13
polymorphisms remain currently the most predictive markers52,
we identified a new set of genetic and transcriptional variations
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that significantly associate with artemisinin resistance (Fig. 4c–g).
In particular, we identified up to 405 genes whose expression
is related to artemisinin resistance and from these 167 genes
are linked with 496 distal eQTLs. These factors may also con-
tribute to artemisinin resistance either as direct mechanistic
components or alleviating elements as a part of a complex genetic
trait. It is feasible to suggest that these genetic/transcriptional
factors are holding the key in a potential spread of PfK13-
dependent resistance phenotypes (given the possibility of spon-
taneous rise of PfK13 SNPs) or constitute a new PfK13-
independent mechanism(s), some of which were reported
in vivo53,54 and in vitro55.

Methods
Ethics statement. In this study, we analyzed published data of P. falciparum
parasites including SNPs and transcriptome which were derived from field samples.
All studies providing the data were approved by the appropriate local ethics
committees or the Oxford Tropical Research Ethics Committee. All samples were
collected from patients’ blood with informed consent from the patient or a parent
or guardian.

Filtration of single nucleotide polymorphisms and samples. The SNP dataset
was provided by the Sanger Institute. SNPs were discovered against the P. falci-
parum 3D7 reference sequence V3 using 2375 samples from Africa and Asia. It is
accessible via [ftp://ngs.sanger.ac.uk/production/pf3k/release_5/5.1/]. We extracted
out 2,174,070 high quality polymorphisms for 1069 isolate samples which had their
transcriptome measured. To reduce artifacts and effects of complex infections, we
only selected SNPs with two alleles and the minimal allele frequency (MAF) > 0.01
across the GMS. We also discarded samples with more than half of all SNPs not
established or presenting other than biallelic polymorphisms. Finally, we con-
sidered 28,594 high quality SNPs and 773 isolate samples in this study.

P. falciparum transcriptome. The raw data of 773 P. falciparum transcriptomes in
this study was identical to that in Mok’s study20 which are accessible through
NCBI’s Gene Expression Omnibus (GEO) Series accession number GSE59099. The
data was processed by loess-normalization within arrays followed by quantile-
normalization between samples/arrays using the Limma56 package of R. This
method identified a transcriptome of 5061 genes which were represented in >67%
of all samples/arrays with probes showing median foreground intensity > 1.5-fold
median background intensity for either channel. Missing values (<2% of total
detected log2 ratios) were refilled by nearest neighbor averaging algorithm in the R
package of impute. The processed expression data of 773 isolates are provided in
Supplementary Data 15.

Estimation of parasites HPI and GAM proportion. For each individual parasite
population/sample, we estimated its most proximate age (hours post invasion, HPI)
during the asexual intraerythrocytic developmental cycle (IDC) and the proportion
of gametocytes using a mixture model based on a maximum likelihood method.
The method is adjusted from the model described in Lemieux’s work57. In this
study, the mixture model is constructed by some proportion of asexual parasites
and another proportion of gametocytes that is presented in formula as:

yg ¼ 1� αð Þ�xg hrð Þ þ α�zg dð Þ þ εg ð1Þ

where yg is the gene expression values of a field site sample; α is the proportion
of gametocytes to the total parasite count (sum of gametocytes and asexual
parasites); xg(hr) is the gene expression values of the reference asexual sample at
the HPI of hour hr; zg is the gene expression values of the reference gametocyte
sample at the day of d and the εg is the associated error term. The error term εg is
estimated using differences between all the isolate samples and lab strains. The
reference transcriptomes of asexual stages were generated by Bernardo et al.22 in
the P. falciparum Dd2 strain with 24 time points obtained during the IDC with 2 h
intervals. To estimate HPI at a high resolution, the reference IDC transcriptomes
were interpolated into 240 time points with 0.2 h intervals using smooth splines in
this study. The reference gametocyte transcriptome were generated in 3D7 strain
parasites after PfHP1 depletion58 and collected at the 1st to 12th day during the
parasites gametocyte development. The data was uploaded to Gene Expression
Omnibus and the accession number is GSE121505. The R script is provided in
Supplementary Software 1.

The principal component analysis (PCA) on 32 reference transcriptomes (24
from asexual parasites and eight from gametocyte parasites) reveals that a
separation of IDC and GAM transcriptomes is clearly interpretable by the first
three PCs (Supplementary Fig. 1f, panel on the top right). Based on the top three
PCs, we observed strong differences among field site isolates in their HPI age of
asexual parasites and proportions of gametocytes by projecting TRACI samples
onto the space of the first three PCs (Supplementary Fig. 1e, f).

HPI and GAM adjustment. In order to remove the expression variation caused by
parasite age of an individual sample and its proportion of GAM parasites, we
corrected expression values for each gene by extracting expression residuals from
the fitted linear model where HPI and GAM proportion were used as covariates.
To fit the linear model, we utilized the logit transformation of GAM proportion
and also added a covariate of squared HPI due to the polynomial-like relationship
between the expression profiles and parasite age. PCA to the adjusted data
showed a successful reduction of impact of GAM and HPI on the transcriptome
(Supplementary Fig. 1c, d). The adjusted expression data is provided in
Supplementary Data 16.

Transcriptome Local Conservation index (Tcvs). Tcvs score was designed to
measure the distance of an individual transcriptome to the local cohort against the
entire cohort of whole GMS. The Tcvs is defined as:

Tcvsi ¼ 1� EDTi:within

EDTi:broad
ð2Þ

where EDTi.within represents the average Euclidean distance of transcriptomes
between the ith sample to randomly selected 1000 samples from its local field site;
EDTi.broad represents the average Euclidean distance of transcriptomes between the
ith sample to randomly selected 1000 samples from the entire GMS pool. The
transcriptome pool of GMS parasites was generated by 5000 times sub-sampling
with each field site cohorts presented at the same frequency. The Euclidean dis-
tance of two transcriptomes was calculated based on the standardized expression
data after HPI and GAM proportion adjustment.

To investigate functional gene sets associated to the local convergence/
divergence of parasites transcriptomes across the GMS, we developed a gene
expression fixation index (geFST) to measure the expression differentiation at each
field site for individual genes. The geFST is defined as:

geFSTgi ¼ 1� EDgi:within

EDgi:broad
ð3Þ

The Euclidean distance was calculated for the ith gene, gi, between two
randomly selected isolates. Here, EDgi.within represents the average Euclidean
distance of 1000 random isolate pairs sampled within a local field site; and EDgi.

broad represents the average Euclidean distance between 1000 random isolate pairs
sampled from the given field site and entire GMS pool. Then, geFST values were
normalized into z-scores for each field site and the averaged z-scores were
calculated for 5061 individual genes across field sites and used in the following
GSEA study. The most conserved/diverged pathways throughout all field sites were
determined in GSEA at p-value < 0.05 and FDR < 0.25 based on isolates presenting
positive Tcvs scores. For the field sites of Pursat and Pailin, which displayed the
highest transcriptome diversion (see main text), geFST was individually calculated
using the entire set of local samples, 89 isolates at Pursat and 76 at Pailin. It
resulted in 106 and 147 significantly diverged gene expressions at z-score <−2 for
Pursat and Pailin, respectively. The pathways enriched of diverged genes at Pursat/
Pailin were obtained at p-value < 0.05 with hypergeometric test. Full list of enriched
pathways are listed in Supplementary Data 3.

To compare parasites transcriptome relatedness to the genome, we calculated
the Genome Local Conservation index (Gcvs) analogous to the Tcvs index. The
Gcvs is defined as:

Gcvsi ¼ 1� DGi:within

DGi:broad
ð4Þ

where DGi.within represents the average genetic distance between the ith sample to
randomly selected 1000 samples from its local field site. DGi.broad represents the
average genetic distance between the ith sample to randomly selected 1000 samples
from the entire GMS pool. The pairwise genetic distance of samples was estimated
based on the genetic similarity matrix which was generated by FaST-LMM using
unlinked SNPs. We subtracted the similarity scores from 1 and used that to
indicate the genetic distance between samples.

Transcriptome population structure. The transcriptome population structure
was reconstructed using a neighbor-joining tree for the 773 isolate samples across
eleven field sites of the GMS. The distance matrix used for clustering was calculated
as Euclidean distance of pairwise transcriptomes based on the corrected expression
data (HPI and GAM proportion adjusted), which was also centered to the sample
mean with the standard deviation scaled to 1.

Population stratification. Samples within the e/w-GMS still present subpopula-
tion stratifications. The possible population structure was estimated using four
multidimensional scaling (MDS) vectors, which was obtained from the 16,614
unlinked SNPs. The 16,614 unlinked SNPs were defined out of the 28,594 SNPs
using Plink v2.8 LD-based variant pruner with –indep-pairwise option, parameter
settings of window size=100 kb, and the square correlation cutoff R2 > 0.3 in step
size of 10.
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eQTL mapping. The eQTL mapping was performed for e-GMS and w-GMS
independently using the same processing pipeline. For each region, the corrected
expression data of 5061 genes were considered as 5061 traits and mapped to the
28,594 high quality SNPs. The test of SNP-expression association was implemented
using FaST-LMM v2.0759 with the genetic similarity matrix estimated based on
unlinked SNPs.

Gene expression correction and PCA adjustment. To achieve more detectable
eQTLs we processed expression data with the following procedures aiming to
minimize the impact of non-genetic components on the expression variations,
which is generally applied to eQTL analyses in other systems also24–28. First,
utilizing the four MDS vectors estimated on the above, the expression data was
corrected for the possible population structure by extracting the residuals from a
linear regression. Second, a PCA was performed to the 544 e-GMS (229 w-GMS)
transcriptomes to generate top 50 principal components (PCs) to capture
major expression differences among samples which may be due to physiological,
environmental or systematic experimental variations24–28. Association analysis of
those PCs confirmed their correlations to the estimated parasite age (HPI),
gametocyte proportion, and numbers of known clinical factors like parasite counts,
sample origin, patient temperature and other host-related factors (Supplementary
Data 1). Third, we picked top 20 PCs for expression correction based on the
inflection point of the percent variation curve of the 50 PCs (Supplementary Fig. 8).
In addition, the eQTL numbers on chromosome 13 were also optimized at 20
PCs correction with no significant increment by removing more. Fourth, we
performed QTL analysis for the 20 PCs by mapping each to the 28,594 SNPs
using FaST-LMM. According to their relationships to genotype, we subtracted
5 of the 20 PCs from the next correction steps for e-GMS. Finally, expression
values were corrected for each gene by determining the residuals using linear
regression with the selected PCs as covariates. For the w-GMS dataset, we applied
the same procedure with considering only top 10 PCs because of the smaller
sample size of 229 isolates.

After expression adjustment, PCA was repeated to the adjusted data to
investigate the efficiency of removing non-genetic component effects. The results
revealed a successful reduction of environmental effects from the adjusted
expression values (Supplementary Data 1). All the potential environmental factors,
the known and estimated, are listed in Supplementary Data 17.

eQTLs quality control. Since eQTL mapping generates multiple testing results and
the confounding effects vary across genes and may hence not be fully captured by
the top 20 PCA components, we applied expression permutation to control the
FDR for the individual populations (w-GMS and e-GMS parasites) independently.
For each gene, we shuffled the sample IDs within sites to maintain the tran-
scriptome structure of sub-region isolates. Given the heavy computation of per-
mutations required by eQTLs analysis, the permutation was performed in a small
scale for 2400 genes which was randomly selected from the potential targets of
eQTLs (p-value < 1e−05); and the mapping was restricted to unlinked SNPs
derived from Plink LD pruning (-indep-pairwise 1000 20 0.2 -maf 0.01) which
resulted in 9229 SNPs for e-GMS and 8422 SNPs for w-GMS. Next, according to
the permutation results, we constructed the null distribution of p-values for eQTL
mappings to SNPs with 0.01 <MAF < 0.05 separately from those to SNPs with
MAF > 0.05, aiming to provide more justified FDR values to SNP-expression
associations with different MAF levels. The results showed that the cutoff of p-
value < 1e−5 called e-GMS eQTLs at FDR < 0.06 for SNPs with MAF > 0.05, and
FDR < 0.2 for SNPs with 0.01 <MAF < 0.05; and called w-GMS eQTLs corre-
spondingly at FDR < 0.1 and FDR < 0.25 for each MAF category. The estimated
FDR values are provided together with p-values for each eQTL in Supplementary
Data 5 and 6.

With the cutoff of p-value < 1e−05, the eQTL mapping initially detected 9,541
SNP-expression linkages for e-GMS and 11,293 linkages for w-GMS with the input
data of 5061 genes expression and 28,594 high quality SNPs. For each detected
linkage of SNP-expression pair, we further performed 100 times permutation tests
with shuffling the sample IDs within sites per time. A linkage would be discarded if
any permutation results passed the threshold of p-value < 1e−5. This removed 820
linkages from e-GMS and 6756 linkages from w-GMS. Finally, the eQTL mapping
resulted in 8720 SNP-expression linkages in e-GMS and 4537 linkages in w-GMS.

To achieve a high-confidence dataset for holistic eQTL analysis in P. falciparum
parasites, we pruned the union results from e-GMS and w-GMS by removing
linkages showing contradictory association effects between them. In practice, we
ignored linkages with positive log2 odds ratio (LOD) in one sub-region but
negative LOD in the other; if a SNP with very low minimum allele counts (≤5) was
found with low LOD (between −1 and 1), it was also removed from further
analysis. Finally, the high-confidence dataset containing a total of 5575 SNP-
expression linkages were composed of 3452 e-GMS linkages and 2170 w-GMS
linkages. The 5575 linkages uncovered 3972 eQTL SNPs associating to
transcriptional variations of 2350 genes. For the 3972 identified eQTL SNPs, 1072
(27%) underlay the eQTL regions observed by Gonzales’s in vitro study41.

eQTL clusters. There were 2837 out of 3972 eQTLs falling beyond the linkage
disequilibrium according to the Plink LD-based variant pruning described above.

The eQTL clusters were defined based on the 2837 unlinked eQTLs. A 50 kb sliding
window was used to scan regions along each chromosome. Windows with over-
representation of eQTLs were defined at p-value < 0.05 by χ2 test against the
expected number for each chromosome. Consecutive enriched windows were
merged into one if the adjusted p-value < 0.05 was obtained for the merged win-
dow. Finally, it resulted in 58 eQTL clusters covering 47% (or 1867) of the 3972
eQTLs.

Sub-sampling of eQTL mapping. Sub-samplings were performed to the e-GMS
populations three times. Each round, 229 (the same number of w-GMS
isolates) samples were randomly selected from the e-GMS populations and the
eQTL mapping pipeline were repeated using all the same parameters previously
applied to the w-GMS data analysis. The detail steps included re-estimating the
population structures of sub-sampled isolates using multidimensional scaling
factors, re-calculating PCA components of the transcriptome populations and
the number of top components used for expression normalization. The
SNP-expression association was tested for all the high-confidence 5575
SNP-expression linkages.

Genome-wide association study (GWAS). GWAS was performed using a linear
mixed model in FaST-LMM v2.07 together with the correction for population
structure. With the threshold of MAF > 0.01, we tested 24,652 SNPs for their
associations to parasite clearance time in the e-GMS, and 22,216 SNPs in the
w-GMS. The parasite clearance time denotes the parasite clearance half-lives
estimated using a parasite clearance estimator32,60. The number of SNP markers
detected at a gradual significant level are summarized in Supplementary Fig. 9a.
A minor overlapping was observed between w-GMS and e-GMS. The full results
of GWAS are listed in Supplementary Table 2 and 3.

Transcriptome-wide association study (TWAS). TWAS was carried out for the
e-GMS and w-GMS populations individually by applying linear regressions
between mRNA levels and parasite clearance time for each gene. The mRNA
levels were corrected for HPI and GAM proportions before TWAS. In addition,
due to the significant correlation between parasite clearance time and parasite
origins, we removed the geographic effects from both of the variations of
parasite clearance half-life and gene expression using the same method of
residuals as described above. Spearman’s rho was used to test for association
between expression and clearance time without samples, which showed outlier
expression (z-score > 3, z-scores are differences between each value and the
mean divided by standard deviation). The FDR was estimated using Benjamini
& Hochberg correction on p-value. The number of gene markers detected at a
gradual significant level are summarized in Supplementary Fig. 9b. Given the
different sample size in e-GMS and w-GMS, we conducted 100 times sub-
sampling to the e-GMS data by randomly selecting 229 samples each time. The
Spearman’s rho estimated at 75% confidence interval from sub-sampling did
not show much difference from the original ones. This reveals the strong
correlation observed in TWAS of e-GMS than w-GMS was not due to the
bigger sample size. The full results of TWAS are listed in Supplementary
Data 10 and 11.

Code availability. The R script of mixture model used for estimating parasites HPI
and GAM is available in Supplementary Software 1. All the tools and softwares
applied in this study are described within the methods.

Data availability
All data supporting the findings of this study are available within the article and its
Supplementary Information files, or from the corresponding author upon request.
The reference gametocyte transcriptome has been uploaded to Gene Expression
Omnibus under accession number GSE121505. The SNP dataset was provided by
the Sanger Institute and is accessible via [ftp://ngs.sanger.ac.uk/production/pf3k/
release_5/5.1/]. The raw data of P. falciparum transcriptomes is accessible through
Gene Expression Omnibus (GEO) Series accession number GSE59099.
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