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Abstract

Background The academic publishing world is changing significantly, with ever-growing numbers of publications each year
and shifting publishing patterns. However, the metrics used to measure academic success, such as the number of
publications, citation number, and impact factor, have not changed for decades. Moreover, recent studies indicate that
these metrics have become targets and follow Goodhart’s Law, according to which, “when a measure becomes a target, it
ceases to be a good measure.” Results In this study, we analyzed >120 million papers to examine how the academic
publishing world has evolved over the last century, with a deeper look into the specific field of biology. Our study shows that
the validity of citation-based measures is being compromised and their usefulness is lessening. In particular, the number of
publications has ceased to be a good metric as a result of longer author lists, shorter papers, and surging publication
numbers. Citation-based metrics, such citation number and h-index, are likewise affected by the flood of papers,
self-citations, and lengthy reference lists. Measures such as a journal’s impact factor have also ceased to be good metrics
due to the soaring numbers of papers that are published in top journals, particularly from the same pool of authors.
Moreover, by analyzing properties of >2,600 research fields, we observed that citation-based metrics are not beneficial for
comparing researchers in different fields, or even in the same department. Conclusions Academic publishing has changed
considerably; now we need to reconsider how we measure success.
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Introduction

In the past century, the academic publishing world has changed
drastically in volume and velocity [1]. The volume of papers has
increased sharply from <1 million papers published in 1980 to
>7 million papers published in 2014 [2]. Furthermore, the speed
at which researchers can share and publish their studies has in-
creased significantly. Today’s researchers can publish not only in
an ever-growing number of traditional venues, such as confer-

ences and journals, but also in electronic preprint repositories
and in mega-journals that provide rapid publication times [1, 3].

Along with the exponential increase in the quantity of pub-
lished papers, the number of ranked scientific journals has in-
creased to >34,000 active peer-reviewed journals in 2014 [1], and
the number of published researchers has soared [4]. As part of
this escalation, metrics such as the number of papers, number of
citations, impact factor, h-index, and altmetrics are being used
to compare the impact of papers, researchers, journals, and uni-
versities [5–8]. Using quantitative metrics to rank researchers

Received: 19 November 2018; Revised: 30 January 2019; Accepted: 12 April 2019

C© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-6075-2568
http://orcid.org/0000-0001-6348-5939
mailto:mickyfi@gmail.com
http://orcid.org/0000-0002-6075-2568
http://orcid.org/0000-0002-6075-2568
mailto:guestrin@cs.washington.edu
http://orcid.org/0000-0001-6348-5939
http://orcid.org/0000-0001-6348-5939
http://creativecommons.org/licenses/by/4.0/


2 Over-optimization of academic publishing metrics

contributes to a hypercompetitive research environment, which
is changing academic culture—and not in a positive direction [9].

Studies suggest that publication patterns have changed as a
result of Goodhart’s Law, according to which, “When a measure
becomes a target, it ceases to be a good measure” [9, 10]. Good-
hart’s Law, and the closely related Campbell’s Law [11], influence
many systems in our everyday life, including educational [11],
biological [12], and other decision-making systems [13, 14]. As
an example, Goodhart’s Law can be found operating in the New
York Police Department’s manipulation of crime reports (the
“measure”) in order to improve crime statistics (the “target”) [15].
Another example is found in the educational system, revealing
that when “test scores become the goal of the teaching process,
they both lose their value as indicators of educational status and
distort the educational process in undesirable ways” [11]. One
more example can be found in the field of medicine, where the
National Health Service in the UK sets incentives (pay for per-
formance) for primary care physicians to improve the quality of
care. Indeed, “they found the measures improved for diabetes
and asthma care in the first years of the program. These im-
provements were on the basis of care reported in the medical
records but not necessarily on care provided. The main effect
of this pay-for-performance program may be to promote better
recording of care rather than better care.” [16]

Recent studies indicate that when measures become tar-
gets in academic publishing, the effectiveness of the measures
can be compromised, and unwelcome and unethical behaviors
may develop, such as salami publications [17], ghost author-
ships [18], p-hacking [19], metrics manipulation [20], faking re-
search data [21], faking of peer reviews [22], and even plagiariz-
ing by a peer reviewer [23].

If the influence of Goodhart’s Law on academia is indeed sig-
nificant, then it should be possible to observe that academic en-
tities, such as researchers and journals, will over-optimize their
own measures to achieve a desired target. Similar to the con-
sequences of making test scores a target, chasing after certain
measures in the academic publishing world to gain advantage in
the battle of “impact or perish” [10] can have undesirable effects.

Certainly, newer academic publishing metrics have emerged
that are less biased [20, 24–27], and these may thwart the trend
of measures becoming targets. Yet, the traditional metrics retain
a strong hold on the overall academic system, and they are still
widely used for ranking purposes [28, 29].

In the present study, our main goal was to utilize new ad-
vances in data science tools to perform an in-depth and precise
bottom-up analysis of academic publishing over the decades.
Our comprehensive analysis ranged from micro to macro levels
as we studied individual researchers’ behaviors as well as be-
havioral changes within large research domains. Additionally,
we wanted to uncover how and whether Goodhart’s Law has
changed academic publishing, with an in-depth look at trends
within biology and genetics.

Our study was greatly influenced by a recent study by Ed-
wards and Roy [9], who observed that academia has become a
hypercompetitive environment that can lead to unethical be-
haviors. The driving force behind such behaviors is an effort
to manipulate the metrics that measure the research’s impact
solely to increase the quantitative measures (and hence the sta-
tus) of the research.

To achieve our research goals, we developed an open
source code framework to analyze data from several large-scale
datasets containing >120 million publications, with 528 million
references and 35 million authors, since the beginning of the
19th century (see Results of Author Trends section). This pro-

vided a precise and full picture of how the academic publishing
world has evolved.

The objective of our study was to use this huge quantity of
data to examine the validity of commonly used citation-based
metrics for academic publishing. Specifically, we wanted to see
whether Goodhart’s Law applied: are researchers focusing too much
on simply attaining certain target metrics at the expense of high-
quality, relevant research?

The remainder of the paper is organized as follows: in the
Background section, we provide an overview of related studies.
In the Data Description section, we present the datasets used
in this study, and in the Analyses section, we describe the algo-
rithms and experiments used to analyze the study’s data. In the
Results, Discussion, and Conclusions sections, we present and
discuss our results and offer our conclusions from the present
study.

Background

This research is a large-scale scientometrics study (also referred
to as the “science of science” [30]). Scientometrics is the study of
quantitative features and characteristics of scientific research.
In this section, we present studies that analyze changes in aca-
demic publications in recent years (see the Changes in Publica-
tion Trends section), and we provide an overview of common
metrics that measure the impact of published papers (see the
Success Metrics and Citation Trends section).

Changes in publication trends

One prevalent and increasing trend is to publish papers in
preprint repositories, such as arXiv, bioRxiv, and Research Papers
in Economics (RePEc) [1]. For example, the use of arXiv surged
from 4,275 submitted papers in September 2006 to 11,973 papers
in November 2018 [31]. Additionally, >1 million papers are now
downloaded from bioRxiv every month [32]. Another current
trend is to publish papers in mega-journals, such as PLoS One
and Nature’s Scientific Reports. Mega-journals are a new type of
scientific journal that publishes peer-reviewed, open-access ar-
ticles, where the articles have been reviewed for scientific trust-
worthiness but not for scientific merit. Mega-journals acceler-
ate review and publication times to 3−5 months and usually
have high acceptance rates of >50% [3]. In the first quarter of
2017, >11,000 papers were published in PLoS One and Scientific
Reports [33].

Another observable trend is that more and more papers are
written by hundreds or even thousands of authors. This phe-
nomenon is known as hyperauthorship [34] or author infla-
tion [35] and is common across research fields, where the ma-
jority of papers with >1,000 authors are produced in the phys-
ical sciences [36]. For example, the recent Laser Interferome-
ter Gravitational-Wave Observatory paper [37] listed >1,000 au-
thors [38]. Robert Aboukhalil measured this trend [39] and dis-
covered that the mean number of authors of academic papers
has increased sharply since the beginning of the 20th century.
Recently, Steven Kelly observed an unexpected increase in the
mean number of authors of papers in the biological sciences [4].

While papers’ mean number of authors has increased over
time, not all the authors have significantly contributed to the
paper. In addition, honorary and ghost authors are prevalent.
Wislar et al. found such evidence in biomedical journals [40],
and similar findings were observed by Kennedy et al. [41]
and by Vera-Badillo et al. [42]. The Economist recently pub-



Fire and Guestrin 3

lished an article titled “Why research papers have so many
authors” [43].

Lewison and Hartley [44] analyzed how papers’ titles have
changed over time. They discovered that titles’ lengths have
been increasing, along with the percentage of titles containing
colons. Additionally, Gwilym Lockwood observed that “articles
with positively-framed titles, interesting phrasing, and no word-
play get more attention online” [45].

In addition to paper title lengths increasing, Ucar et al. have
found lengthening reference lists for engineering journal arti-
cles, such as those published in Biomedical Engineering and Infor-
mation Theory [46].

Additionally, many studies have focused on how publication
trends have changed over time, often focusing on specific ge-
ographical areas, demographic characteristics, specific research
domains, or specific journals. For example, Gálvez et al. [47] used
the Science Citation Index to understand publication patterns in
the developing world. Jagsi et al. [48] studied the gender gap in
authorship of academic medical literature over 35 years. They
discovered that the percentage of first and last authors who
were women increased from 5.9% and 3.7% in 1970 to 29.3%
and 19.3%, respectively, in 2004. Johnson et al. [49] studied pub-
lication trends in top-tier journals of higher education. Peter
Aldhous analyzed publications in the National Academy of Sci-
ences (PNAS [Proceedings of the National Academy of Sciences of the
United States of America]) journal to consider the influence of an
“old boys’ club” mentality [50]. In 2009, Porter and Rafols [51]
used bibliometric indicators alongside a new index of interdis-
ciplinarity to measure how the degree of interdisciplinarity has
changed between 1975 and 2005 for 6 research domains. Porter
and Rafols’ findings suggest that “science is indeed becoming
more interdisciplinary, but in small steps.”

In 2016, Fanelli and Larivière [52] analyzed the publication
patterns of >40,000 researchers for more than a century. They
observed that for researchers in their early career, both the to-
tal number of papers and the mean number of collaborators in-
creased over time. Fanelli and Larivière also observed that when
the publication rate was adjusted to account for co-authorship,
then “the publication rate of scientists in all disciplines has not
increased overall, and has actually mostly declined” [52]. In 2017,
Dong et al. [53] used a dataset consisting of 89 million publica-
tions to study the evolution of scientific development over the
past century. In their study, Dong et al. examined trends in col-
laborations, citations, and impact. From the collaboration per-
spective, Dong et al. observed that “the average length of a pub-
lication’s author list tripled between 1900 and 2015, suggest-
ing an increasingly collaborative scientific process.” From ana-
lyzing citation patterns, they observed a sharp increase in the
number of references over time, where in recent years, on av-
erage, papers reference 30 other papers. From the perspective
of impact and innovations, Dong et al. observed “diversifica-
tion of scientific development across the planet over the past
century” [53]. While both our study and that of Dong et al. use
the Microsoft Academic Graph (MAG) dataset, Dong et al. fo-
cused on the advancement of science and the globalization of
scientific collaborations, citations, and innovations. Our study’s
primary goal was to perform an in-depth analysis of how the
world of academic publishing has evolved over the decades.
Moreover, we used additional large-scale datasets (see the Data
Description section) to fully examine how academic publish-
ing has evolved, investigating both micro trends (trends in the
structure of papers) and macro trends (trends within research
fields).

Success metrics and citation trends

Over the years, various metrics have been proposed to mea-
sure papers, journal importance, and authors’ impact. One of the
most straightforward and commonly used measures is to sim-
ply count the researcher’s number of publications. Another com-
mon metric is the citation number, either of a particular paper or
the total citations received by all the author’s papers. However,
not all citations are equal [54]. Moreover, different research fields
have different citation metrics, and therefore comparing them
creates a problem: “The purpose of comparing citation records
is to discriminate between scientists” [55].

One of the best-known and most-used measures to evalu-
ate journals’ importance is the impact factor, devised >60 years
ago by Eugene Garfield [7]. The impact factor measures the fre-
quency in which an average article in a journal has been cited in
a specific year. Over time, the measure has been used to “eval-
uate institutions, scientific research, entire journals, and indi-
vidual articles” [56]. Another common metric to measure a re-
searcher’s output or a journal’s impact is the h-index, which
measures an author’s or a journal’s number of papers that have
at least h citations each [6]. It has been shown that the h-index
can predict academic achievements [57].

The above measures have been the standard for measuring
academic publishing success. According to recent studies, and
following Goodhart’s Law, these metrics have now become tar-
gets, ripe for manipulation [9, 10, 58]. All types of manipula-
tive methods are used, such as increasing the number of self-
citations [20], increasing the number of publications by slic-
ing studies into the smallest quantum acceptable for publica-
tion [59], indexing false papers [60], and merging papers on
Google Scholar [61]. Indeed, a recent study by Fong and Wil-
hite [58], which used data from >12,000 responses to a series of
surveys sent to >110,000 scholars from 18 different disciplines,
discovered “widespread misattribution in publications and in re-
search proposals.” Fong and Wilhite’s findings revealed that the
majority of researchers disapprove of this type of metric manip-
ulation, yet many feel pressured to participate; other researchers
blandly state “that it is just the way the game is played” [58].

While many of the aforementioned measures are easy to
compute, they fail to consider the added contribution that is
generally provided by the first and last authors. This issue be-
comes more cardinal with a sharply increasing number of pa-
pers with hundreds of co-authors. For example, “the h-index
does not work well in the field of life sciences, where an author’s
position on a paper typically depends on the author’s contribu-
tion” [25]. To tackle this issue, various measures such as the c-
index [24] and revised h-index [25] have been suggested. These
measures give higher weights to authors according to the co-
author order.

To overcome other shortcomings of commonly used mea-
sures, other alternative measures have been suggested. For ex-
ample, the q-index [20] and w-index [26] are alternatives to the
h-index. Likewise, the SCImago Journal Rank (SJR indicator) [62]
and simple citation distributions [63] are offered as alterna-
tives to the impact factor. Additional measures that normalize
citation-based indicators using a paper’s field of study and year
of publication have also been suggested, and these are being
used by several institutions [27].

Senior employees at several leading science publishers called
upon journals to refrain from using the impact factor and sug-
gested replacing it with simple citation distributions [63, 64].
Similarly, the altmetric [65] was proposed as an alternative met-
ric to the impact factor and h-index. The altmetric [66] is a gen-
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eralization of article-level metrics and considers other aspects
of the impact of the work, such as the number of downloads,
article views, mentions in social media, and more. The altmet-
ric measure has gained in popularity in recent years, and several
large publishers have started providing this metric to their read-
ers. Additionally, Semantic Scholar [67] offers various measures
to judge papers and researchers’ influence. A thorough report
regarding potential uses and limitations of metrics was written
by Wilsdon et al. [8]. Additionally, an overview of the changing
scholarly landscape can be found in the study by Roemer and
Borchardt [5].

Even with their many known shortcomings [8, 24, 55, 68–
70], measures such as the impact factor, citation number, and
h-index are still widely used. For example, the Journal Cita-
tion Reports publishes annual rankings based on journals’ im-
pact factors, and it continues to be widely followed [29]. As an-
other example, the widely used Google Scholar web search en-
gine [71] calculates the h-index and total number of citations of
researchers, as well as journals’ h-index, to rank journals and
conferences [28].

Data Description
The Microsoft Academic Graph dataset

In this study we primarily used the MAG [72], which was released
as part of the 2016 KDD Cup [73]. The large-scale MAG dataset
contains scientific publication records of >120 million papers,
along with citation relationships among those publications as
well as relationships among authors, institutions, journals, con-
ferences, and fields of study. In addition, the MAG dataset con-
tains every author’s sequence number for each paper’s author
list. Furthermore, the dataset contains links between a publi-
cation and the field or fields of study to which it belongs. The
fields of study are organized in hierarchical rankings with 4 lev-
els, L0−L3, where L0 is the highest level, such as a research field
of computer science, and L3 is the lowest level, such as a re-
search field of decision tree [2, 73]. Since its publication, the
MAG dataset has gained increasing popularity among scholars
who utilize the dataset for scientometric studies [74]. An in-
depth overview of the MAG dataset properties was presented by
Herrmannova and Knoth [2]. According to their analysis of the
MAG dataset, the 5 top fields of study—based on the number of
papers—are physics, computer science, engineering, chemistry,
and biology, with the number of papers ranging from slightly
<15 million in biology to >20 million in physics [2].

Even though the MAG dataset contains papers that were pub-
lished through 2016, we wanted to use years in which the data
were the most comprehensive, so we focused our analysis on
120.7 million papers that were published through the end of
2014. Furthermore, we noted that the dataset contains many pa-
pers that are news items, response letters, comments, and so
forth. Even though these items are important, they can affect a
correct understanding of the underlying trends in scientific pub-
lications. Therefore, we focused our research on a dataset sub-
set, which consists of >22 million papers. This subset contains
only papers that have a Digital Object Identifier (DOI) and ≥5 ref-
erences. Additionally, while calculating various authors’ proper-
ties, we primarily considered only the 22.4 million authors with
unique author ID values in the selected papers’ subset. (Identi-
fying all the papers by the same author (also known as author
disambiguation [75]) is a challenging task. The MAG dataset pro-
vides a unique author ID for names that were matched to be the
same individual. Recently, Microsoft Academic published a post

titled “How Microsoft Academic uses knowledge to address the
problem of conflation/disambiguation,” which explains how Mi-
crosoft Academic performs author disambiguation [76].)

The AMiner dataset

The AMiner open academic graph dataset [77] contains data
from >154 million papers. The dataset contains various pa-
pers’ attributes, such as titles, keywords, abstracts, venues, lan-
guages, and ISSNs. In our study, we primarily used the AMiner
dataset to analyze papers’ abstracts, to estimate papers’ lengths,
and to compare results with those obtained using the MAG
dataset in order to validate the existence of observed patterns
in both datasets. The AMiner is a relatively new dataset, and we
are among the first to use it for a scientometric study.

The SCImago Journal Ranking dataset

To better understand trends in journal publications, we used
the SCImago Journal Ranking (SJR) open dataset [78, 79]. This
dataset contains details of >23,000 journals with unique names
between 1999 and 2016. For each journal, the SJR dataset con-
tains the journal’s SJR value, the number of published papers,
the h-index, and the number of citations in each year. Addition-
ally, the SJR dataset contains the best quartile, ranked from Q1
to Q4, of each journal. Journal quartiles are determined by the
value of the boundary at the 25th, 50th, and 75th percentiles
of an ordered distribution of the SJR indicator. Then, journals
ranked Q1, Q2, Q3, and Q4 reflect the top 25%, 25−50%, 50−75%,
and the bottom 25% of the distribution of the SJR indicator, re-
spectively. The quartile rank is typically used to compare and
rank journals within a given subject category.

The Join dataset

To match the MAG journal IDs with their correlated various rank-
ing measures, such as h-index and SJR, we joined all 3 datasets
in the following manner: first, we joined the MAG and AMiner
datasets by matching unique DOI values. Then, we matched
ISSN values between the MAG-AMiner joined dataset with the
SJR dataset.

Analyses
Analysis of publication trends

We used our developed code framework (see the Methods sec-
tion) to explore how papers, authors, journals, and research
fields have evolved over time. In the following subsections, we
describe the specific calculations that were performed. More-
over, our Supplementary Materials section includes the precise
code implementations that were used to obtain most of our re-
sults and to create the figures presented throughout the present
study.

Paper trends
To explore how the quantity and structure of academic papers
have changed over time, we performed the following: first, we
calculated how many papers were published in the MAG dataset
every year. Then, we utilized the pycld2 package [80] to detect
the language of each paper’s title and calculated the number of
papers in each language. Next, we calculated the following paper
features over time:
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� Mean number of words in titles and mean number of charac-
ters per word (for papers with English titles)

� Percentage of titles that used question or exclamation marks
(for papers with English titles)

� Mean number of authors
� Percentage of papers in which authors appear in alphabetical

order
� Mean number of words in abstracts
� Mean number of keywords
� Mean number of references
� Length of papers

In addition, we utilized the papers with existing field-of-
research values, matching the papers to their corresponding
fields in order to identify each paper’s top-level (L0) research
field. Using the top-level data, we were able to estimate the num-
ber of multidisciplinary papers that had >1 L0 research field.
Afterwards, we calculated the percentage and total number of
papers with no citations after 5 years, as well as the overall per-
centage of papers with self-citations over time.

(we selected only papers having English titles and abstracts,
existing author lists, references, and valid lengths; in addition,
we checked whether the paper’s title contained question or ex-
clamation marks) and were published between 1990 and 2009.
Using the selected papers, we calculated the Spearman correla-
tions among the title lengths, author numbers, reference num-
bers, overall lengths, and number of citations after 5 years. The
results of the above-described calculations are presented in the
Results of Paper Trends section. Moreover, the code implemen-
tation is provided in the “Part III - A: Analyzing Changing Trends
in Academia - Paper Trends” Jupyter Notebook (see the Availabil-
ity of Source Code and Requirements section).

Author trends
To study how authors’ behaviors and characteristics have
changed, we performed the following: first, we calculated how
the number of new authors has changed over time. Second, for
all authors who published their first paper after 1950, we divided
the authors into groups according to each author’s academic
birth decade, i.e., the decade in which an author published his
or her first paper. Next, for each group of authors with the same
academic birth decade, we analyzed the following features:

� Mean number of papers the authors in each group published
n years after they began their careers, for ∀n ∈ [0, 30]. We per-
formed these group calculations taking into account all pa-
pers, as well as only papers with ≥5 references

� Mean number of conference and journal papers each group
published n years after they began their careers, for ∀n ∈ [0,
30]

� Mean number of co-authors each group had n years after they
began their careers, for ∀n ∈ [0, 30]

� Authors’ median sequence number each group had n years
after they began their careers, for ∀n ∈ [0, 60]. Additionally,
we calculated the mean percentage of times the authors in
each group were first authors

The results of the above-described calculations are presented
in the Results of Author Trends section. Moreover, the code im-
plementation is provided in the “Part III - B: Analyzing Changing
Trends in Academia - Author Trends” Jupyter Notebook (see the
Availability of Source Code and Requirements section).

Journal trends
To investigate how journal publication trends have changed over
time, we used the SJR dataset to calculate the following features
between 1999 and 2016:

� Number of journals with unique journal IDs that were active
in each year

� Number of new journals that were published each year
� Mean and maximal number of papers in each journal

Additionally, we utilized the SJR dataset to calculate how the
journals’ best quartile, mean h-index, mean SJR, and mean ci-
tation number [Citation Number/Documents Number (2 years)]
metrics changed between 1999 and 2016.

Furthermore, we selected the 40 journals with the highest SJR
values in 2016 and matched them to their corresponding journal
IDs in the MAG dataset by matching each journal’s ISSN and ex-
act name in the MAG-AMiner joined dataset. (The top journal
name was compared to the journal’s name in the MAG dataset.)
Using this method, we identified 30 unique journal IDs in the
MAG dataset that published 110,825 papers with ≥5 references.
Then, for the matching journal IDs, we calculated the following
features over time, for all papers that were published in the se-
lected top journals:

� First and last authors’ mean career age
� Percentage of papers in which the first author had previously

published in one of the top journals
� Percentage of papers in which the last author had previously

published in one of the top journals

The results of the above-described calculations are presented
in the Results of Journal Trends section. Moreover, the code im-
plementation is provided in the “Part III - C: Analyzing Changing
Trends in Academia - Journal Trends” Jupyter Notebook (see the
Availability of Source Code and Requirements section).

Additionally, for >8,400 journals with ≥100 published papers
with ≥5 references, we calculated the following features over
time:

� Number of papers
� Number of authors
� Top keywords in a specific year
� First/last/all authors’ mean or median academic age
� Mean length of papers
� Percentage of returning first/last/all authors, i.e., those who

had published ≥1 prior paper in the journal

We developed a website with an interactive interface, which
visualizes how the above features changed for each journal (see
the Availability of Supporting Data and Materials section).

Field-of-research trends
We utilized the MAG dataset field-of-study values and the hi-
erarchical relationship between various fields to match papers
to their research fields in various levels (L0−L3). Then, for each
field of study in its highest hierarchical level (L0), we calculated
the following features over time: number of papers, number of
authors, number of references, and mean number of citations
after 5 years. Next, we focused on the field of biology, which is in
the L0 level. For all the L1 subfields of biology, we repeated the
same feature calculations as in the previous step. Afterwards,
we focused on genetics. For all the L2 subfields of genetics, we
repeated the same feature calculations as in the previous step.

Additionally, to better understand the differences in citation
patterns of various fields of research, we performed the follow-
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Table 1: L3 Fields-of-Study Features in 2009

Parent field of
study Field of study name

Citations after 5 years
No. of papers

Mean No. of
authorsMedian Maximum

Engineering Structural material 61.0 1,250 174 6.14
Biology Genetic recombination 50.5 451 196 6.07
Biology Nature 48.0 5,660 4,162 6.28
Biology microRNA 47.0 3,076 1,691 6.24
Biology Induced pluripotent stem cell... 39.0 987 213 6.53
Economics Signalling 39.0 695 1,030 5.87
Biology Genome evolution 35.5 392 140 5.04
Biology Non-coding RNA 35.0 1,414 375 5.39
Biology Post-transcriptional modification... 34.0 1,414 315 5.49
Biology Autophagy 34.0 789 381 5.71
Mathematics Finite impulse response 2.0 167 337 3.00
Computer
science

Pixel 2.0 380 2,484 3.27

Computer
science

Ontology 2.0 616 733 3.35

Computer
science

Mesh networking 2.0 62 274 3.43

Computer
science

Camera resectioning 2.0 43 114 3.13

Computer
science

Session initiation protocol... 2.0 116 100 3.60

Chemistry Gallium 2.0 73 484 3.43
Mathematics Presentation of a group 2.0 91 706 3.22
Mathematics Spiral 2.0 80 122 3.65
Mathematics Block code 2.0 54 281 2.83

ing: for each field of study with ≥100 papers published in 2009,
we calculated the following features using only papers that were
published in 2009 and had ≥5 references:

� Number of papers
� Number of authors
� Median and mean number of citations after 5 years
� Maximal number of citations after 5 years

The full features of >2,600 L3 fields of study are presented in
Table 1.

The results of the above-described calculations are presented
in the Results of Fields-of-Research Trends section. Moreover,
the code implementation is provided in the “Part III - D: Ana-
lyzing Changing Trends in Academia - Research Fields” Jupyter
Notebook (see the Availability of Source Code and Requirements
section).

Results

In the following subsections, we present all the results for the
experiments that were described in the Analysis of Publication
Trends section. Additional results are presented in the Supple-
mentary Materials.

Results of paper trends

In recent years there has been a surge in the number of pub-
lished academic papers, with >7 million new papers each year
and >1.8 million papers with ≥5 references (see Fig. 1).(There
is a decline in the number of papers after 2014, probably due
to missing papers in the MAG dataset, which was released in
2016.) Additionally, by analyzing the language of the papers’ ti-

tles, we observed an increase in papers with non-English titles
(see Fig. 2).

As described in the Paper Trends section, we analyzed how
various properties of academic papers have changed over time
to better understand how papers’ structures have evolved. In
this analysis, we discovered that papers’ titles became longer,
from a mean of 8.71 words in 1900 to a mean of 11.83 words in
2014 (see Fig. 3). Moreover, the mean number of characters per ti-
tle word increased from 5.95 in 1900 to 6.6 in 2014 (see Fig. 3). Ad-
ditionally, we observed that in recent years the percentage of pa-
pers with question or exclamation marks in their titles increased
sharply, from <1% of all papers in 1950 to >3% of all papers in
2013 (see Fig. S2). Furthermore, the use of interrobangs (repre-
sented by ?! or !?) in titles also increased sharply, from 0.0005%
in 1950 to 0.0037% in 2013 (see Fig. S2).

Figure 1: The number of papers over time. The total number of papers has surged
exponentially over the years.
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Figure 2: Papers with titles in the top 9 non-English languages. An increasing
number of papers have non-English titles.

We explored how the number and order of the author list
has changed over time. The number of authors for papers with
≥5 references more than tripled over the years, from a mean of
1.41 authors to a mean of 4.51 authors per paper between 1900
and 2014 (see Fig. S3). Also, the maximal number of authors for
a single paper in each year increased sharply over time, espe-
cially in recent years (see Fig. S4). In fact, some recent papers
actually listed >3,000 authors. Moreover, we observed that the
percentage of author lists ordered alphabetically decreased in
recent years, from 43.5% of all papers published in 1950 to 21.0%
of all papers published in 2014 (see Fig. S5). Furthermore, we dis-
covered that with a higher number of authors, it is less likely that
the author list will be ordered alphabetically (see Fig. 4). For ex-
ample, in 2014 only ∼1% of papers with 6 authors were ordered
alphabetically.

When calculating how the abstracts of papers have changed
over time, we discovered that the abstract length increased from
a mean of 116.3 words in 1970 to a mean of 179.8 words in 2014
(see Fig. S6). Moreover, with each decade since 1950, the distri-
butions shifted to the right, showing that papers with longer ab-
stracts of 400 and even 500 words have become more common
over time (see Fig. 5). Additionally, we analyzed how the number
of keywords in papers has changed. We discovered that both the
number of papers containing keywords increased, as well as the
mean number of keywords per paper (see Fig. S7).

By estimating the percentage and number of multidisci-
plinary papers over time, we discovered an increase in the num-
ber of multidisciplinary papers until 2010, followed by a sharp
decrease (see Figs 6 and S8). After performing further analysis,
we believe the decline in the number of multidisciplinary papers
is a result of papers with missing keywords in the MAG dataset,
such as papers that were published in PLoS One. These papers
have dynamically changing keywords in the online version but
not in the offline version.

By examining how the number of references has changed
over time, we observed a sharp increase in the mean number of
references per paper (see Fig. S9). In addition, by analyzing the
reference number distributions grouped by publishing decade,
we can observe that higher numbers of references have become
increasingly common. For example, in 1960 few papers had >20
references, but by 2010 many papers had >20 references, and
some >40 references (see Fig. S10).

We also examined how self-citation trends have changed,
and we observed that both the total number of self-citations and
the percentage of papers with self-citations increased substan-

tially (see Fig. S12). Also, the mean number of self-citations per
paper, as well as the maximal number of self-citations in each
year, increased sharply (see Fig. 7). For example, ∼3.67% of all
papers in 1950 contained ≥1 self-citation, while 8.29% contained
self-citations in 2014 (see Fig. S12). Moreover, the maximal num-
ber of self-citations in a single paper increased sharply from 10
self-citations in a paper published in 1950 to >250 self-citations
in a paper published in 2013 (see Fig. 7).

By using the AMiner dataset to analyze how papers’ lengths
have changed, we discovered that the mean and median length
of papers decreased over time (see Fig. 8). The mean length of
a paper was 14.4, 10.1, and 8.4 pages in 1950, 1990, and 2014,
respectively.

By analyzing citation patterns over time, we discovered that
the percentage of papers with no citations other than self-
citations after 5 years decreased (see Fig. 9). Nevertheless, 72.1%
of all papers published in 2009, and 25.6% of those with ≥5 ref-
erences, were still without any citations after 5 years (see Fig. 9).
Moreover, the total number of papers without any citations in-
creased sharply (see Fig. S11).

Additionally, by analyzing the citation distributions of papers
published in different decades, we discovered that citation dis-
tributions changed notably over time (see Fig. 10).

Last, using the properties of >3.29 million papers published
between 1950 and 2009, we discovered positive correlations
among the papers’ citation numbers after 5 years and the follow-
ing features: (i) title lengths (τ s = 0.1), (ii) number of authors (τ s

= 0.22), (iii) abstract lengths (τ s = 0.26), (iv) number of keywords
(τ s = 0.15), (v) number of references (τ s = 0.48), (vi) paper lengths
(τ s = 0.13), and (vii) use of question or exclamation marks in the
title (τ s = 0.022) (see Fig. S13). (Similar correlation values were
obtained by calculating the correlations for papers published in
a specific year.)

Results of author trends

By analyzing the number of new authors each year, we discov-
ered a sharp increase over time, with several million new au-
thors publishing each year in recent years (see Fig. S14). (How-
ever, it is possible that the same author has several MAG author
IDs.) Additionally, when analyzing the trends grouped by the au-
thors’ academic birth decades, we discovered a substantial in-
crease in the mean number of published papers for the later
birth decades (see Fig. 11). For example, researchers who started
their careers in 1950 published on average 1.55 papers in a period
of 10 years, while researchers who started their careers in 2000
published on average 4.05 papers in the same time frame. Fur-
thermore, we observed that authors who started their careers
after 1990 tended to publish more in conferences in the first
years of their career than their more senior peers who started
their careers in the 1950s or 1970s (see Fig. S15). For example,
researchers who started their careers in the 1970s published
on average ∼2 conference papers and 1.65 journal papers after
10 years; researchers who started their careers in the 2000s pub-
lished ∼4 conference papers and 2.59 journal papers in the same
time frame.

We can also observe that the mean number of co-authors
has considerably increased over the decades (Fig. 12). Moreover,
we note that researchers who started their careers in the 1950s
and 1970s had on average only a few co-authors over a period
of 25 years, while researchers who started their careers in the
1990s had >60 co-authors in the same career length of 25 years
(see Fig. 12).
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Figure 3: Mean title length over time. A paper’s mean title length increased from 8.71 words to 11.83 words. Moreover, the mean word length increased from 5.95

characters to 6.6 characters per title word.

Figure 4: Percentage of papers with author lists in alphabetical order, grouped
by the number of authors. The more authors, the less likely the authors will be

listed alphabetically in the byline.

Figure 5: Distribution over time of the number of words in abstracts. Over time,
papers’ abstracts have tended to become longer.

Last, by exploring how author sequence numbers evolved,
we discovered that with seniority, the researchers’ median se-
quence number increased (see Fig. S16). Additionally, with se-
niority, the percentage of published papers with the researcher
listed as the first author decreased (Fig. 13). Moreover, by look-
ing at the decade researchers started their careers, we can see a

sharp decline in the percentages of first authors (Fig. 13). Overall,
early-career researchers are publishing more in their careers but
appear as first authors much less than in previous generations.

Results of journal trends

By analyzing journal trends using the SJR and MAG datasets, we
discovered that the number of journals increased greatly over
the years, with 20,975 active ranked journals in 2016 (Fig. 14).
Furthermore, we observed that hundreds of new ranked jour-
nals were published each year (see Figs S17 and S18). In addi-
tion, we discovered that the number of published papers per
journal increased sharply, from a mean of 74.2 papers in 1999
to a mean of 99.6 papers in 2016 (Fig. 14). We also observed that
in recent years, journals that publish thousands of papers have
become more common. For example, in 2016, according to the
SJR dataset, 197 journals published >1,000 papers each.

By exploring how various metrics have changed over time,
we discovered the following: First, over the past 18 years, the
number of papers published in Q1 and Q2 journals more than
doubled, from 550,109 Q1 papers and 229,373 Q2 papers in 1999
to 1,187,514 Q1 papers and 554,782 Q2 papers in 2016 (Fig. 15).
According to the SJR dataset, in 2016, 51.3% of journal papers
were published in Q1 journals and only 8.66% were published
in Q4 journals. Second, the h-index decreased over recent years
from a mean value of 37.4 and median of 23.0 in 1999 to a mean
value of 31.3 and median of 16 in 2016 (see Fig. S19). Third, we
noted that the SJR and the mean number of citations measures
both increased considerably during the past 18 years (see Figs 16
and S20).

Besides the number of papers in top journals doubling be-
tween 2000 and 2014, the number of authors increased substan-
tially (see Fig. S21). (The total number of authors each year was
determined by summing the number of authors in each pub-
lished paper.) Additionally, by calculating the mean academic
career ages of first and last authors, we discovered that in recent
years the mean academic age has increased notably (Fig. 17).
Moreover, when looking at first and last authors who previously
published in one of the selected top-30 journals, we discovered
that over time the percentage of returning authors increased
substantially (see Fig. 18). By 2014, 46.2% of all published pa-
pers in top-30 selected journals were published by last authors
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Figure 6: The number and percentage of multidisciplinary papers over time. Between 1900 and 2010, both the number and percentage of multidisciplinary papers
increased.

Figure 7: The mean and maximal number of self-citations. Both the mean and maximal number of self-citations increased over time.

Figure 8: Paper’s lengths. Both the papers’ mean and median lengths decreased over time. In the right panel, the horizontal line indicates the median, and the box
encloses the interquartile range.
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Figure 9: Papers with no citations other than self-citations after 5 years. The percentage of papers with no citations after 5 years decreased; nevertheless, 72.1% of all
papers published in 2009 had no citations after 5 years.

Figure 10: Citation distributions over time. The citation distributions of different
decades show notable changes.

Figure 11: Mean number of papers by authors’ academic birth decades. With
each decade, the rate of paper publication has increased.

who had published ≥1 paper in a top-30 selected journal before
(Fig. 18).

By calculating the number of papers, number of authors, au-
thors’ mean age, and percentage of returning authors in each se-
lected top-30 journal, we observed the following: (i) the number
of published papers per year increased considerably in the vast
majority of the journals (see Fig. S22); (ii) the mean career ages of
last authors in the vast majority of the selected journals consid-
erably increased (see Fig. S23); e.g., in Cell, the last authors’ ca-

Figure 12: Mean number of co-authors by academic birth decade. The mean

number of co-authors has considerably increased over the decades.

Figure 13: Percentage of times researcher was first author. We can observe that
over time on average the percentage of senior researchers as first authors de-

clined. Moreover, in the same time intervals, the percentage of times recent
generations of researchers were first authors declined compared to older gen-
erations.

reer ages increased from ∼4.5 years in 1980 to ∼20 years in 2014
(see Fig. S23); and (iii) the percentage of returning authors in the
vast majority of the selected journals increased drastically; e.g.,
in Nature Genetics, in 86.6% of 2014 papers, ≥1 of the authors had
published in the journal before (see Fig. 19).
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Figure 14: Number of active journals over time. Over a period of 18 years, from 1999 to 2016, both the number of active journals and the papers per journal increased
greatly.

Figure 15: Journals’ quartile number of papers over time. The number of papers
published in Q1 journals has vastly increased.

Results of fields-of-research trends

By matching each paper to its L0 field of study and analyzing
each field’s properties, we discovered substantial differences in
these properties. Namely, we observed the following:

� A large variance in the number of published papers in each
field. For example, 231,756 papers were published in the field
of biology in 2010, but only 5,684 were published that year in
the field of history (see Figs 20: and S24).

� A considerable variance in the mean number of paper au-
thors among the various research fields. For example, the
number of authors in 2010 ranged from a mean of 2.28 au-
thors in the field of political science to a mean of 5.39 authors
in medicine (see Fig. S25).

� A variance in the papers’ mean number of references in dif-
ferent fields. For example, in 2010, the mean reference num-
ber in the fields of material science and engineering was
<24, while in the fields of biology and history it was >33 (see
Fig. S26).

� A big variance in each L0 field’s mean and median number
of citations after 5 years. For example, for 2009 papers in the
fields of computer science and political science, the median
number of citations 5 years after publication was 4, while in

biology and environmental science, the median was 9 and 13
citations, respectively (Fig. 21).

By repeating the above analysis for the L1 subfields of biology
and for the L2 subfields of genetics, we uncovered similar differ-
ences among fields of study. Namely, we observed the following
for subfields in the same hierarchal level: (i) significant variance
in the mean number of papers (see Figs S27 and S28), (ii) notable
variance in the mean number of authors (see Figs S29 and S30),
(iii) noteworthy variance in the mean number of references (see
Figs S31 and S32), and (iv) vast variance in median citation num-
bers (see Figs S33 and S34).

Last, by analyzing various features of 2,673 L3 fields of study,
we observed a huge variance in the different properties (see Ta-
ble 1 and Fig. S35). For example, several fields of study, such as
gallium (chemistry), ontology (computer science), and presenta-
tion of a group (mathematics), had median citation numbers of
2, while other fields of study, such as microRNA and genetic re-
combination (biology), had median citation numbers of >47 and
50.5, respectively (see Table 1 and Fig. S35).

By analyzing the results presented in the Results section, the
following can be noted: first, we observed that the structure of
academic papers has changed in distinct ways in recent decades.
While the mean overall length of papers has become shorter
(see Fig. 8), the title, abstract, and references have become longer
(see the Results of Paper Trends section and Figs 3, 5, S3, S6, S9,
and S10). Also, the number of papers that include keywords has
increased considerably, as has the mean number of keywords
in each paper (see Fig. S7). Furthermore, the mean and median
number of authors per paper has increased sharply (see Figs S3
and S4).

Discussion

Below we discuss 9 aspects of our study that provide insights
into current academic publishing trends, and we explore the po-
tential impact of our results.

First, these results support Goodhart’s Law as it relates to
academic publishing: the measures (e.g., number of papers,
number of citations, h-index, and impact factor) have become
targets, and now they are no longer good measures. By making
papers shorter and collaborating with more authors, researchers
are able to produce more papers in the same amount of time.
Moreover, we observed that the majority of changes in papers’
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Figure 16: The mean number of citations [Citation Number/Documents Number (2 years)] over time. The mean number of citations values have almost doubled in the

past 18 years; additionally, their distributions have changed considerably.

Figure 17: Top-selected journals’ mean first and last authors ages. Both the first
and last authors’ mean ages have increased sharply.

Figure 18: Percentage of papers with returning first or last authors. The percent-
age of returning first or last top-journal authors increased considerably.

properties are correlated with papers that receive higher num-
bers of citations (see Fig. S13). Authors can use longer titles
and abstracts, or use question or exclamation marks in titles,
to make their papers more appealing. Thus, more readers are
attracted to the paper, and ideally they will cite it, i.e., academic
clickbait [45]. These results support our hypothesis that the ci-
tation number has become a target. Consequently, the proper-
ties of academic papers have evolved in order to win—to score a
bullseye on the academic target.

Figure 19: Mean percentage of return authors in top-selected journals over time.
In most journals the number of papers with ≥1 author who previously published
in the journal increased sharply. In many of the selected journals the percentage
of papers with returning authors was >60%, and in some cases >80%.

It is worth noting that while the study’s results provide evi-
dence that many citation-based measures have become targets,
there also may be other factors that influence academic publi-
cation trends. For example, the academic hypercompetitive en-
vironment itself may prompt an increase in productivity [81],
hence increasing the number of papers. However, this claim con-
tradicts the findings of Fanelli and Larivière that researchers’ in-
dividual productivity did not increase in the past century [52].
Nevertheless, it is important to keep in mind that there may
be other underlying factors that contributed to the observed re-
sults.

Second, we observed that over time fewer papers list authors
alphabetically, especially papers with a relatively high number
of authors (see Results of Paper Trends section and Figs 4 and S5).
These results may indicate the increased importance of an au-
thor’s sequence number in the author list, which may reflect the
author’s contribution to the study. This result is another signal of
the increasing importance of measures that rate an individual’s
research contribution.

Third, from matching papers to their L0 fields of study, we
observed that the number of multidisciplinary papers has in-
creased sharply over time (see Fig. 6). It is important to keep in
mind that these results were obtained by matching keywords to
their corresponding fields of study. Therefore, these results have
several limitations: first, not all papers contain keywords. Sec-
ond, the dataset may not extract keywords from papers in the
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Figure 20: L0 Fields-of-study number of papers over time. The numbers of papers in each field of study have increased drastically.

correct manner. For example, we found some papers contained
keywords in their online version but not in their offline version
(see Results of Paper Trends section). It is also possible that in
some fields it is less common to use keywords. Therefore, the
papers’ keywords may be missing in the datasets, and the pre-
sented results may be an underestimate of the actual number
of multidisciplinary studies. Nevertheless, we observed a strong
trend in increasing numbers of multidisciplinary papers.

Fourth, from seeing sharp increases in both the maximal and
mean number of self-citations (see Results of Paper Trends sec-
tion and Figs 7, 9, 10, and S12), it is clear that citation numbers
have become a target for some researchers, who cite their own
papers dozens, or even hundreds, of times. Furthermore, we ob-

served a general increasing trend for researchers to cite their
previous work in their new studies. Moreover, from analyzing
the percentage of papers without citations after 5 years, we ob-
served that a huge quantity of papers (>72% of all papers and
25% of all papers with ≥5 references) have no citations at all (see
Fig. 9). Obviously, many resources are spent on papers with lim-
ited impact. The lack of citations may indicate that researchers
are publishing more papers of poorer quality to boost their to-
tal number of publications. Additionally, by exploring papers’ ci-
tation distributions (see Fig. 10), we can observe that different
decades have very different citation distributions. This result in-
dicates that comparing citation records of researchers who pub-
lished papers during different periods can be challenging.
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Figure 21: L0 Field-of-study median citation number after 5 years. There is notable variance among the L0 fields-of-study median citation numbers.

Fifth, by exploring trends in authors (see Results of Author
Trends section and Figs 11, 12, 13, S14, S15, and S16), we observed
an exponential growth in the number of new researchers who
publish papers. We also observed that young career researchers
tend to publish considerably more than researchers in previous
generations, using the same time frames for comparison (see
Fig. 11). Moreover, young career researchers tend to publish their
work much more in conferences in the beginning of their careers
than older researchers did in previous decades (see Fig. S15). We
also observed that young career researchers tend to collaborate
considerably more in the beginning of their careers than those
who are older (see Fig. 12). Furthermore, we see that the mean
percentage of researchers as first authors early in their career is
considerably less than those in previous generations (see Fig. 13).
In addition, authors’ median sequence numbers typically in-
crease over time, and the rate is typically faster for young career
researchers (see Fig. S16). These results emphasize the changes
in academia in recent years. In a culture of “publish or perish,”
researchers publish more by increasing collaboration (and be-
ing added to more author lists) and by publishing more confer-
ence papers than in the past. However, as can be observed by
the overall decline of researchers as first authors, young career
researchers may be publishing more in their careers but con-
tributing less to each paper. The numbers can be misleading: a

researcher who has 5 “first author” claims but has published 20
papers may be less of a true contributor than one with 4 “first
author” claims and 10 published papers.

Sixth, by analyzing journal trends (see Results of Journal
Trends section), we see a rapid increase in the number of ranked
active journals in recent years (see Fig. 14). Moreover, on aver-
age, journals publish more papers than in the past, and dozens
of journals publish >1,000 papers each year (see Figs 14 and S17).
With the increase in the number of active journals, we observed
rapid changes in impact measures: (i) the number of papers pub-
lished in the first and second quartiles (Q1 and Q2) has increased
sharply, and today the vast majority of papers are published in
these quartiles (see Fig. 15); (ii) the journals’ mean and median
h-index have decreased sharply (see Fig. S18); and (iii) both the
SJR and the mean number of citations have increased consider-
ably (see Figs 16 and S20). With these substantial changes, it is
clear that some measures, such as the use of quartiles and the
h-index, are rapidly losing meaning and value. Moreover, with
the abundance of journals, researchers can “shop around” for a
high-impact journal and submit a rejected paper from one Q1
journal to another Q1 journal, time after time, and then start
the review process again. These repeated reviews for the same
paper waste time, and in the long run the burden of reviewing
papers several times may affect the quality of the reviews.



Fire and Guestrin 15

There are compelling reasons to change the current system.
We need to think about making all reviews open and online.
We should consider the function of published journals; for that
matter, is it even necessary to have journals in a world with
>20,000 journals that publish hundreds or even thousands of
papers each year? We need to seriously evaluate the measures
we use to judge research work. If all these measures have been
devalued to being merely targets, they are no longer effective
measures. Instead, they should be adapted to meet our current
needs and priorities. Moreover, today there are alternative mea-
sures to evaluate researchers’ contributions and journals’ im-
pacts (see Background section). It would be beneficial to the aca-
demic community to promote the use of these measures, while
concurrently raising awareness of the many limitations of the
traditional measures that are still commonly used.

Seventh, by focusing on trends in selected top journals, we
can observe that these journals have changed considerably in
recent years (see Figs 17, 18, 20, S21, and S22). The number of pa-
pers in the selected journals has increased sharply, along with
the career age of the authors and the percentage of returning
authors. The number of submissions to top journals, such as Na-
ture, have increased greatly in recent years [82]; however, many
of these journals mainly publish papers in which ≥1 of the au-
thors has previously published in the journal (see Figs 18 and 20).
We believe that this situation is also a result of Goodhart’s Law.
The target is the impact factor, and so researchers are vigorously
seeking journals with high impact factors. Therefore, the yearly
volume of papers sent to these top journals has considerably in-
creased, and, overwhelmed by the volume of submissions, ed-
itors at these journals may choose safety over risk and select
papers written by only well-known, experienced researchers.

Eighth, by analyzing how features evolve in the various L0
fields of study using the MAG dataset, we can observe that dif-
ferent fields have completely different sets of features (see Figs
20, 21, 19, S25, S26, and Table 1). While some fields have hun-
dreds of thousands of papers published yearly, others have only
thousands published yearly (see Figs 20 and S22). Moreover, sim-
ilar large differences are reflected in other examined fields’ fea-
tures, such as the mean number of references and the mean and
median citation numbers (see Figs 21 and S35).

Last, by examining >2,600 research fields of various scales
(see Table 1 and Fig. S35), we observed vast diversity in the
properties of papers in different domains: some research do-
mains grew phenomenally while others did not. Even research
domains in the same subfields presented a wide range of
properties, including papers’ number of references and me-
dian number of citations per research field (see Table 1 and
Figs S31, S32, S33, and S34). These results indicate that measures
such as citation number, h-index, and impact factor are useless
when comparing researchers in different fields, and even for
comparing researchers in the same subfield, such as genetics.
These results emphasize that using citation-based measures for
comparing various academic entities is like comparing apples to
oranges, and is to “discriminate between scientists.” [55]. More-
over, using these measures as gauges to compare academic en-
tities can drastically affect the allocation of resources and con-
sequently damage research. For example, to improve their world
ranking, universities might choose to invest in faculty for com-
puter science and biology, rather than faculty for less-cited re-
search fields, such as economics and psychology. Moreover, even
within a department, the selection of new faculty members can
be biased due to using targeted measures, such as citation num-
ber and impact factor. A biology department might hire genetic
researchers in the field of epigenetics, instead of researchers in

the field of medical genetics, due to the higher mean number of
citations in the epigenetics field. Over time, this can unfairly fa-
vor high-citation research fields at the expense of other equally
important fields.

Conclusions

In this study, we performed a large-scale analysis of academic
publishing trends, examining data on >120 million papers and
>20,000 journals. By analyzing this huge dataset, we can observe
that over the past century, especially the past few decades, pub-
lished research has changed considerably, including the num-
bers of papers, authors, and journals; the lengths of papers; and
the mean number of references in specific fields of study (Fig. 22).

While the research environment has changed, many of the
measures to determine the impact of papers, authors, and jour-
nals have not changed. Even with the development of some new
and better measures, the academic publishing world too often
defaults to the traditional measures based on citations, such
as impact factor and citation number, that were used 60 years
ago, in a time before preprint repositories and mega-journals
existed and before academia became such a hypercompetitive
environment. Most important, however, is that these measures
have degenerated into becoming purely targets. Goodhart’s Law
is clearly being illustrated: when a citation-based measure be-
comes the target, the measure itself ceases to be meaningful,
useful, or accurate.

Our study’s extensive analysis of academic publications re-
veals why using citation-based metrics as measures of impact
is wrong at the core: First, not all citations are equal; there is
a big difference between a study that cites a paper that greatly
influenced it and a study that cites multiple papers with only
minor connections. Many of the impact measures widely used
today do not take into consideration distinctions among the var-
ious types of citations. Second, it is not logical to measure a
paper’s impact based on the citation numbers of other papers
that are published in the same journal. In the academic world,
there are >20,000 journals that publish hundreds or even thou-
sands of papers each year, with papers written by hundreds or
even thousands of authors. It is even less logical to measure a
researcher’s impact based on a paper co-authored with many
other researchers according to the journal in which it is pub-
lished. Third, as we demonstrated in the section, it is wrong to
compare studies from different fields, and even to compare pa-
pers and researchers within the same parent field of study, due
to the many differences in the median and mean number of ci-
tations in each field (see Table 1).

As we have revealed in this study, to measure impact
with citation-based measures—that have now become targets—
clearly has many undesirable effects. The number of papers with
limited impact has increased sharply (see Fig. S11), papers may
contain hundreds of self-citations (see Fig. 7), and some top jour-
nals have become “old boys’ clubs” that mainly publish papers
from the same researchers (see Figs 17 and 18). Moreover, us-
ing citation-based measures to compare researchers in differ-
ent fields may have the dangerous effect of allocating more re-
sources to high-citation domains, shortchanging other domains
that are equally important.

We believe the solution to the aforementioned issues is to use
data-science tools and release new and open datasets in order
to promote using existing unbiased measures or to develop new
measures that will more accurately determine a paper’s impact
in a specific research field. Moreover, it is vital to raise awareness
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Figure 22: Measuring success in academic publishing.

of the shortcomings of commonly used measures, such as the
number of citations, h-index, and impact factor. Certain metrics
have been proposed, but the key is to wisely and carefully evalu-
ate new measures to ensure that they will not follow Goodhart’s
Law and end up merely as targets. Researchers do valuable work.
Communicating the work to others is vital, and correctly assess-
ing the impact of that work is essential.

Methods

To analyze the above MAG and AMiner large-scale datasets, we
developed an open source framework written in Python, which
provided an easy way to query the datasets. The framework uses
TuriCreate’s SFrame dataframe objects [83] to perform big-data
analysis on tens of millions of records to calculate how vari-
ous properties have changed over time. For example, we used
SFrame objects to analyze how the mean number of authors and
title lengths evolved. However, while SFrame is exceptionally
useful for calculating various statistics using all-papers features,
it is less convenient and less computationally cost-effective for
performing more complicated queries, such as calculating the
mean age of the last authors in a certain journal in a specific
year.

To perform more complex calculations, we loaded the
datasets into the MongoDB database [84]. Next, we developed
a code framework that easily let us obtain information on pa-
pers, authors, paper collections, venues, and research fields. The
framework supports calculating complex features of the speci-
fied object in a straightforward manner. For example, with only
a few and relatively simple lines of Python code, we were able to
calculate the mean number of co-authors per author in a specific

year for authors who started their career in a specific decade. An
overview of our code framework is presented in Fig. S1.

To make our framework accessible to other researchers and
to make this study completely reproducible, we have written
Jupyter Notebook tutorials that demonstrate how the SFrame
and MongoDB collections were constructed from the MAG,
AMiner, and SJR datasets (see Availability of Source Code and
Requirements section and RRID SCR 016958).

Availability of supporting data and materials

An interactive web interface to explore the study’s data is avail-
able at the project’s website. The web interface provides re-
searchers the ability to interactively explore and better under-
stand how various journals’ properties have changed over time
(see Fig. S36 and RRID: SCR 016958). Additionally, the website
contains the Fields-of-Research Features data.

Supporting data and a copy of the code are available from the
GigaScience GigaDB repository [85].

Availability of source code and requirements

One of the main goals of this study was to create an open
source framework, which provided an easy way to query the
datasets. Our code framework, including tutorials, is available
at the project’s website.

� Project name: Science Dynamics
� Project home page: http://sciencedynamics.data4good.io/
� Operating system(s): Platform independent
� Programming language: Python

http://sciencedynamics.data4good.io/
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� Other requirements: Python 2.7, MongoDB, TuriCreate
Python Package

� License: MIT License
� RRID: SCR 016958

Additional files

Additional Figure S1: Overview of the code framework. The
datasets are loaded into SFrame objects and MongoDB collec-
tions. The SFrame objects are used mainly to obtain general
insights by analyzing tens of millions of papers and author
records. The MongoDB collections are used to construct Paper
and Author objects that can be used to analyze more compli-
cated statistics for specific venues and research fields with usu-
ally hundreds of thousands of records.

Additional Figure S2: Percentage of titles with question or ex-
clamation marks. The percentage of papers with question or ex-
clamation marks in their titles increased over time, as well as the
percentage of titles with interrobangs (represented by ?! or !?).

Additional Figure S3: Mean number of authors over time.
There has been an increase in the mean number of authors, es-
pecially in recent decades.

Additional Figure S4: Maximal number of authors over time.
In recent years the maximal number of authors per paper in-
creased sharply from 520 authors in 2000 to >3,100 authors in
2010.

Additional Figure S5: Percentage of author lists in alphabeti-
cal order. There has been a decline in the number of author lists
organized in alphabetical order.

Additional Figure S6: Mean length of abstracts. Since 1970
there has been an increase in abstracts’ mean number of words.

Additional Figure S7: Keyword trends. Both the number of
papers with keywords has increased, as well as the mean num-
ber of keywords per paper.

Additional Figure S8: Mean number of fields of study over
time. Over time both the mean number of L0 and L1 fields of
study per paper considerably increased. We believe the decrease
in the mean number of L0 and L1 fields is a direct result of the
decrease in the number of papers with keywords in the same
years (see the Results of Paper Trends section).

Additional Figure S9: Mean number of references over time.
Over time, the mean number of references sharply increased.

Additional Figure S10: Distributions over time of references
in papers. Over time, papers with a relatively high number of
references have become more common.

Additional Figure S11: Total number of papers with no cita-
tions after 5 years. The number of papers in this category in-
creased sharply over time.

Additional Figure S12: Total number of self-citations and per-
centage of papers with self-citations. We can observe that over
time both the total number of self-citations as well as the per-
centage of papers with self-citations increased significantly.

Additional Figure S13: Spearman correlation heat map for
papers’ properties. We can observe positive correlations among
papers’ various structural properties and the papers’ total num-
ber of citations after 5 years.

Additional Figure S14: New authors over time. The number
of authors, with unique MAG author IDs, who published their
first paper each year.

Additional Figure S15: Authors’ mean number of conference
and journal papers over time. The mean publication rate of both
journal and conference papers increased with every decade.

Additional Figure S16: Authors’ median sequence number
over time. We can see that over time the median sequence num-
bers increased; i.e., senior researchers tend to have higher se-
quence numbers.

Additional Figure S17: Number of journals over time accord-
ing to the MAG dataset. There has been a drastic increase in the
number of journals since the 1960s.

Additional Figure S18: Number of new journals by year. Hun-
dreds of new ranked journals are being published each year.

Additional Figure S19: Journals’ h-index mean and median
values. Over time both the mean and median values of the jour-
nals’ h-index measures decreased.

Additional Figure S20: SJR values over time. We can observe
that over time both the mean and median SJR values increased.

Additional Figure S21: Top journals’ number of papers and
authors over time. We can observe that both the number of pa-
pers and authors increased sharply in recent years.

Additional Figure S22: Top selected journals’ number of pa-
pers over time. In the vast majority of the selected journals the
number of published papers with ≥5 references increased con-
siderably over time.

Additional Figure S23: Top selected journals’ mean author
career age over time. In the vast majority of the selected jour-
nals, the mean age of authors, especially last authors, increased
greatly over time.

Additional Figure S24: L0 Fields-of-study number of papers
over time. We can observe the large diversity in the number of
papers published in each L0 research field.

Additional Figure S25: L0 Fields-of-study mean authors num-
ber. We can observe a variation in the mean number of authors
across the various research fields.

Additional Figure S26: L0 Fields-of-study mean references
numbers. We can observe variance among the reference num-
bers in different fields.

Additional Figure S27: Biology L1-subfields number of papers
over time. We can observe a big variance in the number of papers
over time in the various biology subfields.

Additional Figure S28: Genetics L2-subfields number of pa-
pers over time. We can observe a big variance in the number of
papers over time in the various genetics subfields.

Additional Figure S29: Biology L1-subfields mean number of
authors over time. We can observe a variance in the mean num-
ber of authors over time in the various biology subfields.

Additional Figure S30: Genetics L3-subfields mean number
of authors over time. We can observe a significant variance in
the mean number of authors over time in the various genetics
subfields.

Additional Figure S31: Biology L1-subfields mean number of
references over time. We can observe a variance in the mean
number of references over time in the various biology subfields.

Additional Figure S32: Genetics L2-subfields mean number
of references over time. We can observe a significant variance in
the mean number of references over time in the various genetics
subfields.

Additional Figure S33: Biology L1-subfields median number
of 5-year citations over time. We can observe a variance in the
median number of citations over time in the various biology sub-
fields.

Additional Figure S34: Genetics L2-subfields median number
of 5-year citations over time. We can observe a significant vari-
ance in the median number of citations over time in the various
genetics subfields.
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Additional Figure S35: L3 Fields-of-study median 5-year cita-
tion distributions by parent fields. We can observe the high vari-
ance among the L3 fields-of-study median citation numbers.

Additional Figure S36: Interactive website. We have devel-
oped an interactive website at http://sciencedynamics.data4goo
d.io/ that makes it possible to view and interact directly with the
study’s data.
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