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Principal component analysis (PCA) and F-statistics sensu Patterson are two
of the most widely used population genetic tools to study human genetic
variation. Here, I derive explicit connections between the two approaches
and show that these two methods are closely related. F-statistics have a
simple geometrical interpretation in the context of PCA, and orthogonal pro-
jections are a key concept to establish this link. I show that for any pair of
populations, any population that is admixed as determined by an F3-statistic
will lie inside a circle on a PCA plot. Furthermore, the F4-statistic is closely
related to an angle measurement, and will be zero if the differences between
pairs of populations intersect at a right angle in PCA space. I illustrate my
results on two examples, one of Western Eurasian, and one of global
human diversity. In both examples, I find that the first few PCs are sufficient
to approximate most F-statistics, and that PCA plots are effective at predict-
ing F-statistics. Thus, while F-statistics are commonly understood in terms of
discrete populations, the geometric perspective illustrates that they can be
viewed in a framework of populations that vary in a more continuous
manner.

This article is part of the theme issue ‘Celebrating 50 years since
Lewontin’s apportionment of human diversity’.
1. Introduction
As in most species, the genetic diversity of human populations has been influ-
enced by our history and environment over the last several hundred thousand
years [e.g 1–5]. In turn, an important goal of population genetics is to use
observed patterns of variation to investigate and reconstruct the demographic
and evolutionary history of our species [6,7].

The complicated genetic structure observed in present-day human popu-
lations [8,9] is caused by the interplay of demographic and evolutionary
processes with both discrete and continuous components [10–14]. In particular,
populations are expected to differentiate if they are isolated from each other
[15,16]. In humans, this may be caused because continental-scale geographic dis-
tances limit migration, causing a pattern known as isolation-by-distance [17,18].
However, these patterns are usually not uniform, but shaped by geography, par-
ticularly barriers to migration such as mountain ranges, oceans or deserts [1,19].
In addition, major historical population movements such as the out-of-Africa
[20], Austronesian [21] or Bantu expansions [22] lead to more gradual patterns
of genetic diversity over space [23]. Local migration between neighbouring popu-
lations will reduce differentiation, and long-distance migrations [24], and
secondary contact between diverged populations such as Neanderthals and
modern humans [25] may lead to locally increased diversity [26].

Particularly for large and heterogeneous datasets, disentangling all these pro-
cesses is challenging, andwe cannot expect to devise a singlemodel catching both
broad strokes and minute details of human history. A commonly used analysis
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Figure 1. Representation of F-statistics on trees and two-dimensional PCA plots. The schematics show four populations and their representation using an (arbitrarily
rooted) tree (top row) or a two-dimensional PCA plots (bottom row). (a) F2 represents the squared Euclidean distance between two tree leafs, and in PC space.
(b) F3(X1; X3, X4) corresponds to the external branch from X1 to the internal node joining the populations, and is proportional to the orthogonal projection of X1− X3
onto X1− X4. (c) F4(X1, X4; X2, X3) corresponds to the internal branch in the tree, or to the orthogonal projection of X2− X3 onto X1− X4. (d ) F4(X1, X2; X3, X4). The
two paths from X1 to X2 and X3 and X4 are non-overlapping in the tree, which corresponds to orthogonal vectors in PCA space. (Online version in colour.)
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Figure 2. Admixture representation on two-dimensional-PCA plot. The schematics show four populations and their representation using an admixture graph (a) or a
two-dimensional-PCA plot. (a) Admixture graph, with population Xy originating as an admixture of X2 (with proportion 1− α) and X3 ( proportion α). Subsequent
drift (highlighted branch) will change allele frequency to sampled admixture population Xx. (b) PCA representation of the scenario in (a). Xy originates on the
segment connecting X2 and X3, and subsequent drift may move it in a random direction. (c) Negative region (light grey) for F3(Xx; X2, X3) and for
F̂ð2Þ3 ðXx ; X2, X3Þ based on two dimensions (dark grey). (d ) F4(X1, Xx; X3, X4) will no longer be zero (compare to figure 1d ). (Online version in colour.)
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paradigm is thus to combine tools based on different sets of
assumptions, each emphasizing particular aspects of the data.

A typical analysis starts with data-driven, exploratory
methods that summarize data making minimal assumptions
[e.g. 6]. Examples are population trees [16,27,28], principal
component analysis (PCA [1,29,30]) structure-like models
[31,32] ormultidimensional scaling (MDS [33]). Thesemethods
are limited in their ability to estimate biologically meaningful
parameters, but provide useful summaries and visualizations.
Typically, these analyses are then complementedwithmethods
based on explicit demographic models, which are used to
estimate parameters or test hypotheses [34–36].

When the number of populations exceeds a few dozen,
even codifying reasonable population models can be prohibi-
tively difficult. One approach is to pick a small set of
‘representative’ samples, and restrict modelling to this
subset [e.g. 37,38]. However, this has the drawback that a
large proportion of the available data remains unused. An
increasingly popular alternative approach, particularly in
the analysis of human ancient DNA, is therefore to focus
on the relationship between two, three or four populations,
commonly using F-statistics sensu Patterson [39–41]. Formal
definition will be given in the Theory section; but an informal
motivation starts with the null model that populations are
related as a tree, in which each F-statistic measures the
length of a particular set of branches (figure 1; [41,42]).

In most applications, F-statistics are estimated from data,
and then used as tests of treeness. In particular, under the
assumption of a tree, F3 is restricted to be non-negative,
and many F4-statistics will be zero [40,42], and data that vio-
lates these constraints is incompatible with a tree-like
relationship between populations. The canonical alternative
model is an admixture graph (or phylogenetic network)
[40,43], which is a tree which allows for additional edges
reflecting gene flow (figure 2a). However, admixture graphs
are not the only plausible alternative model, and expected
F-statistics can be calculated for a wide range of population
genetic demographic models [41].
(a) F-statistics and principal component analysis
The practical issue addressed in this study is how F-statistics
can be compared with PCA, one of the most widely used
data-driven modelling techniques. One way PCA can be
motivated is as generating a low-dimensional representation
of the data, with each dimension (called a principal
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component, PC) retaining a maximum of the variance present
in the data. To understand population structure, the use of
PCA has been pioneered by Cavalli-Sforza et al. [44], who
used allele-frequency data at a population level to visualize
genetic diversity [1]. Currently, PCA is most commonly per-
formed on individual-level genotype data [e.g. 30,45],
making use of the hundreds of thousands of loci available
in most genome-scale datasets. The PCA decomposition has
been studied for a number of explicit population genetic
models including trees [16], spatially continuous structure
[46], the coalescent [47] and discrete population models
[48]. Here, in order to link PCA to F-statistics, I interpret
both of them geometrically in allele frequency space, i.e. as
functions of a high-dimensional Euclidean space. For F-stat-
istics, this interpretation was recently developed by Oteo-
Garcia & Oteo [49], and for PCA it follows naturally from
the interpretation of approximating a high-dimensional
space with a low-dimensional one.

In the next section, I will formally derive the connection
between F-statistics and PCA, and show how F-statistics can
be interpreted geometrically, with a particular emphasis on
two-dimensional-PCA plots. In the Results section, I will
then discuss how some of the most common applications of
F-statistics manifest themselves on a PCA, and illustrate them
on two example datasets, before ending with a discussion.
2. Theory
In this section, I will introduce the mathematics and notations
for F-statistics and PCA. A comprehensive treatise on PCA is
given by e.g. Jolliffe [50], a useful technical primer is Pachter
[51], and a helpful guide to interpretation is Cavalli-Sforza
et al. [1]. Readers unfamiliar with F-statistics may find
[40,41] or [49] helpful.

(a) Formal definition of F-statistics
Let us assumewe have a set of populations for which we have
single-nucleotide polymorphism (SNP) allele frequency data
from S biallelic loci, and for simplicity, I will assume that
there is nomissing data. Let xil denote the frequency of an arbi-
trary allele at the lth SNP in the ith population; and letXi = (xi1,
xi2,…xiS) be a vector collecting all allele frequencies for popu-
lation i. As Xi will be the only data summary considered here
for population i, I make no distinction between the population
and the allele frequency vector used to represent it.

The three F-statistics are defined as

F2ðX1, X2Þ ¼ 1
S

XS
l¼1

ðx1l � x2lÞ2 ð2:1aÞ

F3ðX1; X2, X3Þ ¼ 1
S

XS
l¼1

ðx1l � x2lÞðx1l � x3lÞ ð2:1bÞ

and F4ðX1, X2; X3, X4Þ ¼ 1
S

XS
l¼1

ðx1l � x2lÞðx3l � x4lÞ: ð2:1cÞ

The normalization by the number of SNPs S is assumed
to be the same for all calculations and is thus omitted
subsequently. Both F3 and F4 can be written as sums of
F2-statistics

2F3ðX1; X2, X3Þ ¼ F2ðX1, X2Þ þ F2ðX1, X3Þ � F2ðX2, X3Þ
ð2:2aÞ
and

2F4ðX1, X2; X3, X4Þ ¼ F2ðX1, X3Þ þ F2ðX2, X4Þ
� F2ðX1, X4Þ � F2ðX2, X3Þ: ð2:2bÞ

Commonly, a distinction is made between statistics esti-
mated from data (denoted with lowercase-f ), and theoretical
quantities (defined in equation (2.1)). I do not make this dis-
tinction, but will explicitly mention when I analyse statistics
calculated from data.

F-statistics have been primarily motivated in the context
of trees and admixture graphs [40]. In a tree, the squared
Euclidean distance F2(X1, X2) measures the length of the
path between populations X1 and X2 (figure 1a); F3 represents
the length of an external branch (figure 1b) and F4 the length
of an internal branch, respectively (figure 1c). The length of
each branch can be thought of in units of genetic drift, and
is non-negative [40]. Crucially, this means that F4 will be
zero for pairs of populations from non-overlapping clades,
which means that the tree lacks the branch corresponding
to this statistic (as in figure 1d ).

Thinking of F-statistics as branch lengths is useful for a
number of applications, including building multi-population
models [40,52], estimating admixture proportions [38,53] and
finding the population most closely related to an unknown
sample (‘Outgroup’-F3-statistic).

Most commonly however, F3 and F4 are used as tests of tree-
ness [40]: negative F3 values correspond to a branch with
negative genetic drift, which is not allowed under the null
assumption of a tree-like population relationship. Similarly if
four populations are related as a tree, then at least one of the
F4-statistics between the populations will be zero [40,54].

The most widely considered alternative model is an
admixture graph [40]; an example is given in figure 2a.
Here, the (typically unobserved) population Xy is generated
by a mixture of individuals from the ancestors of X2 and
X3. Over time, genetic drift will change Xy to Xx, which
is the admixed population we observe. In this case, all F4-
statistics involving Xy and both admixture sources will be
non-zero, and, in some cases, F3(Xy; X2, X3) will be negative
(exact conditions can be found in [41]).

(b) Geometric interpretation of F-statistics
An implicit assumption in the development of F-statistics in
the context of admixture graphs has been that population
lineages are mostly discrete, and that gene flow is rare.
Recently, Oteo-García & Oteo [49] showed that this is not,
in fact, necessary. Specifically, they interpret the populations
Xi as points or vectors in the S-dimensional allele frequency
space RS. In this case, the F-statistics can be thought of as
inner (or dot) products, and they showed that all properties
and tests related to treeness can be derived in this larger
space. In this framework, the F-statistics can be written as

F2ðX1, X2Þ ¼ 1
S

XS
l¼1

ðx1l � x2lÞ2 ¼ 1
S
hX1 � X2, X1 � X2i

¼ 1
S

X1 � X2k k2 ð2:3aÞ

F3ðX1; X2, X3Þ ¼ 1
S

XS
l¼1

ðx1l � x2lÞðx1l � x3lÞ

¼ 1
S
hX1 � X2, X1 � X3i ð2:3bÞ
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and

F4ðX1, X2; X3, X4Þ ¼ 1
S

XS
l¼1

ðx1l � x2lÞðx3l � x4lÞ

¼ 1
S
hX1 � X2, X3 � X4i,

ð2:3cÞ

where �k k denotes the Euclidean norm and 〈 · , · 〉 denotes the
dot product. Some elementary properties of the dot product
between vectors a, b, c that I will use later are

ha, bi ¼
X
i

aibi ð2:4aÞ

ha, bi ¼ ak k bk k cosðfÞ ð2:4bÞ
ha, ai ¼ ak k2 ð2:4cÞ
and haþ c, bi ¼ ha, bi þ hb, ci, ð2:4dÞ
where ϕ is the angle between a and b. The inner product is
closely related to the vector projection

projba ¼
ha, bi
bk k2 b, ð2:5Þ

which is a vector colinear to b whose length measures
how much vector a points in the direction of b. Thinking of
F-statistics as projections also holds on trees: in e.g. a F4(X1,
X4; X2, X3)-statistic (figure 1c), the internal branch is precisely
the intersection of the paths from X1 to X4 and from X2 and
X3. On trees, all disjoint paths are independent (i.e. orthog-
onal) from each other, and thus the external branches
vanish under the projection.

One issue with the geometric approach of Oteo-García &
Oteo [49] is that each SNP (commonly in the millions) adds
a dimension, but high-dimensional spaces are hard to visual-
ize, interpret and analyse. Fortunately, it has been commonly
observed that population structure is often quite low-dimen-
sional, and only a few PCs frequently provide a good
approximation of the covariance structure in human genetic
variation data [30]. Therefore, we may hope that PCA could
yield a reasonable approximation of the allele frequency
space, and that F-statistics as measures of population structure
may likewise be well approximated by the first few PCs.

(c) Formal definition of principal component analysis
PCA is a common way of summarizing genetic data, and so a
large number of variations of PCA exist, e.g. in how SNPs are
standardized, how missing data are treated or whether we
use individuals or populations as units of analysis [1,30].
The version of PCA I use here is set up such that the simi-
larities to F-statistics are maximized, and does not reflect
how PCA is most commonly applied to genome-scale
human genetic variation datasets. In particular, I assume
that a PCA is performed on unscaled, estimated population
allele frequencies, whereas many applications of PCA are
based on individual-level sample allele frequency, scaled by
the estimated standard deviation of each SNP [30]. The differ-
ences this causes will be addressed in the discussion.

Let us again assume we have allele frequency data as
above, but let us now assume we aggregate the allele fre-
quency vectors Xi of many populations in a matrix X
whose entry xil reflects the allele frequency of the ith popu-
lation at the lth genotype. If we have S SNPs and n
populations, X will have dimension n × S. Since the allele fre-
quencies are between zero and one, we can interpret each
population Xi of X as a point in RS.
PCA allows us to approximate the points in the high-
dimensional allele frequency space by a K-dimensional sub-
space of the data. If all PCs are considered, K = n− 1, in
which case the data are simply rotated. However, the histori-
cal processes that generated genetic variation often result in
low-rank data [55], so that K≪ n explains a substantial portion
of the variation; for visualization, K = 2 is frequently used.

There are several algorithms that are used to performPCAs,
the most common one is based on singular value decompo-
sition (e.g. [50]). In this approach, we first mean-centre X,
obtaining a centred matrix Y

yil ¼ xil � ml,

where μl is the mean allele frequency at the lth locus.
PCA can then be written as

Y ¼ CX ¼ ðUSÞVT ¼ PL, ð2:6Þ
where C = I− (1/n)1 is a centring matrix that subtracts row
means, with I, 1 the identity matrix and a matrix of ones,
respectively. For any matrix Y, we can perform a singular
value decomposition Y =UΣVT which, in the context of
PCA, is interpreted as follows: the matrix of principal com-
ponents P =UΣ has size n × n and contains information
about population structure. The SNP loadings L =VT form
an orthonormal basis of size n × S, its rows give the contri-
bution of each SNP to each PC. It is often used to look
for outliers, which might be indicative of selection (e.g.
[56]). Alternatively, the PCs can also be obtained from an
eigendecomposition of the covariance matrix YYT. This can
be motivated from (2.6)

YYT ¼ PLLTPT ¼ PPT , ð2:7Þ
since LLT = I.
(d) Connection between principal component analysis
and F-statistics

(i) Principal components from F-statistics
PCA, as defined above, and F-statistics are closely related. It
is a classical result that PCA is equivalent to multidimen-
sional scaling using squared Euclidean distances [57]. Since
F2-distances are squared Euclidean, we calculate the pairwise
F2(Xi, Xj) between all n populations, and collect them in a
matrix F2. Multidimensional scaling then proceeds by
double-centring it, so that its row and column means are
zero, and perform an eigen decomposition of the resulting
matrix

PPT ¼ � 1
2
CF2C: ð2:8Þ

Although we arrive at P from a very different angle, as long
as we make the same choices about normalization and units
of analysis, we will get the exact same results.
(ii) F-statistics in PCA space
By performing a PCA, we rotate our data to reveal the axes of
highest variation. However, the dot product is invariant
under rotation, and F-statistics can be thought of as dot pro-
ducts [49]. What this means is that we are free to calculate F2
either on the uncentred data X, the centred data Y or any
other orthogonal basis such as the principal components P.
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Formally,

F2ðXi, XjÞ ¼
XL
l¼1

�
xil � x jl

�2

¼
XL
l¼1

�ðxil � mlÞ � ðx jl � mlÞ
�2 ¼ F2ðYi, YjÞ

¼
Xn
k¼1

ðpik � p jkÞ2 ¼ F2ðPi, PjÞ:

ð2:9Þ

A derivation of this change-of-basis is given in appendix A,
equation (A1). As F3 and F4 can be written as sums of
F2 terms (equations (2.2a) and (2.2b)), analogous relations
apply.

In most applications, we do not use all PCs, but instead
truncate to the first K PCs, which explain most of the
between-population genetic variation. Thus,

F2ðPi, PjÞ ¼
XK
k¼1

ðpik � p jkÞ2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
F̂2ðKÞðPi ,PjÞ

þ
Xn

k¼Kþ1

ðpik � p jkÞ2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
eðKÞðPi ,PjÞ

: ð2:10Þ

In this notation, F̂2ðKÞ is the approximation of F2 with only the
first K PCs considered, and e(K ) is the corresponding approxi-
mation error. I will omit the superscript of F̂2 when the exact
number of PCs is not relevant. If we sum up the squared
approximation errors over all pairs of populations in our
sample, we obtainX
i,j

eðKÞðPi, PjÞ2 ¼
X
i,j

(F̂2ðKÞðPi, PjÞ � FðKÞ2 ðPi, PjÞ)2

¼ F2 � F̂2
�� ��2

F, ð2:11Þ

where the Frobenius-norm �k k2F of a matrix is defined as the
square root of the sum-of-squares of all its elements. This is
precisely the function that is minimized in MDS [50]. In
that sense, F̂ðKÞ2 is the optimal low-rank approximation of F2
for any K in that it minimizes the sum of approximation
errors of all F2-statistics.
(iii) F-statistics and samples projected onto PCA
One of the easiest ways of dealing with missing data
in PCA is to calculate the principal components (equation
(2.6)) only on a subset of the data with no missingness,
and then to project the lower quality samples with high miss-
ingness onto this PCA. The simplest way to do this is to
note that

YLT ¼ PLLT ¼ P,

and so a new (centred) population Ynew can be projected
onto an existing PCA simply by post-multiplying it with LT

Pproj ¼ YnewLT ;

the kth entry of Pproj gives the coordinates of the new sample
on the kth PC. However, it is likely that Ynew lies outside the
variation of the original samples. In this case, there is a
projection error

Ynew � PprojL
�� ��2¼ F2ðPprojL, YnewÞ:
If we project with missing data, a similar projection can be
used where we remove the rows from Ynew and L where
data in Ynew is missing, and add a scaling factor [30].
Thus, if we compare the F-statistic of a projected sample,
we have

F2ðXi, XnewÞ ¼ F2ðYi, YnewÞ
¼ F2ðPi, PprojÞ þ F2ðPprojL, YnewÞ
¼ F̂2ðPi, PjÞ þ eðPi, PjÞ þ F2ðPprojL, YnewÞ:

ð2:12Þ
The second row follows because the projection error and pro-
jection are orthogonal to each other. The main implication of
equation (2.12) is that both truncation and projection intro-
duce some error, and that F̂2ðPi, PjÞ will be a good
approximation to F2(Pi, Pj) only if both errors are small.
3. Material and methods
The theory outlined in the previous section suggests that
F-statistics have a geometric interpretation in PCA space,
which can be approximated on PCA plots. In the next section,
I explore this connection in detail, and illustrate it on two
sample datasets that I briefly introduce here. Both are
based on the analyses by Lazaridis et al. [58]. The data are
from the Reich laboratory compendium dataset (v.44.3),
downloaded from https://reich.hms.harvard.edu/allen-
ancient-dna-resource-aadr-downloadable-genotypes-present-
day-and-ancient-dna-data, using data on the ‘Human
Origins’-SNP set (597,573 SNPs). SNPs with missing data in
any population are excluded. The code used to write this
paper, create all figures and analyses is available on doi:10.
5281/zenodo.6424178.

(a) ‘World’ dataset
This dataset is a subset of the ‘World Foci’ dataset
of Lazaridis et al. [58], where I removed samples that are
not permitted for free reuse. These populations span the
globe and roughly represents global human genetic variation
(638 individuals from 33 populations) As adjacent sampling
locations are often thousands of kilometres apart, I speculate
that gene flow between these populations may not be particu-
larly common; and their structure may therefore be well
approximated by an admixture graph. A file with all individ-
uals used and their assigned population is given in electronic
supplementary material, File S1.

(b) Western Eurasian dataset
This dataset of 1119 individuals from 62 populations contains
present-day individuals from the Eastern Mediterranean, Cau-
casus and Europe. Lazaridis et al. [58] used this dataset as a
basis of comparison for ancient genetic analyses ofWestern Eur-
asian individuals, and PCAs based on similar sets of samples
have been used in many other ancient DNA studies (e.g.
[59,60]). Genetic differentiation in this region is low and closely
mirrors geography [45]. I thus speculate that gene flow between
thesepopulations is common [61], andadiscretemodel such as a
tree or an admixture graph might be a rather poor reflection of
this data. A file with all individuals used and their assigned
population is given in electronic supplementarymaterial, File S2.

(c) Computing F-statistics and PCA
All computations are performed in R. I use admixtools

2.0.0 (https://github.com/uqrmaie1/admixtools) to

https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
https://reich.hms.harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes-present-day-and-ancient-dna-data
http://dx.doi.org/10.5281/zenodo.6424178
http://dx.doi.org/10.5281/zenodo.6424178
https://github.com/uqrmaie1/admixtools
https://github.com/uqrmaie1/admixtools
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compute F-statistics. To obtain a PC-decomposition, I first
calculate all pairwise F2-statistics, and then use equation
(2.8) and the eigen function to obtain the PCs. The right-
hand-side matrix of equation (2.8) is expected to have non-
negative eigenvalues (i.e. −CF2C is positive-semidefinite).
However, when F2-statistics are estimated from data,
sampling noise might make some of them slightly negative,
which would lead to imaginary PCs. I avoid this by setting
all negative eigenvalues to zero.
PC1

PC1¢

(b)

Figure 3. Admixture-F3-statistic and dimensionality reduction. (a) The grey
circle is defined by X1 and X2 and reflects the area for which F3 is negative,
i.e. F3(Xx; X1, X2) < 0 < F3(X3; X1, X2)≤ F3(X4; X1, X2). (b) Projection on one
dimension. The full rejection region (light grey bar) is given by the bound-
aries of the circle in a, and is larger than that predicted from the distance
between X1 and X2 (dark grey bar) on PC1 alone. Points like Xx with negative
F3 are guaranteed to lie in the light grey (but not dark grey) region. X3 also
projects onto the grey bar, even though it is outside the circle and F3 is posi-
tive, and it would also lie inside the positive area if projected onto PC2.
However, points such as X4 that project outside the rejection region have
F3 > 0, since the associated projection line does not intercept the circle.
(Online version in colour.)
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4. Results
The transformation from the previous section allows us to con-
sider the geometry of F-statistics in PCA space. The
relationships we will discuss formally only hold if we use all
PCs. However, the appeal of PCA is that frequently, only a
very small number K≪ n of PCs contain most information
that is relevant for population structure, in which case
the geometric interpretations become very simple. Thus,
throughout the schematic figures, I assume that two PCs are
sufficient to characterize population structure. In the data
applications, I evaluate how deviations of this assumption
may manifest themselves in PCA plots.

(a) F2 in PC space
The F2-statistic is an estimate of the squared allele-frequency
distance between two populations. On a tree (figure 1a), this
corresponds to the branch between two populations. In allele-
frequency space, it corresponds to the squared Euclidean dis-
tance, and thus reflects the intuition that closely related
populations will fall close to each other on a PCA plot, and
have low pairwise F2-statistics. However, since F2 can be writ-
ten as a sum of squared (non-negative) terms for each PC
(equation 2.9), the distance on a PCA plot will always be an
underestimate of the full F2 distance. Thus, PCA might pro-
ject two populations with high F2 distance very close to
each other, which would indicate that these particular PCs
are not suitable to understand and visualize the relationship
between these particular populations, and likely more PCs
need to be investigated to understand how these populations
are related to each other. In converse, populations that are
distant on the first few PCs are guaranteed to also have a
large F2-distance, since the distance contributed from the
omitted PCs cannot be negative.

(b) When are admixture-F3-statistics negative?
Consider again the admixture scenario in figure 2a, where
population Xy is the result of a mixture of X2 and X3, and sub-
sequent drift changes the allele frequencies of the admixed
population from Xy to Xx. How is such a scenario displayed
on a PCA? Since the allele frequencies of Xy are a linear com-
bination of X2 and X3, it will lie on the line segment
connecting these two populations (figure 2b), at a location
predicted by the admixture proportions. Subsequent drift
will change the allele frequencies of Xy (to say, Xx), and so
in general it might fall on a different point on a PCA plot.
An exception occurs when Xx (and no other populations
related to Xx) are not part of the construction of the PCA,
so that Xx−Xy is orthogonal to all PCs, i.e.

hXx � Xy, Xi � Xji ¼ hXx � Xy, Pii ¼ 0
for all populations i, j≤ n. In this case, Xx and Xy project to
the same point, and the location on the PCA can directly be
used to predict the admixture proportions [47,49,62]. How-
ever, if either Xx is included in the construction of the PCA,
or if some gene flow occurred between Xx and any of the
populations used to construct the PCA, Xx and Xy may
project on different spots (figure 2b).

Thus, a natural question to ask is given two source
populations X2, X3, can we use PCA to predict which popu-
lations might have negative F3-statistics? This condition can
be written as

2F3ðXx; X2, X3Þ ¼ 2hXx � X2, Xx � X3i
¼ Xx � X2k k2þ Xx � X3k k2� X2 � X3k k2, 0:

ð4:1Þ
By the Pythagorean theorem, F3 = 0 if and only if X2, X3 and
Xx form a right-angled triangle. The associated region where
F3 = 0 is an n-sphere (or a circle in two dimensions) with
diameter X2X3 (the overline denotes a line segment). F3 is
negative when the triangle is obtuse, i.e. Xx could be con-
sidered admixed if it lies inside the n-ball with diameter
X2X3 (figure 1b, equation (A2)).

(c) F3 and dimensionality reduction
If we project this n-ball on a two-dimensional plot, X2X3 will
usually not align with the PCs; thus the ball may be some-
what larger than it appears on the plot. This geometry is
perhaps easiest visualized on the example of projecting
F3(Xx; X1, X2) from a two-dimensional space onto a single
dimension (figure 3). In that example, the distance between
X1 and X2 has a substantial contribution from PC2, and so
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the negative region (light grey) is larger than what would
be predicted from just one dimension (dark grey bar), but if
F̂3 � F3, the two areas would be very close. Thus, if consi-
dering a reduced-dimension PCA plot, some points (such
as X3) may project inside the negative region, but have posi-
tive F3 because they are outside the n-ball in higher
dimensions. The converse interpretation is more strict: if a
population lies outside the circle on any projection, F3 is
guaranteed to be bigger than 0 (see equation (A4) in the
appendix). An intuitive example is given by X4 in figure 3:
all points projecting to the same point on figure 3b as X4 lie
outside the circle.
(a) and PCA plot (b). The highlighted segment represents F3(XO; XU, X3) and the
dashed segment reflects F3(XO; XU, X1) and F3(XO; XU, X2), which have the same
value. (Online version in colour.)
(i) Example
As an example, I visualize the admixture statistic F3(X; Sardi-
nian, Finnish), on the first two PCs of the Western Eurasian
dataset (figure 4a). In this case, the projected n-ball (light
grey) and circle based on two dimensions (dark grey) have
similar sizes. However, several populations that appear
inside the circles (e.g. Basque, Canary Islanders) have, in
fact, positive F3 values, so they lie outside the n-ball. This
reveals that the first two PCs do not capture all the genetic
variation relevant for European population structure. Conse-
quently, approximating F3 by the first two or even 10 PCs
(figure 4b) only gives a coarse approximation of F3, and
from figure 4c we see that many higher PCs contribute to
F3 statistics.

However, many populations, particularly from Western
Asia and the Caucasus, on the right-hand side of the
plot, fall outside the circle. This allows us to immediately
conclude that their F3-statistics must be positive, and
we should not consider them as a mixture between
Sardinians and Fins.
(d) Outgroup-F3-statistics as projections
A common application of F3-statistics is, given an unknown
sample XU, to find the most closely related population
among a reference panel (Xi) [63]. This is done using an out-
group-F3-statistic F3(XO; XU, Xi), where XO is an outgroup.
The reason an outgroup is introduced is to account for differ-
ences in sample times and additional drift in the reference
populations (figure 5a). The outgroup-F3-statistic F3(XO; XU,
X3) represents the branch length from XO to the common
node between the three samples in the statistic, and the
closer this node is to XU, the longer the branch and hence
the larger the F3-statistic.



–0.02 0.02 –0.02 0.02 –0.02 0.02 –0.02 0.02 –0.02 0.02 –0.02 0.02

10
9
8
7
6
5
4
3
2
1

PC

10987654321
PC

0.040.06

0.04

0.02

0

0.03

0.02

0.01

0

f3 (Mbuti; Sardinian, X)

f3
 (

M
bu

; S
ar

, X
)

ap
pr

ox
. f

3

0.02 0.04 0.06

AA Basque GujaratiD Masai Papuan Surui

0.10

0.05

–0.05

–0.10

–0.1 0 0.1 0.2 –0.1 0 0.1 0.2

0

0.10

0.05

–0.05

–0.10

0

PC1

f3 (X, Han; Sardinian, Mbuti)

(X; Sardinian, Mbuti)

(b)(a)

(c) (e)

PC
2

re
si

du
al

 P
C

1

Figure 6. PCA and F-statistics for the World dataset. (a) Visualization of outgroup-F3-statistic F3(Mbuti; Sardinian, X ) on a PCA biplot. The colour of points corre-
spond to the value of the F3-statistic, with brighter yellows indicating higher values, i.e. higher similarity to Sardinians. The F3-projection axis is given by a black
line, the projection of populations onto this axis by thin grey lines. In the full allele frequency space, these projection are orthogonal to the axis. (b) Projection along
the axis Sardinian-Mbuti (X-axis), and PCA on residual of this projection (PC1 on Y-axis, PC2 as colouring). (c) Approximation of F3(Mbuti; Sardinian, X ) using the
first two (blue) and first 10 (red) PCs, respectively. (d ) Contributions of first 10 PCs to all statistics of the form F3(Mbuti; Sardinian, X ). (e) Contributions of the first
ten PCs to select F4-statistics. (Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20200413

8

Tomake sense of outgroup-F3-statistics in the PCA context,
I use the association of F3-statistics to projections (equation 2.5):
on aPCAplot,we canvisualize thisF3-statistic as theprojection
of the vector Xi−XO onto XU −XO

projXU�XO
ðXi � XOÞ ¼ F3ðXO; XU , XiÞ XU � XO

F2ðXO; XUÞ :

Of the right-hand-side terms, only the F3 term depends on
the Xi. The fraction can be thought of as a normalizing con-
stant, so the F3-statistic is proportional to the length of the
projected vector. This means that the outgroup-F3-statistic is
largest for whichever Xi projects furthest along the axis
from the outgroup to the unknown population; in figure 5,
this is X3.
(i) Example
In figure 6a, I use the World dataset to visualize the out-
group-F3-statistic F3 (Mbuti; Sardinian, Xi), in i.e. a statistic
that aims to find the population most closely related to Sardi-
nian (a Mediterranean island), assuming the Mbuti are an
outgroup to all populations in the dataset. On a PCA, we
can interpret this F3-statistic as the projection of the line seg-
ment from Mbuti to population Xi onto the line through
Mbuti and Sardinians (black line). For each population, the
projection is indicated with a grey line. In the full data
space, this line is always orthogonal to the segment Mbuti-
Sardinian, but on the plot (i.e. the subspace spanned by the
first two PCs), this is not necessarily the case. The colouring
is based on the F3-statistic calculated from all the data, with
brighter values indicating higher F3-statistics. In this case,
the first two PCs approximate the F3-statistic very well: par-
ticularly, the samples from East Asia and the Americas
project almost orthogonally, suggesting that most of the gen-
etic variation relevant for this analysis is captured by these
first two PCs. We can quantify this and find that the first
two PCs slightly underestimate the absolute value of F3
(figure 4c), but keep the relative ordering. I also find that
many PCs, e.g. PCs 3–5, 7 and 10, have almost zero contri-
bution to all F3-statistics (figure 4d ), PCs 6, 8 and 9 having
a similar non-zero contribution for almost all statistics,
likely because these PCs explain within-African variation.
(e) F4-statistics as angles
One interpretation of F4 on PCA plots is similar to that of F3:
as a projection of one vector onto another, with the difference
that now all four points may be distinct. F4-statistics that cor-
respond to an internal branch in a tree (as in figure 1c) can be
interpreted as being proportional to the length of a projected
segment on a PCA plot, again with the caveat that we need to
scale it by a constant. If the F4-statistic corresponds to a
branch that does not exist in the tree (figure 1d ), then, from
the tree interpretation, we expect F4(X1, X2; X3, X4) = 0 imply-
ing that the vectors X1−X2 and X3−X4 are orthogonal to
each other, i.e. that X1 and X2 map to the same point on
the projection axis X3X4. In the case of an admixture graph,
this is no longer the case: Both population Xy and Xx in
figure 2d do not map to the same point as X1 or X2 do,
implying that statistics of the form F4(X1, Xx; X3, X4)≠ 0.

Since F4 is a covariance, its magnitude lacks an interpret-
ation. Therefore, commonly, correlation coefficients are used,
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as there, zero means independence and one means maximum
correlation. For F4, we can write

CorðX1 � X2, X3 � X4Þ ¼ F4ðX1, X2; X3, X4Þ
X1 � X2k k X3 � X4k k2

¼ cosðfÞ, ð4:2Þ
where ϕ is the angle between X1−X2 and X3−X4. Thus, inde-
pendent drift events lead to cos (ϕ) = 0, so that the angle is
90�, whereas an angle close to zero (cos (ϕ)≈ 1) means most
of the genetic drift on this branch is shared.
Figure 7. Admixture proportion estimates. (a) Visualization of the admixture
graph scenario used to estimate the proportion α contributed from X1 to XX,
using references R1 and R2. The full grey line corresponds to the projection
axis, and the dotted grey lines correspond to the branches ignored in the
projections. The admixture proportion α corresponds to the length of the
dashed red line relative to the black line between X1 and X2. (b) The
same scenario, but in Euclidean space, X1, X2 and XX align on a line both
in the (low-dimensional approximation of the) residual space and on the pro-
jection axis. (Online version in colour.)
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(i) Example
To illustrate the angle interpretation, I return to the Western
Eurasian data. The PCA biplot shows two roughly parallel
clines (figure 4a), a European gradient (from Sardinian to
Finnish and Chuvash), and an Asian cline from Arab popu-
lations (top right) to the Caucasus (bottom right). This is
quantified in figure 4d, where I plot the angle corresponding
to F4(X, Saudi; Sardinian, Finnish). For most Asian popu-
lations, using two PCs (green points) gives an angle close
to zero, corresponding to a correlation coefficient between
the two clines of r > 0.9. Just adding a third PC (blue), how-
ever, shows that the clines are not, in fact, parallel, and the
correlation for most populations is low. The finding that
three PCs are necessary to explain this data can also be
seen from the spectrum of these F4-statistics (figure 4e),
which have high contributions from the first three PCs.
Both results indicate that adding a third PC would give a
much better description of the data, and the relationship
between within-European variation to Saudis in particular.
( f ) Other projections
So far, I used equation (2.9) to interpret F-statistics on a
PCA plot, but the argument holds for any orthonormal pro-
jection in the data space. This is useful in particular for
estimates of admixture proportions, which are often done
as projections into a low-dimensional reference space defined
by F-statistics [38,40,49,53].

For example, a common way to estimate admixture pro-
portion α of X1 is the F4-ratio

a ¼ F4ðR1, R2; XX, X1Þ
F4ðR1, R2; X2, X1Þ ¼

proj½R1�R2 �XX � X1

proj½R1�R2 �X2 � X1
, ð4:3Þ

which can be interpreted as projecting XX−X1 and X2−X1

onto R1−R2, and the ratio of the lengths gives the proportion
of Xx contributed by X1 [49].

The admixture graph motivating this statistic is visualized
in figure 7a, and the PCA-like interpretation in figure 7b. In
both panels, the solid grey line is the projection axis, and
the dotted line gives the residual, i.e. the branches or genetic
variation that is ignored by the projection.

The PCA-like projection can be used to visualize admix-
ture proportions, as the horizontal position of XX relative to
X1 and X2 (red dashed line versus black line) directly rep-
resents the estimated admixture proportion α. In addition,
the residuals can be used to verify assumptions of the admix-
ture graph model. In particular, since XX arises as a linear
combination of X1 and X2, if admixture is recent we might
expect the three populations to be collinear; if they are
not this means that either of the populations experienced
gene flow from some other population which might bias
results [53].

In addition, the external tree branches X1−X1
0 and X2−

X2
0 are disjoint which means they should be orthogonal. On a

one-dimensional residual plot (figure 7b), this cannot be
verified, but the statistic

F4ðX1, X0
1; X2, X0

2Þ ¼ 0 ð4:4Þ
can be calculated for all samples.

(i) Example
I use the World dataset as an example, using Sardinian and
Mbuti as references populations (figure 6b). The data are the
same as in the PCA (figure 6a), but it is now rotated such
that the axis between the reference population (black line in
figure 6a) is aligned with the x-axis. For any pair of populations
X1 X2, their horizontal projection distance reflects F4 (Sardinian,
Mbuti; X1, X2) and the relative horizontal distance corresponds
exactly to F4-ratio admixture estimates. For many sets of popu-
lations, this is of course not sensible, and just looking at the first
PC of the residual shows many examples where the populations
are not collinear. For example, on the x-axis, the South Ameri-
can Surui are between Papuans and Georgians, but since the
Surui clearly are not on the line between Papuans and
Georgians, this cannot be the result of admixture.
5. Discussion
Particularly for the analysis of human genetic variation
with a large number of individuals with heterogeneous
relationships, F-statistics are a powerful tool to describe
population genetic diversity. Here, I show that the geometry
of F-statistics [49] leads to a number of simple interpretations
of F-statistics on a PCA plot.

(a) The geometry of admixture
Previous interpretation of PCA in the context of population
genetic models have focused on explicit models and aimed
at directly interpreting the PCs in terms of population genetic
parameters [16,23,46,48]. My interpretation here is different in
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that the utility of PCA is to simplify the geometry of the data,
rather than attributing meaning to the produced PCs. One
consequence is that the results here are less directly impacted
by sample ascertainment, sample sizes or number of PCs,
which are common concerns in the interpretation of PCA
[23,46–48]; adding more PCs will provide a successively
better approximation of the F-statistics.

The two datasets I analysed here suggest that two PCs (for
the World dataset), and three PCs (for the Western Eurasian
data), respectively, already provide a very good approximation
for F4-statistics (figures 4e and 6e), reflecting the observation
that frequently the first few PCs provide a good approximation
of the overall population structure. On the other hand, for
admixture F3-statistics, more PCs are needed (figure 4b). This
is likely due to PCA approximating the global structure in
the dataset; statistics that only involve distantly related popu-
lations will only require a few PCs for good approximations,
whereas statistics that contain a term measuring local vari-
ation, such as F3-statistics or F4 between closely related
populations will require more PCs for good approximations,
because local variation is often found on higher PCs.

My focus on the geometry of the data allows for direct
and quantitative comparisons between F-statistic-based
results and PCA biplots. As PCA is often ran in an early
step in data analysis, this may aid in generation of hypotheses
that can be more directly evaluated using generative models,
typically using a lower number of populations. It also allows
reconciling apparent contradictions between F-statistics and
PCA plots. In many cases, differences between the two data
summaries will be due to variation on higher PCs. In this
case, plotting additional PCs, or further subsetting the data
to a more local set of populations seems prudent.

(b) Assumptions
In addition to the selection of PCs, the other cause for dis-
agreements between F-statistics and PCA are differences in
assumptions. The version of PCA I use for my analyses is
chosen such that the similarities to F-statistics are maximized.
In particular, I assume here that (i) we have no missing data,
(ii) SNPs are equally weighted, (iii) that individuals can be
grouped into populations and (iv) we use estimated allele fre-
quencies. By contrast, most data analyses have to grapple
with missing data, SNPs are often weighted according to
their allele frequencies, and observed, individual-level
genotypes are used as the basis of PCA.

(i) Missing data
The matrix decompositions underlying PCA assume com-
plete data, and thus cannot be used when some data is
missing [50]. As missing data are a very common practical
problem, there is a large number of algorithms for imputing
missing data. The simplest approach is to replace missing
data with zeros (as implemented e.g. in [30]), but more soph-
isticated algorithms exist to ‘learn’ the missing values from
surrounding data (e.g. [64,65]). By contrast, missing data in
F-statistics is most commonly handled by estimating a stan-
dard error by resampling along the genome [40], and so
missing data results in larger standard errors.

These strategies are distinct, and reflect the original
purposes of the approaches. For statistical tests based on
F-statistics, we wish to isolate a set of three or four populations
and get our best guess based on just that subset of data. By
contrast, methods for PCA can leverage the additional individ-
uals, and thus will likely result in more accurate estimates.

However, the way we handle missing data is not tied into
the method. For example, we could evaluate the robustness of
a PCA by resampling data. Similarly, the theory developed
here suggests that we could obtain accurate F-statistics with
missing data by first performing a PCA using a method
that handles missing data, and then calculate F-statistics
from these PCs.

(ii) Normalization
In PCA, SNPs are typically normalized to have expected var-
iance of one, a step that is omitted in calculating F-statistics
[40]. The F-statistic framework assumes that each SNP is an
identically distributed (but not independent) random variable,
which holds regardless of weighting. Thus, normalization of
SNPs is largely a matter of convention; for F-statistics the depen-
dency on additional samples (through mean allele frequencies)
is often unwanted, but could be advantageous for tools that aim
to do joint inference from many F-statistics such as qpAdm

[38,40]. As genetic differentiation between human populations
is low, the normalization used may matter little in practice,
but could be explored in future work [28].

(iii) Estimated versus observed allele frequencies
The third difference between F-statistics and PCA is on the
usage of estimated allele frequencies versus individual-based
genotypes. The fact that PCA does not distinguish between
sampling error and the underlying structure is a well-known
drawback of PCA, and applying the theory presented here
to individual-based PCAwould result in F-statistics that incor-
porate some sampling noise. Probabilistic PCA is one class of
approaches that aim to separate the population structure from
sampling noise (e.g. [66]). It seems likely that probabilistic PCA
would yield a representation of the data that is more closely
aligned with F-statistics than regular PCA.

(iv) Individual versus population-based analyses
The final issue is that PCA is commonly run on individual-
based data, whereas F-statistics often group individuals into
populations. However, population-based PCA has been the
default in the past [1], and F-statistics are often applied to indi-
viduals (e.g. [25,67,68]). Often, an individual-based PCA is
used to justify grouping individuals into populations; i.e. indi-
viduals that form a tight cluster on a PCA plot have similar
relationships to everyone else in the dataset, and can thus be
treated as a unit of analysis. Thus, if the assumptions are satis-
fied, F-statistics for individual-based and population-based
analyses are expected to be very similar. PCA, on the other
hand, is strongly impacted by the number of individuals
from each population (e.g. [47]); as each individual isweighted
equally, variation related to populations with many samples
will be overrepresented on the first PCs.

(v) Summary
Motivated by F-statistics, the PCAs I consider here are based
on estimated population allele frequencies, whereas most
genome-scale studies of human genetic variation use observed
individual-based allele frequencies that are normalized by
overall allele frequencies. Thus, some care will be required to
directly extend the interpretations developed here to individ-
ual-based PCAs. However, the differences are largely due to
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conventions, and particularly for studies where the description
of population structure is a major focus, results might be
easier to interpret if conventions regarding missing data,
normalization and estimation of allele frequencies are used
consistently between F-statistics and PCA.
publishing.org/journal/rstb
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(c) The apportionment of human diversity
Most genetic variation in humans is shared between all of us,
but the around 15% that can be explained by population
structure can be leveraged to study our history and diversity
in great detail [1,69,70]. For some datasets, it is possible to
predict an individuals’ origin at a resolution of a few hundred
kilometres [45,71], and direct-to-consumer-genetics compa-
nies are using this variation to analyse the genetic data of
millions of customers.

However, understanding, conceptualizing and modelling
this variation is far from trivial, particularly in a historical con-
text in which mistaken ideas about human variation have been
used to justify racist, eugenic and genocidal policies. Lewon-
tin’s landmark 1972 paper on the apportionment of human
genetic diversity was one of the first to quantify how little of
between-population genetic variation could be attributed to
‘racial’ continental-scale groupings [70]. Over the last five dec-
ades, this view has been corroborated, refined and extended
many times [1,72–74].

From a practical perspective, formulating hypotheses and
designing studies in terms of discrete populations with ‘uni-
form’ genetic backgrounds is often sensible, as it enables e.g.
prediction of phenotypes [75,76], inference of demographic
parameters, and schematic models of human genetic history
[40]. In a similar vein, when interpreting F-statistics in the
context of admixture graphs, we make the implicit assump-
tion that populations are discrete, related as a graph, and
that gene flow between populations is rare [38,40]. However,
these simplifications do come at a cost, both in terms of
model violations that may invalidate statistical results, and
in terms of deemphasizing that people do not rigidly fall
into predefined genetic groups.

In many parts of the world, and particularly at more local
scales, distinctions between populations begin to blur, and
everyone could be considered admixed to some degree [77].
This provides a challenge for interpretation, as most F3 and
F4-statistics will indicate departures from treeness. A naive
interpretation of the F-statistics from my Eurasian example
(figure 4a) would identify a substantial fraction of Europeans
as (significantly) admixed between Finnish and Sardinians.
By contrast, PCA reveals that the variation in this dataset is
not due to a single event, and so an arguably better descrip-
tion of the dataset is one where Finnish and Sardinians lie on
opposite ends of a more gradually structured population.

Thus, a more general way we could think about model-
ling population structure using F-statistics is as identifying
orthogonal drift components. In a tree model, orthogonality
arises because changes in allele frequencies on distinct
branches of the tree are independent from each other (and
high-dimensional random vectors are almost surely orthog-
onal). The classical model of admixture as a result of
contact between long-separated and isolated populations is
one of potentially many demographic models that results in
non-orthogonality; gene flow of any kind will result in corre-
lated genetic drift, and hence in non-zero F3 or F4-statistics.
Thinking of population structure in terms of orthogonal
components may be abstract, but it is quite similar to how
PCA is sometimes interpreted. In a PCA, we frequently make
the informal observation that a particular PC is associated
with variation within a specific region, or separates out distinct
populations [1]. These associations are not exact, and
are impacted e.g. by the size and composition of the analysed
dataset. On the other hand,we could use F-statistics to formally
test orthogonality, or to quantify correlations. Motivated by
PCA, we could set up F4 as tests of orthogonality due to
either space (distinct populations evolve independently) or
scale (i.e. between-population diversity is independent of
within-population diversity). This slight generalization of F-
statistics could allow us to reframe many questions about
gene flow or divergence that are currently asked as tests of
orthogonality, without assuming that lineages or admixture
events are discrete.
6. Conclusion
F-statistics and PCA have both proven to be tremendously
useful to study, visualize and test aspects of population
structure. Here, I show that these approaches are closely
connected, and highlight a few implications. First, PCA
and F-statistics should never be treated as independent
analyses. If they agree, this can be used as a sanity check
that no major assumptions about, e.g. population groupings,
are violated, but the underlying biological relationships
investigated are the same in both approaches.

If sufficiently many PCs are considered, both F3 and F4-
statistics do have simple interpretations in PCA space. If
used as a test for admixture, F3 corresponds to testing
whether the admixed population lies in an n-sphere between
the potential source population in PCA space. This result
makes the informal notion that an admixed population
should lie between its sources on a PCA plot more precise.
Furthermore, I show that while it is necessary for an admixed
population to lie between its sources on a PCA plot, this is
not a sufficient condition and unadmixed populations may
also project inside the n-sphere. By contrast, if a population
falls outside the n-sphere on any PCA plot, this is sufficient
to determine that this population has a positive F3 statistic.

Interpretations of the outgroup-F3-statistics and F4-statistics
in a PCA framework rely heavily on the geometric concepts of
projections and orthogonality: in a tree or admixture graph fra-
mework,we can loosely interpretF4(A,B;C,D) as the overlap of
the path fromA to B onto the path from C toD, or equivalently
as the projection of A− B onto C−D; only edges shared
between the two paths will contribute non-zero amounts to
this statistic. This interpretation holds when we replace the
populations by points in PCA space, and enables us to study
populationmodelsbeyonddiscretegraphs. Thus, thegeometric
framework enables us to expand the application of F-statistics
beyond current uses, allows us to better understand the mean-
ing of these statistics and helps us to avoid overinterpretations,
particularly in cases when population structure is continuous.
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Appendix A. Derivations
Depending on a reader’s background in linear algebra, these
results may appear elementary; I include them here for refer-
ence and because they were not obvious to me at the onset of
this project.

(a) F-statistics are invariant under a change-of-basis
F2ðXi, XjÞ ¼

XS
l¼1

�ðxil � mlÞ � ðx jl � mlÞ
�2 ¼ F2ðYi, YjÞ

¼
XS
l¼1

�X
k

LklPik �
X
k

LklP jk
�2

¼
XS
l¼1

X
k

LklðPik � PjkÞ
 !2

¼
XS
l¼1

X
k

L2klðPik � PjkÞ2 þ 2
X
k=k0

LklLk0 lðPik � Pjk0 Þ2
 !

¼
X
k

XS
l¼1

L2kl

 !
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

1

ðPik � PjkÞ2

þ 2
X
k=k0

XS
l¼1

LklLk0l

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0

ðPik � P jk0 Þ2

¼
X
k

ðPik � PjkÞ2: ðA 1Þ

In summary, the first row shows that F2 on the centred
data will give the same results (as distances are invariant
to translations); in the second row, we apply the PC
decomposition. The third row is obtained from factoring
out Llk. Row four is obtained by multiplying out the sum
inside the square term for a particular l. We have k terms

when for k
2

� �
terms for different ks. Row five is obtained

by expanding the outer sum and grouping terms by k.
The final line is obtained by recognizing that L is an ortho-
normal basis, where dot products of different vectors have
lengths zero.

Note that if we estimate F2, unbiased estimators are
obtained by subtracting the population heterozygosities Hi,
Hj from the statistic. As these are scalars, they do not
change above calculation.
(b) The region of negative F3-statistics is an n-ball
Without loss of generality, assume that X1 = (r, 0, 0,…) and
X2 = (−r, 0, 0,…), and let us assume that Xx has coordinates
(x1, x2,…, xS). Assuming F3(Xx; X1, X2) = 0, equation (4.1)
becomes

2F3ðXx; X1, X2Þ ¼ Xx � X1k k2þ Xx � X2k k2� X1 � X2k k2¼ 0

¼ ðx1 � rÞ2 þ
XS
i¼2

x2i

" #
þ ðx1 þ rÞ2 þ

XS
i¼2

x2i

" #
� 4r2

¼ 2
XS
i¼1

x2i þ r2 þ x1r� x1r

" #
� 4r2

F3ðXx; X1, X2Þ ¼ �r2 þ
XS
i¼1

x2i ¼ �r2 þ Xxk k2¼ 0,

ðA 2Þ
which is the equation of an n-sphere with radius r and centre
at the origin, as assumed from the placing of X1 and X2. Now,
assume that F3 is negative, i.e. F3(Xx; X1, X2) =−k < 0. Moving
r2 to the left, we obtain

r2 � k ¼ Xxk k2, ðA 3Þ
which is another n-sphere with a smaller radius, showing that
all points inside the n-sphere will have negative F3 values.
(c) If a population lies outside the circle of this n-sphere
in any two-dimensional projection, F3 is positive

Assume the centre of the n-sphere C = (X1 +X2/2) = (c1, c2,…,
cS), and Xx = (x1, x2,…, xS). Then,

F3ðXx; X1, X2Þ ¼ Xx � Ck k2�r2

¼ ðx1 � c1Þ2 þ ðx2 � c2Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
.r2

þ
XS
i¼3

ðxi � ciÞ2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�0

�r2

. 0: ðA 4Þ
The condition (x1− c1)

2 + (x2− c2)
2 > r2 is satisfied wheneverXx

is outside the circle obtained from projecting the n-sphere on
the first two dimensions. An analogous argument applies for
any low-dimensional representation.
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