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Abstract  

When we listen to speech, our brain’s neurophysiological responses “track” its acoustic features, 

but it is less well understood how these auditory responses are modulated by linguistic content. 

Here, we recorded magnetoencephalography (MEG) responses while subjects listened to four 

types of continuous-speech-like passages: speech-envelope modulated noise, English-like non-

words, scrambled words, and narrative passage. Temporal response function (TRF) analysis 

provides strong neural evidence for the emergent features of speech processing in cortex, from 

acoustics to higher-level linguistics, as incremental steps in neural speech processing. Critically, 

we show a stepwise hierarchical progression of progressively higher order features over time, 

reflected in both bottom-up (early) and top-down (late) processing stages. Linguistically driven 

top-down mechanisms take the form of late N400-like responses, suggesting a central role of 

predictive coding mechanisms at multiple levels. As expected, the neural processing of lower-level 

acoustic feature responses is bilateral or right lateralized, with left lateralization emerging only for 

lexical-semantic features. Finally, our results identify potential neural markers of the computations 

underlying speech perception and comprehension. 
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INTRODUCTION 

Human language is known for its hierarchical structure, and in the course of speech perception and 

understanding, the brain first performs computations on the acoustic waveform, the results of 

which further undergo processing through various intermediate stages, integrating both bottom-up 

and top-down mechanisms, leading ultimately to semantic processing. Prior research has shown 

that these many neural processing stages align with at least some levels in the speech and linguistic 

hierarchy1–3, including acoustic analysis, phonological analysis,  morphemic analysis, lexical 

(word-level) processing, syntactic structures, and semantic (meaning-level) processing. However, 

the specific temporal dynamics and how these processes emerge during discourse level speech 

processing are still not well understood. When the information passed to neural intermediate 

processing stages is insufficient or incompatible with the subsequent processing, it can disrupt the 

information flow, indirectly affecting both lower and higher-level stages. Identifying the neural 

bases underlying these stages can provide insights about the intricate nature of auditory language 

processing. In this study, we aim to investigate the progression of the temporal dynamics of speech 

processing, and its reorganization in response to changes in the linguistic content of the sensory 

input.  

Previous research has shown numerous brain regions that are sensitive to specific aspects of 

language understanding4–6. However, focus on speech-based language understanding has been 

limited, compared to text-based language understanding. The inherently limited temporal 

resolution of functional magnetic resonance imaging (fMRI) poses challenges in investigating 

quickly varying auditory responses and understanding the fast temporal dynamics of speech 

comprehension. Studies using imaging modalities with higher temporal resolution, such as 

magnetoencephalography (MEG) and electroencephalography (EEG), face different issues, such 

as confounds due to different stimulus lengths (durations), which has led many investigators to 

instead focus on processing individual words, rather than capturing the broader aspects of full 

spoken language processing (for a review see 7). Recently, however, advances in neural speech-

tracking measures such as the temporal response function (TRF) paradigm, have allowed 

investigators to study time-locked neural responses to many different speech features, and in more 

ecologically valid settings including long duration continuous speech. These neural speech-

tracking measures are well established for acoustic properties of the speech such as the speech 
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envelope (and envelope onset), and much is known about how they are modulated separately by 

top-down and bottom-up mechanisms8,9. Furthermore, recent research has revealed that many 

linguistic (non-acoustic) elements of speech, e.g., sub-lexical, lexical, lexico-semantic and 

context-based properties, also demonstrate neural tracking1,2,10 above and beyond auditory neural 

tracking. How these tracking measures depend on the level of linguistic content of the speech, 

however, is still poorly understood, e.g., for very different levels of available semantic information. 

Furthermore, roles of top-down vs. bottom-up processing mechanisms, provide complementary 

insights into how the brain processes speech and language, may carry significant clinical 

implications for listeners who experience difficulty processing speech, e.g., older adults.  

To answer these questions, we employed magnetoencephalography (MEG) to record the neural 

responses of listeners presented with four different kinds of speech material (Fig. 1(A)). In addition 

to ordinary narrative speech, we also presented word-scrambled narrative speech (with word-level 

semantic content but no more), and narrated non-words (which sounds like speech but with no 

semantic information whatsoever). Finally, we also employed speech envelope-modulated noise, 

which has the same prosody and rhythm of ordinary narrative speech, but does not sound like 

speech in any other way, and is entirely unintelligible even at the phoneme level. In this way each 

type of passage was designed to neurally progress through the brain up to a specific level in the 

hierarchy of speech processing and stop there: acoustic processing (for speech modulated noise), 

phoneme and word-boundary identification (narrated non-words), word meaning (scrambled 

narration), and full construction and processing of structured meaning (narrative), respectively. All 

four stimulus types were generated using Google text to speech synthesizer API11 and exhibited 

similar accent, speech-like prosody, and rhythm across passages (Figure S6). The speech envelope-

modulated noise was prepared by using the envelope of the synthesized speech to then modulate 

noise (with a speech-shaped spectrum), giving the noise a speech-like, varying rhythmicity. The 

non-word passages lack both lexical meaning and syntactic structure, somewhat resembling 

listening to a different language but maintaining the same accents, phonotactics, and prosody as 

the narrative and scrambled word passages. The scrambled word passages were constructed from 

narrative passages but with the words randomly permuted to eliminate both syntactic and 

contextual relationship between words, and then spoken with a natural prosody. The narrative 

passages, on the other hand, were linguistically well constructed with full structured meaning. 
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Audio examples of these passage types can be listened to at  https://dushk88.github.io/progression-

of-neural-features/. 

Using multiple TRF (mTRF) analysis, with different TRFs contributing simultaneously for each 

respective speech feature, from acoustic levels to contextual levels (gammatone envelope 

spectrogram, gammatone onset spectrogram, phoneme onset, word onset, phoneme surprisal, 

cohort entropy, unigram (context-free) word surprisal, and contextual word surprisal), we 

investigate how different feature representations evolve as the brain steps through the processing 

levels (Fig. 1(B)). Analogous to event related potentials (ERPs), the TRF is a continuous signal 

which exhibits the neural encoding of speech feature over time (typically over hundreds of 

milliseconds), where peaks of different latencies indicate separate processing stages. We 

hypothesize that the ascending brain processing stages will show emergent features, from acoustic 

to sentence-level linguistic, as incremental steps in the processing of the speech occurs.  Our 

findings support these hypotheses but additionally find that many speech features require more 

than one stage of processing: early processing which is primarily bottom-up, and late processing 

which is primarily top-down (consistent with the corrections that may be required for predictive 

coding models, analogous to generalized N400 ERP responses). We also confirm that hemispheric 

lateralization varies with speech feature: lower-level (more acoustic) processing generally 

manifests bilaterally or with a weak right hemisphere advantage, whereas left-lateralization 

dominates for lexico-semantic processing. Lastly, we demonstrate how the temporal dynamics of 

each feature processing is modulated by the linguistic content of the stimuli.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2024. ; https://doi.org/10.1101/2024.02.02.578603doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578603
http://creativecommons.org/licenses/by-nc/4.0/


 5 

 
Fig. 1. Overview of the study design and analysis framework. (A). Examples of the four 

stimulus types. Participants (30 younger adults) listened to 1-minute-long speech passages 

of each passage type (32 passages total) while magnetoencephalography (MEG) brain 

activity was recorded. All stimuli had similar prosody and rhythm. Speech-modulated noise 

(bottom) is unintelligible and its spectro-temporal characteristics are shown in the bottom 

row. (B). Multivariate temporal response functions (mTRFs) were used to model the brain 

activity at different levels of speech representations and at each current dipole. Orthographic 

and phonemic transcriptions aligned with a sample acoustic waveform are shown for 

reference. Speech representations includes acoustic features (8-band auditory gammatone 

spectrogram; acoustic envelope and acoustic onset), sub-lexical features (phoneme onset, 

phoneme surprisal and cohort entropy) and lexical features (word onset, unigram word 

surprisal and contextual word surprisal).              

 

RESULTS  

Emergent features of speech processing  

The present study first aimed to investigate the emergence of neural speech processing in response 

to varying levels of speech and linguistic information in the sensory input, by testing which speech 

representations are tracked by the brain response for each passage type. The test for significance 

of each speech representation (predictor) was done by comparing explained variance within pairs 

of models, one with all predictors included and the other for which the test predictor (speech 
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representation of interest) was excluded; the test predictor was denoted as significant if the 

difference in explained variance was statistically significant. The full model employed for passages 

using speech-modulated noise and non-words included predictors for: gammatone envelope 

spectrogram, gammatone onset spectrogram, phoneme onset, word onset, phoneme surprisal, and 

cohort entropy. The model for scrambled word passages additionally included unigram word 

surprisal, and for narrative passages additionally incorporated both unigram word surprisal and 

contextual word surprisal. For the non-word passages, neither unigram nor contextual word 

surprisal could be applied as there were no real words. In the scrambled word passages, where 

context does not provide meaningful cues, contextual word surprisal collapsed to the unigram word 

surprisal (see Methods, predictor variables); therefore only the unigram word surprisal was used, 

since the explained variance by contextual word surprisal in the absence of coherent meaning is 

more conservatively ascribed to that of unigram surprisal. Statistical summary tables are reported 

in Table S1. 

Model comparison results for all passage types are illustrated in Fig. 2. In the modulated noise 

condition (first column), only the acoustic features, specifically the gammatone envelope 

spectrogram	(𝑡!"# = 6.92, 𝑝 < 0.001) and gammatone onset spectrogram (𝑡!"# = 5.79, 𝑝 <

0.001), contributed significantly to the observed neural data variance explained, i.e., significantly 

improving the model fit over the test model. Conversely, none of the linguistic predictors, phoneme 

onset (𝑡!"# = 3.30, 𝑝 = 0.07), word onset (𝑡!"# = 2.46, 𝑝 = 0.91), phoneme surprisal (𝑡!"# =

1.51, 𝑝 = 1.0), and cohort entropy(𝑡!"# = 1.82, 𝑝 = 0.99) showed a significant contribution to 

the model’s predictive power. However, in the presence of low-content speech stimuli, whether 

non-words (second column) or scrambled words (third column), in addition to these acoustic 

features, linguistic segmentation responses (phoneme and word onset) and statistically based 

linguistic features (phoneme surprisal and cohort entropy) also significantly contributed to the 

model’s predictive power (non-words: gammatone envelope (𝑡!"# = 11.90, 𝑝 < 0.001), 

gammatone onset (𝑡!"# = 9.37, 𝑝 < 0.001), phoneme onset (𝑡!"# = 7.25, 𝑝 < 0.001), 

phoneme surprisal (𝑡!"# = 5.60, 𝑝 < 0.001), cohort entropy (𝑡!"# = 6.83, 𝑝 < 0.001), word 

onset (𝑡!"# = 6.90, 𝑝 < 0.001); scrambled words: gammatone envelope (𝑡!"# = 10.97, 𝑝 <

0.001), gammatone onset (𝑡!"# = 10.68, 𝑝 < 0.001), phoneme onset (𝑡!"# = 6.43, 𝑝 <

0.001), phoneme surprisal (𝑡!"# = 7.13, 𝑝 < 0.001), cohort entropy (𝑡!"# = 8.60, 𝑝 < 0.001), 

word onset (𝑡!"# = 6.17, 𝑝 < 0.001)). These results indicate that the acoustic features 
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represented by the gammatone envelope and onset spectrograms are encoded in the brain 

regardless of the intelligibility of the sensory input, whereas linguistic features are tracked by the 

brain only when the linguistic units or linguistic unit boundaries are intelligible, regardless of any 

higher-level meaning.   

Furthermore, model comparisons conducted on both scrambled (𝑡!"# = 6.67, 𝑝 < 0.001) and 

narrative (𝑡!"# = 6.48, 𝑝 < 0.001) passages revealed that when the words are individually 

meaningful, and irrespective of the structured coherence of the passages, the brain significantly 

tracked unigram (absent of context) word surprisal. This suggests that the brain is sensitive to the 

overall predictability of individual words, regardless of the overall coherence of the passage. 

Additionally, in narrative passages (fourth column) where structured contextual meaning was 

present, the brain exhibited substantial additional tracking of contextual word surprisal (𝑡!"# =

5.48, 𝑝 < 0.001), over and beyond unigram word surprisal. Model comparison between unigram 

and contextual word surprisal in narrative passages additionally verified that contextual word 

surprisal is better encoded in the brain than unigram surprisal (𝑡!"# = 4.70, 𝑝 = 0.02). These 

results indicate that the brain integrates both context-free and contextual level information during 

speech understanding, but contextual-level information is more strongly represented.  

The anatomical distribution of the neural sources processing this hierarchy of speech processing 

was observed in locations consistent with an origin in Heschl’s gyrus (HG), spreading to the 

superior temporal gyrus (STG) and much of temporal lobe (see Fig. 2). For higher-level linguistic 

features including phoneme surprisal, cohort entropy, word onset, unigram word surprisal, and 

contextual word surprisal, the feature representations additionally extended to left frontal regions.   
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Fig. 2. Emergence of hierarchical speech processing. Anatomical brain plots visualize 

the cortical regions where each respective predictor significantly contributes to the model 

fit. Colored squares above the anatomical plots indicate average explained variance over 

frontal, temporal, and parietal regions. Black arrows below anatomical plots indicate 

significant hemispheric asymmetry. The first two rows show that acoustic features are 

represented in the brain irrespective of the passage type and intelligibility. Later rows show 

that linguistic features are tracked only when the linguistic feature boundaries are 

intelligible, irrespective of any higher-level (e.g., sentential meaning). When the context 

supports higher-level meaning above and beyond that of individual words, contextual word 
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surprisal is additionally represented in the brain. Lower-level feature processing is more 

right-lateralized, while higher level feature processing is more left-lateralized.   

Lateralization of speech feature processing  

We also examined the lateralization of neural speech feature processing for each passage type and 

speech feature. Instances of statistically significant lateralization are indicated by arrows in Fig. 2. 

Lateralization varied depending on the passage type and specific speech feature. Overall, lower-

level speech feature processing exhibited a bilateral and right lateralized pattern (narrative: 

gammatone envelope (𝑡!"# = −5.04, 𝑝 < 0.001), envelope onset (𝑡!"# = −4.36, 𝑝 = 0.02), 

phoneme onset (𝑡!"# = −4.57, 𝑝 = 0.005)) in the sources spanning in most of the temporal lobe, 

whereas higher-level speech feature processing were more left lateralized (narrative: word onset 

(𝑡!"# = 3.21, 𝑝 = 0.02), unigram surprisal (𝑡!"# = 3.23, 𝑝 = 0.03), contextual surprisal 

(𝑡!"# = 3.30, 𝑝 = 0.02)) in superior temporal gyrus (STG), anterior temporal lobe and extending 

into frontal cortex. On the other hand, phoneme-level feature processing displayed a more bilateral 

pattern (narrative: phoneme surprisal (𝑡!"# = −2.01, 𝑝 = 0.82), cohort entropy (𝑡!"# =

2.38, 𝑝 = 0.63)). These results suggest distinct specialization of hemispheric regions for the 

processing of lower-level acoustic information vs. higher-level linguistic analysis. 

Interestingly, the non-word passages showed predominantly bilateral responses across the 

different speech features (gammatone envelope (𝑡!"# = 4.33, 𝑝 = 0.06), envelope onset (𝑡!"# =

−4.17, 𝑝 = 0.04), phoneme onset (𝑡!"# = 3.58, 𝑝 = 0.08), phoneme surprisal (𝑡!"# = 2.72, 𝑝 =

0.29), cohort entropy (𝑡!"# = 3.92, 𝑝 = 0.06), word onset (𝑡!"# = 2.58, 𝑝 = 0.39)), suggesting 

a more symmetrical hemispheric engagement of neural resources in non-word processing.   

Effect of context on progression of neural speech processes: early and late  

Neural responses obtained using MEG, with its fine-grained time resolution, may provide even 

greater insight from the temporal progression of cascading neural processes than from their 

anatomical locations. Having tested which types of speech-feature processing occurs in different 

contexts and in different anatomical regions, we then investigated how these contextual factors 

also influence the underlying neural mechanisms, associated with each the processing of speech 

feature, in the time domain. To this end, we utilized temporal response function (TRF) analysis 

that describes how the brain responds to each predictor over a range of latencies. To compare the 
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TRFs between passage types, TRFs magnitudes over the brain sources were aggregated. 

Analogous to event related potential (ERP) responses to punctate sounds, that exhibit distinct 

peaks at specific latencies characterized by their current polarity, so also do these TRFs, 

representing the direction and strength of the neural current response to each predictor, at various 

latencies. The dominant TRF peaks were identified and compared across passage types using 

repeated measures ANOVA (post hoc paired sample t-tests corrected for multiple comparisons 

using the false discovery rate method). To ensure unbiased TRF comparison across passage types, 

TRFs were generated from the same number of predictors. Peak latencies were also compared, and 

unless otherwise mentioned, no significant differences were found for latencies. Fig. 3, Fig. 4Fig. 

5 illustrate average TRFs and their main peaks, and the accompanying bar plots provide a 

comprehensive comparison across the different speech passage types. The results presented in 

these figures show either only left or right hemisphere responses, so as not to overwhelm the 

figures; full analysis results, however, are included in the supplementary materials (Table S2, S3, 

S4, S5, S6, S7, S8, S9 and Figure S2, S2, S3).  

Neural responses to acoustic features (Fig. 3) showed two prominent peaks: an early peak with a 

positive current polarity, and a late peak with a negative current polarity. These two peak latencies 

for the gammatone envelope were ~60 ms and ~120 ms respectively, while for the envelope onset 

feature, peak latencies were ~70 ms and ~150 ms (c.f. the early (P1) and late (N1) peaks of an 

auditory ERP). The late responses showed a predominantly right hemispheric lateralization (p < 

0.001). When comparing these two neural responses across passage types, we found that neural 

responses to speech passages were stronger compared to the non-speech modulated-noise (p < 

0.001). This effect was smaller for the right hemisphere early responses (left: early: d = 1.06, late: 

d = 1.120; right: early: d = 0.47, late: d = 1.20), and it was observed that the late peak was nearly 

absent in the modulated noise responses. When comparing the envelope onset responses among 

the speech passages, no significant differences were observed (p > 0.2). However, for envelope 

responses significant differences were found across speech passages in the left hemisphere. Early 

responses were smaller in narrative passages compared to scrambled and non-words (p < 0.001), 

whereas late responses were stronger in non-words compared to meaningful words (p < 0.02).   
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Fig. 3. Neural responses to acoustic features. (A). Gammatone envelope and (B). 

gammatone envelope onset responses. Left panels show the TRF magnitude aggregated 

over sources and subjects, by passage type. The TRFs exhibit an early positive and a late 

negative polarity peak indicated by  and  respectively. The right panel bar plots compare 

the peak amplitudes, first early then late, across passage types. Both early and late 

responses are stronger for speech compared to non-speech (noise). Only right hemisphere 

results shown (see supplemental Figure S2 for both hemispheres and individual data 

points). *p<0.05, **p<0.01, ***p<0.001 

The analysis of phoneme onset responses (Fig. 4A) also revealed a robust early positive polarity 

peak with ~70 ms latency; the substantially later peak at ~250 ms latency was noisy and not robust 

across subjects. When comparing the peak amplitudes across passage types, no significant 

differences were observed in the right hemisphere for late responses. In the left hemisphere, early 

responses were stronger for non-words compared to scrambled passages (p = 0.002).  
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Phoneme surprisal (Fig. 4B) also showed two prominent peaks: an early positive polarity peak at 

~70 ms and a late negative polarity peak at ~300 ms. Similar to phoneme onset responses, 

significant differences between passage types were found only in the left hemisphere. Both the 

early (p = 0.03) and late (p < 0.03) peaks were stronger in response to scrambled words compared 

to narrative and non-word passages.  

For cohort entropy responses (Fig. 4C), two main processing mechanisms were observed for the 

scrambled and narrative passages: an early positive peak at ~70 ms and a late negative peak at 

~380 ms. However, non-word passages showed a robust intermediate positive polarity peak at 

~200 ms. Therefore, three peaks were identified as early, middle and late responses. The early 

peak was stronger for non-words compared to scrambled (p = 0.01) and to narrative (p = 0.02), 

while the middle peak was stronger in non-words compared to meaningful words (p < 0.001). In 

contrast, the late peak was stronger in scrambled words compared to narrative (p = 0.009); 

additionally, this peak was delayed for non-words compared to meaningful words (p < 0.001). 

Finally, the early cohort entropy responses were left lateralized for meaningful words (p = 0.002), 

middle non-word responses (p = 0.03) and late scrambled word responses (p = 0.001).  

Analogous to cohort entropy responses, word onset responses (Fig. 4D) displayed two main peaks 

for both scrambled and narrative passages, while a middle peak was evident for non-words. Both 

early and middle peaks, occurring at ~100 ms and at ~200 ms respectively, exhibited a positive 

polarity. In contrast, the broad late peak at ~450 ms showed a negative polarity, resembling a 

characteristic N400 response. The early peak was stronger for meaningful words compared to non-

words (p < 0.001), whereas this effect was reversed for the middle peak (p < 0.001). Interestingly, 

no significant differences were observed between the scrambled and narrative passages for both 

early (p = 0.09) and middle (p = 0.07) peaks. Remarkably, the late peak exhibited greater strength 

in response to scrambled words compared to non-words and narrative passages (p = 0.003). 

Moreover, the late peak latency was significantly delayed in the progression from narrative to 

scrambled (by ~30 ms, p = 0.02) to non-words (by ~50 ms, p = 0.002). Additionally, consistent 

with the explained variance lateralization comparisons, the non-words early and middle responses 

showed bilateral response (p = 1.0), while in meaningful words, the early responses were left 

lateralized (p = 0.001).  
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In the above analysis, we conservatively separated the early and middle peaks in cohort entropy 

and word onset responses into different processing stages, due to the considerable temporal 

separation between them. However, because of the strong similarity between the peak amplitudes 

and polarity, we also performed a separate analysis where the positive peaks (early and middle) 

were grouped together. In this analysis no significant differences in peak amplitudes were observed 

across the passage types (cohort entropy: p > 0.08, word onset: p > 0.06); as expected, latency 

comparisons revealed that the peak is delayed in non-words compared to meaningful words (p < 

0.001). 

 

 
Fig. 4. Neural responses to sub-lexical and word onset speech features. (A). Phoneme 

onset, (B). phoneme surprisal, (C). cohort entropy, and (D) word onset (TRF magnitude 

plots and TRF peak bar plots as in Fig. 3). TRFs exhibit an early positive and a late negative 

polarity peak indicated by  and  respectively. For both word onset and cohort entropy 

responses, non-words showed a robust positive polarity peak between early and late peaks. 

These early, middle, and late peaks are indicated by , , and  respectively. The bar 

plots compare the peak amplitudes across passage types. Only left hemisphere results are 

shown here (see supplemental Figure S3 for both hemispheres and individual data points). 

Overall, the early responses were very differently modulated by the linguistic content. The 
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middle peak (second positive polarity peak) was strongest for non-words, while the late 

peak (negative polarity) was strongest for scrambled passages.  

Unigram word surprisal TRFs (Fig. 5A) showed two main peaks, comparable to the early and late 

peaks observed in the word onset responses. Consistent with the explained variance lateralization, 

both peaks showed left hemispheric dominance. When comparing the peak strength between the 

scrambled and narrative passages, no significant differences were found for the early peak (p = 

0.16). However, interestingly, the late peak in the scrambled word passages TRF was stronger (p 

< 0.001) and delayed by ~30 ms (p = 0.04) compared to narrative passages.  

The TRFs between unigram and contextual word surprisal within the narrative passage were also 

compared (Fig. 5B). Both predictors represent word surprisal and exhibit a similar range of values, 

facilitating a direct comparison. Both TRFs showed similar peaks at comparable latencies and were 

left lateralized (p < 0.001). In contrast to the similarity in peak timing, contextual word surprisal 

showed stronger amplitudes for both early (p < 0.001) and late (p < 0.001) peaks in both 

hemispheres when compared to unigram surprisal, indicating contextual information is more 

robustly tracked.  
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Fig. 5. Neural responses to lexico-semantic features. (A). Unigram surprisal (B). 

Unigram and contextual word surprisal for the narrative passage (TRF magnitude plots and 

TRF peak bar plots as in Fig. 3). The TRFs exhibit an early positive and a late negative 

polarity peak indicated by  and  respectively. Only left hemisphere results are shown 

here (see supplemental Figure S4 for both hemispheres and individual data points). The 

late unigram surprisal responses (N400-like) are stronger for scrambled passages compared 

to narrative passage. Contextual word surprisal responses are stronger compared to 

unigram surprisal responses. Note that the peak amplitudes for unigram surprisal in (A) 

and (B) are different, as the TRF model in (A) does not include a separate predictor for 

contextual surprisal. 

In summary, TRF peak amplitude and latency comparisons revealed that, as the speech features 

become more abstract and less directly related to the acoustics, both early and late neural 

mechanisms tend to be delayed. Acoustic feature responses to speech were stronger compared to 

non-speech. Notably, the early and late peaks exhibited different modulations by linguistic content, 

consistent with representing different neural mechanisms. Furthermore, the TRFs showed quite 

different peak latencies for non-words compared to meaningful words. For linguistic level features, 
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the late TRF peak amplitudes were stronger for scrambled words compared to non-words and 

narrative passages. Additionally, cohort entropy and word level late processing were delayed from 

narrative to scrambled to non-words. Peak lateralization analysis was consistent with explained 

variance lateralization analysis: lower-level feature processing was more right-lateralized, while 

higher level feature processing was more left-lateralized.  

 

DISCUSSION 

Using acoustic stimuli with similar prosody and rhythm but progressing from lacking any linguistic 

information (speech modulated noise) to possessing well-formed phonemes but no more (non-

words), to possessing well-formed words but no larger scale context (scrambled), to fully well-

formed linguistic information (narrative), allowed us to trace hierarchical neural processing as 

speech and speechlike sounds are eventually turned into language with full meaning in an 

ecologically valid setting. The TRF analysis enabled investigation of millisecond-level processing, 

revealing the timing and location of processes involved in the neural hierarchy as speech and 

language stages unfold. Critically, the TRF analysis also revealed distinctions between early 

processing stages, primarily driven by bottom-up processing. and later stages, allowing access to 

top-down driven processing. 

We first showed evidence that the brain separately represents hierarchical speech and linguistic 

structures, with emergence of these features from acoustics to contextual processing arising with 

the increasing contextual information necessary for language comprehension. When the acoustic 

stimuli were unintelligible, only acoustic information was processed; sub-lexical and lexical 

processing were not activated. As the stimuli progressed from non-speech to speech, from 

meaningless non-words to meaningful words, both sub-lexical and lexical level linguistic feature 

processing emerged12. These linguistic features included both segmentation and statistically based 

linguistic features. The processing differences between non-words and meaningful words were 

evident from both lateralization and TRF latency analysis, pointing to different neural mechanisms 

involved in lexico-semantic processing. Thus, consistent with previous work, our results 

demonstrate that regardless of the stimulus type, acoustic features such as acoustic envelope and 

envelope onsets, are represented as such in the brain9,13–16, reflecting a lower-level, initially 

bottom-up, sensory processing mechanism17. (Sub)-lexical features processes are activated only 
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when (sub)-lexical units are recognizable and intelligible for linguistic process activation. Moving 

from non-words to meaningful words, our findings show the emergence of lexico-semantic 

processes, all while avoiding multiple inherent confounds of using an incomprehensible foreign 

language18,19. While these studies using comprehensible and incomprehensible language have 

shown that higher level word features (word unigram surprisal, word entropy, and contextual word 

surprisal) are not encoded for incomprehensible language, the explicit quantification of differences 

between non-words and meaningful words was not conducted in our models. This is due to the 

unavailability of unigram surprisal for non-words. Any unigram surprisal defined for non-words 

would be uniform across all non-words, and therefore identical to word onsets, and could not 

significantly account for more variance over and beyond the word onset predictor already included. 

Moving from scrambled words to narrative passages, our results also show the emergence of 

context-based word surprisal processing, indicating that the brain incorporates context to predict 

the structured meaning in line with the predictive coding theories20,21. This context-based word 

surprisal processing represents a higher-level processing that involves integration of linguistic and 

syntactic information to construct a structured meaning10,20.  

Hemispheric lateralization of auditory and speech processing has been widely studied and is of 

great interest, but results still show much variability across different studies22. Our lateralization 

results reveal distinct patterns of brain processing depending on the level of speech processing and 

stimulus type, under very similar listening conditions, e.g., all stimuli have natural prosody, were 

of extended duration (60 s). For the conditions with well-formed words, acoustic level processing 

is strongly bilateral or with a right hemispheric advantage. For sub-lexical level processing, the 

activation is bilateral, whereas lexical level processing shows a pronounced left hemispheric 

dominance. While the lower-level acoustic processing has been identified as a bilateral process, 

where lower-level acoustic processing involves both hemispheres 23,24, the right hemisphere’s extra 

involvement in acoustic level processing aligns with its specialization in acoustic analysis, 

including extraction of spectral and temporal features from auditory input8,25,26. The left 

lateralization in higher level responses is consistent with the well-established left hemisphere 

specialization for language functions, including lexical representation and combinatorial syntactic 

and contextual processing27,28,22,29. Indeed, it is crucial to emphasize that numerous studies have 

reported different patterns of lateralization with tasks and language processes28,30–32. The 

modulated noise condition showed bilateral responses for acoustic onsets while envelope 
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responses showed right hemispheric dominance. Previous studies have shown right lateralization 

of slow acoustic modulation for tasks involving low language demands33 while left hemisphere 

envelope tracking has been associated with speech intelligibility (when higher-level features are 

not explicitly modeled)34. Interestingly, during non-word processing, the brain exhibited bilateral 

responses at every level of processing, suggesting non-word processing engages both hemispheres 

in their speech processing. This suggests that non-word processing utilizes more brain resources 

from both hemispheres, consistent with the brain not being specialized for non-word 

understanding35,36. These results indicate that pre-lexical auditory input analysis occurs in both 

hemispheres, and left lateralization emerges when the lexical-semantic processes are involved37. 

The observed lateralization patterns underscore the specialized contribution of each hemisphere to 

different aspects of speech comprehension and emphasizes the brain’s flexibility in adapting to 

various linguistic and acoustic demands.    

Critically, the TRF analysis provided valuable insights into the fast temporal dynamics and 

multiple neural mechanisms associated with each speech feature processing, and how they are 

influenced by linguistic complexity. This analysis reveals multiple processing stages associated 

with each speech feature (distinct peak polarities and latencies suggest that they arise from distinct 

neural sources28,38) and modulation of both acoustic and language-based feature processing by 

linguistic content. The results also suggest distinct top-down and bottom-up mechanisms for each 

feature, as will be discussed next.    

Consistent with previous findings, acoustic feature (envelope and envelope onset) responses, 

showed two main peaks: e.g., an envelope early peak at ~60 ms and late peak at ~120 ms (and 

comparable peak latencies for the envelope onset). In line with previous work, our results show 

that acoustic responses are stronger for speech compared to non-speech15,23,35,39. The observed 

difference between speech and non-speech may mainly attributed to the underlying acoustic 

differences17. Additionally, envelope encoding may be expressed as both an acoustic feature and 

also a linguistic feature, thereby utilizing additional brain regions beyond acoustic processing for 

speech comprehension15,40. Moreover, previous studies have shown that envelope and envelope 

onset tracking can be modulated by intelligibility41–44, attention9,45,46 and linguistic content35, all 

of which may contribute to the observed differences here between speech and non-speech.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2024. ; https://doi.org/10.1101/2024.02.02.578603doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578603
http://creativecommons.org/licenses/by-nc/4.0/


 19 

Here, the acoustic envelope onset responses are not affected by the level of linguistic content, 

though they are known to be affected by other cognitive factors such as selective attention9,46. In 

contrast, however, acoustic envelope responses were stronger for non-words compared to 

meaningful words, specifically in the left hemisphere. These stark differences suggest that 

envelope and envelope onset tracking arise from quite different neural sources, even though they 

are temporally related13. The stronger activity observed for non-words over meaningful words in 

the left hemisphere is indeed consistent with previous studies32,44, indicating engagement of more 

resources and higher-level processing mechanisms in the left hemisphere. During our listening 

tasks, subjects were actively engaged and required to perform a probe task; the presence of 

linguistic content, and syntactic and semantic structures, plausibly reduces any extra lower-level 

processing demands, thereby reducing the need for envelope processing from non-words to 

scrambled words to narrative passages.  

The two distinct acoustic TRF peaks, early and late, indicate distinct underlying processing 

mechanisms. Indeed, previous studies have associated early auditory cortical responses with low-

level acoustic (encoded at the periphery) processing, while associating the late response with top-

down mechanisms affected by selective attention and task45,47. The consistent presence here of an 

early peak, irrespective of the passage type, reflects lower-level processing of acoustic information 

and its latency suggests a dominantly bottom-up driven mechanism. Conversely, the late peak, 

almost absent for non-speech and modulated by linguistic content, suggests a strongly top-down 

influenced mechanism.  Thus, we emphasize here that the early peak is primarily driven by bottom-

up mechanisms, while the late peak is strongly influenced by top-down mechanisms.  

Phoneme level features also showed two main peaks48, at ~70 ms and at ~380 ms, delayed 

compared to acoustic feature peaks, and non-words showed an additional peak at ~200 ms. 

Phoneme onset responses were found to be right lateralized for narrative, whereas they were 

bilateral or left lateralized for other linguistic features; this aligns with previous results that the 

response to phoneme onset may reflect more of a mixed acoustic-linguistic measure rather than a 

purely linguistic measure17. The early responses for non-words were enhanced for phoneme onset 

but were smaller for phoneme surprisal and cohort entropy compared to scrambled passages. It is 

also possible that differences in predictor distributions between words and non-words (see Fig. S1) 

may have influenced the statistics-based phoneme features, which in turn may have indirectly 

affected the phoneme onset responses due to their concurrent timing. Additional activation of brain 
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regions in in the processing of non-words may also have contributed to the phoneme onset 

difference. 

The temporal structre of cohort entropy TRFs for non-words closely resembled the word onset 

responses, especially compared to those of phoneme surprisal. While one might expect similar 

trends between the phoneme surprisal and cohort entropy for non-words, it is important to note 

that these measures quantify different aspects of sub-lexical processing: phoneme surprisal 

represents phonological uncertainty, whereas cohort entropy reflects lexical uncertainty49 (see50 

for a review). Therefore, phoneme surprisal is more strictly sub-lexical, but cohort entropy is 

lexically based as well. In this sense, cohort entropy likely reflects word-level feature processing 

more than just phoneme level processing, and this is supported by our results. 

Indeed, the considerable temporal separation between the early and middle peaks of word onset 

and cohort entropy may suggest additional mechanisms associated with non-word processing.  A 

key difference between segmenting non-words vs. words is that boundaries between non-words 

are not clearly defined, and identifying them relies entirely on indirect cues such as implicit pauses 

and prosody changes. This seems likely to contribute substantially to differences in word onset 

TRF morphology between words and non-words. When early and middle peaks were combined, 

no amplitude differences were observed between passage types, only latency, indicating that they 

indeed represent a single source that is linked to word segmentation, a bottom-up mechanism for 

lexical activation, but the latency of which depends upon the difficulty of the segmentation 

problem.   

Our findings showed that lexical level predictors (word onset, unigram surprisal and contextual 

surprisal) elicit neural responses at similar latencies, characterized by an early peak at ~100 ms 

and a late peak at ~450 ms, considerably delayed compared to acoustic and sub-lexical responses. 

The early peak which showed no difference between the scrambled and narrative passages, 

indicates that this early neural component is primarily driven by bottom-up processing 

mechanisms involved in initial analysis and activation of meaningful words, irrespective of the 

context. Phoneme and word surprisal early components are so early that they qualify as bottom-

up processing even though linguistic surprisal is often associated with predictive coding models 

which themselves may be treated as requiring a top-down contribution50. Critically, however, 
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predictive coding models can be dominantly bottom-up, for example, a recent model of predictive 

processing in auditory midbrain 51 

In general, the late peaks for phoneme and lexical level features were stronger in scrambled words 

compared to non-words and narrative passages, and were delayed from narrative to scrambled to 

non-words, suggesting the late responses are affected by linguistic content. Even though different 

patterns were observed for early stage between passage types, the later stage trends were consistent 

for both phoneme level and lexical level, suggesting the late stage may represent similar neural 

mechanisms. Additionally, the left lateralization of both early and late peaks highlights the 

involvement of language-level mechanisms, even at the early stage of lexical level neural 

processing. Remarkably, the late peak resembles the characteristics of the ERP N400 response, a 

well-known brain response associated with being modulated by predictability, often used to 

investigate semantic processing, and also modulated by intelligibility and comprehension (for a 

review see 52,53). Thus, our results suggest that context-based predictability facilitates the pre-

activation of word identification or semantic integration, thereby reducing the strength and latency 

of N400-like response in narrative passages compared to scrambled words. These results are 

consistent with the previous work that has shown differences between scrambled and narrative 

passages in the late response54,55. Some studies have also reported weaker late response with 

scrambling18,56, though this difference may be related to the variations in the experimental design 

(e.g., EEG vs MEG, contextual measure employed). Conversely, the smaller N400-like responses 

for non-words aligns with non-words being unpredictable, and thus not activating the N400 

mechanism57. However, in the current study the non-word passages did include non-words that 

resembled real words (e.g., “sustument” and “bi”), which could lead to possible lexical activation 

of root words, and, consequently, elicit some N400 response. Some lexical activation for non-

words could diminish the difference between narrative and non-words. Therefore, the N400-like 

response seen here could arise from both semantic and non-semantic violations of expectation57. 

These interpretations are further supported by the latency analysis, which showed that peaks are 

delayed from narrative to scrambled to non-words. The earliest processing of the narrative stimulus 

suggests that rapid access to the mental lexicon is facilitated by the contextual information. These 

results are consistent with previous studies showing a reduction in N400 for semantically 

congruent as well as pseudo-words or non-word processing52,57. Other studies have shown that the 

N400 is stronger for non-words compared to words58,59, however, but in paradigms where the non-
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words were presented between meaningful words, which alters the experimental design, behavioral 

expectations, and, likely, the neural processing form the current work. These results suggest that 

the late responses to both phoneme and lexical features are influence by top-down driven 

mechanisms, that facilitate both phonological and lexical processing necessary in speech 

understanding.  

Moreover, our results further highlight that the contextual word predictions are robustly 

represented compared to non-contextual (unigram) word predictions, suggesting that when 

context-based predictions better are supported, they align with the predictive coding mechanisms 

compared to non-contextual word predictions60,61. Of course these two measures represent 

different cognitive operations, where context-based surprisal involves word retrieval based on 

contextual and syntactic information, whereas unigram surprisal retrieve words from the mental 

lexicon based solely on sensory cues2,59,62. Our results support this distinction, as we observed 

dissociable effects of local and contextual features, with both representing in the neural responses 

over and beyond the other feature.  

The current analysis does have its limitations. Specifically, more fine-grained stages within the 

speech and language processing hierarchy, such as syntactic-only processing and semantic-only 

processing, were not included (due to experimental constraints related to limiting the duration of 

the recording sessions). Additionally, other speech features, including but not limited to 

morphemes, function words, and content words, were not incorporated into the analysis and 

analysis of these aspects are considered topics for future work.  
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Fig. 6. Temporal profile of speech feature processing. (A). Latency of both early and 

late processing stages associated with each feature processing. As the features go up in 

hierarchical acoustic and linguistic structures both early and late peak processing show 

longer latencies (B). Schematic summary of the bottom-up and top-down temporal profiles 

at each processing level. Acoustic = [Envelope, Envelope Onset], Sub-lexical = [Phoneme 

Onset, Phoneme Surprisal], Lexical = [Cohort Entropy, Word Onset, Unigram Surprisal, 

Contextual Word Surprisal]. 

In summary, our TRF analysis revealed that the brain processes the hierarchy of acoustic and 

linguistic structures (from acoustics to context-based features) in a progression of neural stages, 

and with a characteristic temporal dynamic associated with each feature processing. As we ascend 

the hierarchy, processing of features shows longer latencies for both early and late mechanisms 

(Fig. 6A), suggesting a graded computation of features, over time, in the cortex3, starting as early 

as ~50 ms and extending to ~500 ms. These mechanisms accumulate sounds features, analyze for 

lexical-semantic information, and integrate with the semantic context. Typical feature processing 

has both an early and late stage, with the early processing stage being driven by bottom-up 

activation and the late processing being influenced by top-down mechanisms, as inferred based on 

latency and modulation by linguistic content. These findings are summarized in Fig. 6B, 
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illustrating the hierarchical processing of acoustic and linguistic structures in speech 

comprehension and timing associated with earliest bottom-up and top-down mechanisms at each 

level. While bottom-up driven mechanisms are less intriguing, top-down driven mechanisms 

demonstrate involvement in predictive coding mechanisms, making them better neural markers of 

cognitive decoding. Our results complement previous fMRI studies5,6,23 by leveraging the temporal 

dynamics of feature processing and electrophysiological studies by investigating effects of 

linguistic content on neural tracking measures1,2.  

In conclusion, using multiple stimulus types with varying linguistic content (modulated noise, non-

words, scrambled words and narrative), we provided neural evidence for the progression of 

different speech features along the speech and linguistic hierarchy, with increasing the semantic 

information in the sensory input. Our findings highlighted hemispheric lateralization, temporal 

dynamics and neural mechanisms associated with each level and how they are further modulated 

by linguistic content. Our analysis reveals the bottom-up and top-down mechanisms associated at 

each stage processing. These insights deepen our understanding of the neural markers that might 

be utilized to evaluate cognitive decoding and the construction of sentence meaning, particularly 

in different clinical populations.  

 

METHODS 

Participants 

34 native English speaking younger adults (17 females, mean age 22 y, age range 18-29 y, 3 left-

handed) participated in this experiment. Data from four subjects were excluded from the analysis 

because of technical issues during data acquisition (1 subject) and poor performance on the 

behavioral tasks (see experimental procedure) (3 subjects), leaving thirty participants in the 

analysis (15 females, mean age 22 y, age range 18-29 y, 1 left-handed). All participants reported 

normal hearing and no history of neurological or hearing-related disorders. All experimental 

procedures were approved by the Internal Review Board of the University of Maryland, College 

Park. The participants gave their written informed consent before the experiment and received 

monetary compensation, or course credit (1 subject).       
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Speech stimuli 

Four types of speech stimuli: narrative, scrambled word, non-words and speech-modulated noise 

were generated as described below (sample materials are shown in Fig. 1(a) and can be listened to 

at https://dushk88.github.io/progression-of-neural-features/). Text used for speech stimuli were 

excerpts from the book “The Botany of Desire” by Michael Pollan63.  Speech stimuli were 

computer synthesized using Google text to speech API11 (gTTS) (see example:  

https://cloud.google.com/text-to-speech).  The use of modern text-to-speech synthesizers provides 

human-like, natural-sounding speech64,65, and ensures acoustic parameters like speech rate, 

rhythm, and emphasis are consistent across passage types, which is crucial for comparing neural 

responses across passage types in the current study.  

The narrative (structured and meaningful) passages were excerpts from the first section of the 

book. A separate section of the book was used where the words were randomly permuted to create 

the scrambled word (structured intermediate) passages. Another section, non-overlapping with the 

previous passages, was used to generate the speech-modulated noise (unintelligible speech) 

passages. For the non-word (gibberish) passages, nonsense words were extracted from 

https://www.soybomb.com/tricks/words/ and were randomly arranged to form a continuous 

passage. Initial versions of both scrambled and non-word passages lacked punctuation marks, but 

since silences and pauses between words and sentences create natural sounding and rhythmic 

speech, and in gTTS pauses and silences are cued by punctuation marks, punctuation marks were 

manually added to the scrambled and non-word passages (using the distribution of the number of 

words between punctuation marks in the original book).   

Speech was synthesized with gTTS using the English US accent male voice and Google Wavenet 

voice type “en-US-Wavenet-J” (https://google.com/text-to-speech/docs/voices) at the default 

sampling rate 24 kHz. Once the speech passages were generated, audio files were lowpass filtered 

below 4 kHz since the MEG audio delivery (air tube) system has a lowpass cutoff of ~4 kHz.  Then 

the silence segments were trimmed to 400 ms and the audio stimuli were resampled to 22.5 kHz. 

For each of the speech stimulus types, 1-minute-duration excerpts were extracted.      

For construction of the modulated noise passage, the corresponding speech stimuli generated for 

modulated noise passages were further modified. First, stationary noise was generated with the 

same frequency spectrum as the speech by randomizing the phases of the stimulus frequency 
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spectrum and inverting back to the time domain. In order to add back the lost rhythmicity to the 

noise, the stationary speech shaped noise was then modulated with the corresponding slow speech 

envelope of the original speech (See Fig. 1(a)). The slow speech envelope was extracted by low 

pass filtering (with a 5 Hz cutoff) the Hilbert envelope of the speech passage.  

Experimental procedure  

The experiment was conducted in four blocks. Each block comprised of one passage from each 

passage type, and each passage was repeated twice. The order of passage types was 

counterbalanced across subjects. The narrative passages were presented in chronological order to 

preserve the story line to increase the subjects’ attention. In total, each participant listened to a 

total of 32 trials (4 blocks ×	4 types ×	2 repetitions = 32 trials) and 8 trials from each passage type 

(4 blocks ×	2 repetitions), where a trial is defined as a presentation of 1-minute-long stimulus 

passage. At the start of each passage type, subjects were instructed which passage type they were 

about to listen to. A probe question (depending on the type of passage) was for each passage 

(counting occurrences of a probe word; a contextual question based on the story passage; judging 

which emotion was conveyed in the speech-modulated noise passage) to help maintain 

participant’s attention to the listening task. Participants who correctly answered at least 70% of 

the questions (excluding the emotion judgement) were included in the analysis. 

The subjects lay supine during the entire experiment and were asked to minimize body movements. 

Subjects kept their eyes open and fixated at a center of a grey screen. The stimuli were delivered 

bilaterally at ~70 dB SPL with E-A-RTONE 3 A tubes (impedance 50 Ω) which severely attenuate 

frequencies above 3 – 4 kHz, and E-A-RLINK (Etymotic Research, Elk Grove Village, United 

States) disposable earbuds inserted into ear canals. 

Data acquisition and preprocessing  

Neuromagnetic data were recorded inside a dimly lit, magnetically shielded room 

(Vacuumschmelze GmbH & Co. KG, Hanau, Germany) with a whole head 157-channel MEG 

system (KIT, Kanazawa, Japan), installed at the Maryland Neuroimaging Center. The data were 

recorded with a sampling rate of 1 kHz along with an online low-pass filter (< 200 Hz) and a 60 

Hz notch filter. Three of the additional sensor channels were employed as environment reference 

channels.  
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All data analyses were performed in mne-python 0.23.066,67 and eelbrain 0.3668. Flat channels were 

excluded and the environmental magnetic interferences were suppressed using temporal signal 

space separation (tSSS)69. Then MEG data were filtered between 1 and 60 Hz using a zero-phase 

FIR filter (mne-python 0.23.0 default settings). Artifacts such as ocular, cardiac, and muscle 

artifacts were reduced using independent component analysis (ICA)70. The cleaned data were then 

low pass filtered between 1 and 10 Hz and downsampled to 100 Hz for further analysis.  

Neural source localization  

The scalp surface (> 2000 points), five head position indicator (HPI) coils (three placed on the 

forehead, left and right ear), and anatomical landmarks (nasion, left and right periauricular) of each 

participant was digitized using Polhemus 3SPACE FASTRAK three-dimensional digitizer. The 

position of the participant’s head relative to the sensors was determined before and after the 

experiment using HPI coils attached to the scalp surface and the two measurements were averaged. 

The digitized head shape and the HPI coils locations were used to co-register the template 

FreeSurfer “fsaverage”71 brain to each participant’s head shape using rotation, translation, and 

uniform scaling.  

A neural source space was generated by four-fold icosahedral subdivision of the white matter 

surface of the fsaverage brain, with the constraint that all source dipoles be oriented perpendicular 

to the cortical surface. The source space data and the noise covariance estimated from empty room 

data were used to compute inverse operator via minimum norm current estimation72,73. The 

subsequent analysis were limited to frontal, temporal, and parietal brain regions based on the  

‘aparc’ FreeSurfer parcellation74.  

Predictor variables  

The speech signal was analyzed in distinct feature spaces that represent various levels of the 

language hierarchy. These features were grouped into four primary categories: acoustic properties 

(i.e., acoustic envelope and acoustic onsets), sub-lexical properties (i.e., phoneme onset, phoneme 

surprisal, and cohort entropy), lexical properties (i.e., word onset and unigram word surprisal), and 

contextual features (i.e., contextual word surprisal). The methodology for generating each of these 

predictors is detailed below. Overall, these predictors were generated using a combination of signal 

processing techniques, automatic speech recognition (ASR) systems, and probabilistic models. All 

predictor variables were downsampled to 100 Hz. 
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The acoustic envelope predictor is a measure of the amplitude modulation of the speech signal, 

and reflects the acoustic power/energy of the speech signal over time. In contrast, the acoustic 

envelope onset predictor is a measure of the salient transients of the speech signal, which are 

particularly prominent at the beginning of syllables or phonemes. The acoustic envelope and 

acoustic onsets were computed based on the human auditory system inspired gammatone filters 

computed by Gammatone Filterbank Toolkit 1.075, using 256 center frequencies with cut-off 

frequencies ranging logarithmically from 20 to 5000 Hz. Each frequency band’s envelope was 

resampled to 1000 Hz and transformed to log scale. The resulting envelope spectrogram was then 

averaged into 8 logarithmically spaced frequency bands to obtain the final acoustic envelope 

predictor. Eight bands were chosen as a trade-off between computational efficiency and the ability 

to capture detailed information about the amplitude modulation. The acoustic onset representations 

were computed using the above gammatone acoustic envelope 256-band spectrogram, by applying 

an auditory edge detection algorithm76. The onset spectrogram was also subjected to a processing 

step involving averaging across eight logarithmically spaced frequency bands. The distributions 

of the acoustic envelope and onset predictor were found to be comparable across speech 

conditions, non-words, scrambled and narrative passages. However, some variations were 

observed between the speech stimuli and the speech modulated noise stimuli, as evidenced by the 

comparisons shown in Figure S5(A). This discrepancy may be attributed to the diminishment of 

formants and/or sharp onsets in the non-speech (due to its modulation being induced only by the 

broad band envelope of the speech stimuli).   

Preliminary speech audio alignment for the occurrence of discrete words and phonemes was 

accomplished using the Montreal Forced Aligner77. Grapheme to phoneme conversion was done 

using the pre-trained ‘english-g2p’ model available within the Montreal Forced Aligner. The 

pronunciation lexicon, transcriptions, and audio file were aligned using the pre-trained ‘english’ 

acoustic model. The resulting annotations were visually examined in PRAAT78 and manually 

adjusted when necessary. Phoneme onsets and word onsets predictors were modeled as impulses 

at the onset of each phoneme and word respectively. Phoneme surprisal and cohort entropy, which 

reflect separate information-theoretic properties of the sub-lexicon in its lexical context, are widely 

used in neural word processing analysis1,2,49. Phoneme surprisal quantifies the level of probabilistic 

surprisal associated with the current phoneme, given the occurrence of the sequence of phonemes 

prior to it within the current word. On the other hand, cohort entropy captures the level of 
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uncertainty of remaining lexical candidates that match the observed phoneme sequence. 

Mathematically, phoneme surprisal for a given position i within a word is defined as the 

− log$
∑ &!"#$
%"&"#'(
!"#$

∑ &!"#$
%"&"#'()*
!"#$

 and cohort entropy is defined as  −∑ 𝑝'()* 	𝑙𝑜𝑔$(𝑝'()*)
+(,()-(
'()* . Here, 

cohorti refers to the set of words that are compatible with the phoneme sequence from the 

beginning of the word to the ith phoneme, and 𝑝'()* is the probability of the word derived from 

the wordfreq Python library79. The wordfreq python library is based on the Exquisite Corpus and 

covers a broad range of words that appear at least once per 100 million words. The phonetic lexicon 

for each word was extracted from the CMU pronouncing dictionary, available at 

http://www.speech.cs.cmu.edu/cgi-bin/cmudict. The corpus comprised of all the words that were 

included in both the CMU dictionary and the wordfreq. Cohort entropy and phoneme surprisal 

values were computed for each phoneme onset and represented as impulses, scaled by its 

corresponding value. These two predictors were similar in the non-speech, scrambled, and 

narrative passages as they included meaningful words. However, they showed different 

distributions between meaningful words and non-words as illustrated in Figure S5(B). As 

expected, phoneme surprisal exhibited a greater proportion of highly surprising phonemes for non-

words, whereas cohort entropy displayed more zeros for non-words, since the potentially available 

lexicon must become empty after some number of phonemes.      

Analogous to the phoneme level surprisal predictor, two different measures of word level surprisal 

were estimated: unigram word surprisal and contextual word surprisal. Unigram word surprisal 

measures how surprising a word is independent of the context and is based on the probability 

distribution of individual words computed from wordfreq. Unigram word surprisal for each word 

is calculated by − log$(𝑝'()*) and represented as an impulse at each word onset, scaled by the 

unigram word surprisal value. In contrast, contextual word surprisal depends on the preceding 

context and reflects how surprising the current word is given the previous context. Contextual 

word surprisal was estimated using the open source, pre-trained, and transformer-based80 large 

language model GPT-2, implemented in the Hugging Face environment81. Each 1-minute-long 

passage was preprocessed (removing punctuation and converting to lower case, with the exception 

of proper nouns), tokenized using byte-pair encoding82, and provided to the neural network model. 

The tokens could represent either complete words or sub-words. The final layer of the model was 

utilized to calculate the word surprisal. This final layer outputs prediction scores for each token in 
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the vocabulary, indicating the likelihood of it being the next word given the preceding tokens 

(context) that extends all previous tokens, extending to a maximum of 1024 tokens. The prediction 

scores were subjected to a SoftMax transformation to compute probabilities. The current word 

probability was determined by the probability associated with its corresponding token. In cases 

where words span over multiple tokens, word probability was computed by the joint probability 

of those tokens. Contextual word surprisal was computed as − log$(𝑃'()*|𝑐𝑜𝑛𝑡𝑒𝑥𝑡) and 

represented as an impulse at each word onset, scaled by the corresponding contextual word 

surprisal of that word. The unigram and contextual word surprisal values were calculated only for 

the scrambled and narrative passages since they were not defined for non-words. However, as can 

be seen from the Figure S5(C), a high correlation between contextual and unigram word surprisal 

was observed for the scrambled word condition (𝑟(741) = 0.91, 𝑝 < 0.001), suggesting that 

contextual word surprisal collapses to unigram word surprisal when the context fails to provide 

informative cues for predicting the next word, as would be expected. Due to this very strong 

correlation between these two predictors in the scrambled passages, the contextual word surprisal 

predictor was excluded from the TRF modelling there and only the more conservative unigram 

word surprisal was used. 

Forward models (Temporal Response Functions) 

The forward model approach referred to as temporal response function analysis83 was used to 

estimate how a set of predictor variables relates to the source localized MEG data. The model for 

each neural source is defined as: 

𝑟(𝑡) = 	EEℎ(𝑖, 𝜏)𝑥(𝑖, 𝑡 − 𝜏)
.

/

+ 𝜀(𝑡)
0

1

 

Where 𝑟(𝑡) is the neural response at time t, 𝑥(𝑖, 𝑡)	is the ith predictor time series, and 𝜀(𝑡) is the 

residual neural response not explained by the model. The TRF, ℎ(𝑖, 𝜏), is a filter that describes the 

linear relationship between the predictor time series and neural source time series (input and 

output) at different time lags within the integration window [𝜏, 𝑇]. In this model, each time lag of 

each predictor competes against each other to explain variance of the neural response, which 

results in larger TRF model weights associated with greater contributions to the explained 

variance. The TRF model weights were estimated by minimizing the mean absolute difference 

between actual (𝑟(𝑡)) and predicted (𝑟L (𝑡) = 𝑟(𝑡) − 𝜀(𝑡)) neural response. Model performance is 
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evaluated by the prediction accuracy measured by the correlation coefficient between the actual 

and predicted neural response, a measure of neural tracking of the predictors.  

To compute TRFs for each subject, condition, and at each source dipole, the eight trials per 

condition (total 8 minutes) were concatenated and the boosting algorithm84 was employed. Prior 

to boosting, L1 standardization was performed on both the predictors and neural responses by 

subtracting the mean and dividing by the mean absolute value. TRF lags from -20 ms to 800 ms 

were used, with a basis of 50 ms Hamming windows employed to smooth the otherwise overly 

sparse TRFs. TRF estimation used four-fold cross-validation, where two folds were allocated for 

training, one-fold for validation and one-fold for testing. For each testing fold, each of the 

remaining three partitions served as a validation set, resulting in three TRFs per testing fold. These 

three TRFs were averaged to generate one average TRF per testing fold, which was then used to 

compute the prediction accuracy against the testing set. The TRFs and corresponding prediction 

accuracies from each of the testing folds were further averaged to generate a single TRF and single 

prediction accuracy per source dipole.  

Phonetic feature modelling  

Before starting, we first analyzed how the phonetic features, phoneme onset, phoneme surprisal 

and cohort entropy should best be modeled, since different previous studies have used used 

different approaches:  modeling word-initial phonemes as separate features1; including word-

initial phonemes only in phoneme surprisal and cohort entropy85; and including word-initial 

phoneme only in phoneme onset2. We compared models with and without word-initial phoneme 

onset on a base model with envelope spectrogram, envelope onset and word onset. The model with 

the word-initial phoneme onset showed better prediction accuracy compared to a model without 

the word-initial phoneme onset (𝑡!"# = 5.31, 𝑝 < 0.001). To test for the phoneme surprisal and 

cohort entropy, we compared the three models by including, excluding, or separately modelling 

the word-initial phoneme, using a base model with gammatone envelope spectrogram, onset 

spectrogram and word onset. Model comparisons with adjusted r-squared revealed that including 

the word-initial phoneme yield the best prediction accuracies for both phoneme surprisal 

(1	𝑣𝑠	2 ∶ 	𝑡!"# = 4.38, 𝑝 < 0.001, 1	𝑣𝑠	3 ∶ 	𝑡!"# = 3.81, 𝑝 = 0.02) and cohort entropy (1	𝑣𝑠	2 ∶

	𝑡!"# = 5.07, 𝑝 < 0.001, 1	𝑣𝑠	3 ∶ 	𝑡!"# = 4.78, 𝑝 = 0.02). We therefore opted to include the 

word-initial phoneme in the phonetic feature modelling. 
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TRF peak extraction 

TRFs showed prominent peaks with a distinct polarity at distinct latencies, reflecting major 

processing stages along the speech and language processing pathway. The amplitudes and latencies 

of these peaks served as the strength of neural processing at the corresponding stage. To investigate 

how neural auditory processing stages differ based on the linguistic content of the stimuli, the peak 

amplitudes and latencies were compared across passage types.  

First, we identified the time windows for the main peaks associated with each predictor and their 

respective polarities. The time windows for each predictor were 1) Envelope: Early (20-130 ms), 

Late (70-180 ms); 2) Envelope onset: Early (20-170 ms), Late (70-240 ms); 3) Phoneme onset: 

Early (40-200 ms), Late (120-410 ms); 4) Phoneme surprisal: Early (40-200 ms), Late (110-470 

ms); 5) Cohort entropy: Early (40-120 ms), Middle (140-350 ms), Late (260-600 ms); 6) Word 

onset: Early (40-200 ms), Middle (220-350 ms), Late (310-650 ms); 7) Unigram word surprisal: 

Early (40-300 ms), Late (310- 610 ms); 8) Contextual word surprisal: Early (40-300 ms), Late 

(310-610 ms). Early and middle peaks have positive current polarity while the late peak is a 

negative current polarity peak (respectively, directed out of, or into, the cortical surface).    

A peak-picking algorithm was developed to pick the maximum peaks with the corresponding 

polarity within the given time window. The algorithm followed these steps: 1) TRFs were 

aggregated across the source ROIs by taking the absolute sum; 2) Peaks within the given time 

window were identified; 3) Selection of the maximum peak aligned with the given current polarity 

was achieved by checking the source current polarity relative to cortical surface in the transverse 

temporal region in the original source TRFs; 4) If none of the peaks satisfied the polarity constraint, 

the minimum of the average TRFs in the given time window was used as the peak amplitude, and 

the latency was set to NaN (not a number). A small number of peaks (<1.5 %) were further 

manually adjusted where appropriate.    

Statistical analysis  

Statistical analysis was performed in R86 version 4.0 and Eelbrain. The significance level was set 

at 𝛼 = 0.05. 

Significance of each speech feature over and beyond other features was evaluated by comparing 

full and reduced models. The full models for modulated noise and non-words included: 

gammatone envelope, envelope onset, phoneme onset, phoneme surprisal, cohort entropy and 
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word onset. Additionally, the scrambled passages also included unigram surprisal; the narrative 

passages included both unigram surprisal and context-based word surprisal. Each reduced model 

included all the features of the full model, except excluding the single predictor under 

investigation. The proportion of explained variance between the full and reduced model at each 

current source dipole were tested using mass-univariate one-tailed paired sample t-test with 

threshold-free cluster enhancement (TFCE)87  with a null distribution based on 10,000 

permutations of model labels.  

Hemispheric lateralization of each feature was performed to examine the lateralization of each 

speech feature processing. The explained variance maps for each feature were transformed to a 

common space by first morphing to a symmetric brain template ‘fsaverage_sym’ and 

consecutively morphed the right hemisphere to the left hemisphere. The explained variance 

between left and right hemispheres were tested using mass-univariate two-tailed paired sample t-

test with TFCE.  

TRF amplitude comparison were performed using repeated samples ANOVA and using post hoc 

paired samples t-test with corrections for multiple comparisons using false discovery rate (fdr) 

corrections. To ensure unbiased TRF comparison across passage types, TRFs were generated from 

a similar number of predictors across passage types. 

Statistical summary tables are reported in supplementary materials.  
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Supplementary Materials 

Table S1. Summary statistics for the model prediction comparisons. tmax and corresponding p 
values are reported. Second column summarizes the contribution of each feature to the model’s 
predictive power. Third column summarizes the lateralization results.  

 Contribution to model prediction 
(Full vs Reduced) 

Lateralization 
(Left vs Right) 

 Modulated 
Noise 

Non-words Scrambled 
words 

Narrative Modulated 
Noise 

Non-words Scrambled 
words 

Narrative 

Gammatone 
Envelope 

6.92 
(<0.001) 

11.9 
(<0.001) 

10.97 
(<0.001) 

10.47 
(<0.001) 

-4.56 
(<0.001) 

4.33 
(0.06) 

-4.5 
(0.01) 

-5.04 
(<0.001) 

Envelope onset 5.79 
(<0.001) 

9.37 
(<0.001) 

10.68 
(<0.001) 

9.9 
(<0.001) 

-3.06 
(0.08) 

-4.17 
(0.04) 

-5.4 
(<0.001) 

-4.36 
(0.02) 

Phoneme onset 3.3 
(0.07) 

7.25 
(<0.001) 

6.43 
(<0.001) 

5.08 
(<0.001) 

0 
(1) 

3.58 
(0.08) 

2.83 
(0.23) 

-4.57 
(0.005) 

Phoneme 
surprisal 

1.51 
(1.0) 

6.83 
(<0.001) 

8.6 
(<0.001) 

6.99 
(<0.001) 

0 
(1) 

2.72 
(0.29) 

3.74 
(0.05) 

-2.01 
(0.82) 

Cohort Entropy 1.82 
(0.99) 

6.9 
(<0.001) 

6.17 
(<0.001) 

5.75 
(<0.001) 

0 
(1) 

3.92 
(0.06) 

4.91 
(<0.001) 

2.38 
(0.63) 

Word onset 2.46 
(0.91) 

5.6 
(<0.001) 

7.13 
(<0.001) 

5.28 
(<0.001) 

0 
(1) 

2.54 
(0.48) 

4.21 
(0.003) 

3.21 
(0.02) 

Unigram word 
surprisal 

  6.67 
(<0.001) 

6.48 
(<0.001) 

  5.07 
(0.002) 

3.23 
(0.03) 

Contextual 
word surprisal 

   5.48 
(<0.001) 

   3.30 
(0.02) 

 
Table S2. Summary Statistics for envelope TRF peak amplitude comparisons. P-values are 
corrected for multiple comparisons using false discovery rate (FDR). LH and RH represent left 
and right hemispheres respectively. 

  Envelope - Early Envelope - Late 
  Noise Non-words Scrambled Noise Non-words Scrambled 
 
LH 

Narrative t29=4.4, p<0.001 t29=-4.7, p<0.001  t29=-4.7, p<0.001   t29=7.1, p<0.001  t29=-2.7, p=0.015 t29=-0.3, p = 0.77 
Scrambled t29=6.2, p<0.001 t29=-0.6, p=0.58  t29=5.9, p<0.001 t29=-3.4, p=0.003  
Non-words t29=5.9, p<0.001    t29=6.9, p<0.001    

 
RH 

Narrative t29=2.4, p=0.04  t29=-1.3, p=0.24 t29=-1.7, p=0.14 t29=5.2, p<0.001 t29=-1.9, p=0.09 t29=-1.9, p=0.09 
Scrambled t29=2.8, p=0.04 t29= 1.0, p=0.33  t29=6.3, p<0.001 t29=-0.1, p=0.89  
Non-words t29=2.5, p=0.04   t29=7.2, p<0.001   

 
Table S3. Summary Statistics for envelope onset TRF peak amplitude comparisons. Other 
details as in Table S2. 

  Envelope Onset- Early Envelope Onset- Late 
  Noise Non-words Scrambled Noise Non-words Scrambled 
 
LH 

Narrative t29=6.2, p<0.001 t29=0.3, p=0.96  t29=0.1, p=0.96   t29=3.5, p=001  t29=0.7, p=0.55 t29=1.4, p = 0.25 
Scrambled t29=6.2, p<0.001 t29=0.2, p=0.96  t29=2.9, p=0.02 t29=-0.6, p=0.55  
Non-words t29=6.4, p<0.001    t29=2.8, p=0.02    

 
RH 

Narrative t29=6.7, p<0.001  t29=1.7, p=0.13 t29=-0.3, p=0.78 t29=4.5, p<0.001 t29=-1.8, p=0.12 t29=-1.0, p=0.39 
Scrambled t29=5.6, p<0.001 t29= 1.7, p=0.13  t29=4.7, p<0.001 t29=-0.5, p=0.63  
Non-words t29=6.3, p<0.001   t29=5.4, p<0.001   

 
Table S4. Summary Statistics for phoneme onset TRF peak amplitude comparisons. Other 
details as in Table S2. 

  Phoneme onset - Early Phoneme Onset - Late 
  Non-words Scrambled Non-words Scrambled 
LH Narrative t29=-2.0, p=0.08 t29=1.8, p=0.08 t29=-1.8, p=0.11 t29=0.7, p=0.50 

Scrambled t29=-3.9, p=0.002  t29=-2.3, p=0.09  
RH Narrative t29=-0.6, p=0.57 t29=0.8, p=0.57 t29=-0.6, p=0.67 t29=0.4, p=0.67 

Scrambled t29=-1.4, p=0.52  t29=-1.1, p=0.67  
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Table S5. Summary Statistics for phoneme surprisal TRF peak amplitude comparisons. 
Other details as in Table S2. 

  Phoneme Surprisal - Early Phoneme Surprisal - Late 
  Non-words Scrambled Non-words Scrambled 
LH Narrative t29=0.8, p=0.46 t29=-2.4, p=0.03 t29=1.3, p=0.20 t29=-2.4, p=0.03 

Scrambled t29=2.6, p=0.03  t29=3.3, p=0.008  
RH Narrative t29=1.3, p=0.33 t29=-0.1, p=0.89 t29=2.0, p=0.17 t29=1.0, p=0.34 

Scrambled t29=1.9, p=0.22  t29=1.0, p=0.34  

 
Table S6. Summary Statistics for cohort entropy TRF peak amplitude comparisons. Other 
details as in Table S2. 

  Cohort Entropy - Early Cohort Entropy - Middle Cohort Entropy - Late 
  Non-words Scrambled Non-words Scrambled Non-words Scrambled 
LH Narrative t29=4.1, p<0.001 t29=2.5, p=0.02 t29=-7.0, p<0.001 t29=-0.3, p=0.75 t29=-2.1, p=0.06 t29=-3.3, p=0.009 

Scrambled t29=2.9, p=0.01  t29=-7.3, p<0.001  t29=1.9, p=0.06  
RH Narrative t29=2.6, p=0.04 t29=1.4, p=0.27 t29=-5.6, p<0.001 t29=0.81, p=0.42 t29=-2.1, p=0.13 t29=-1.5, p=0.20 

Scrambled t29=0.9, p=0.37  t29=-5.2, p<0.001  t29=-0.4, p=0.68  

 
Table S7. Summary Statistics for word onset TRF peak amplitude comparisons. Other details 
as in Table S2. 

  Word Onset - Early Word Onset - Middle Word Onset - Late 
  Non-words Scrambled Non-words Scrambled Non-words Scrambled 
LH Narrative t29=5.1, p<0.001 t29=1.8, p=0.09 t29=-5.2, p<0.001 t29=-1.9, p=0.07 t29=0.2, p=0.86 t29=-3.6, p=0.003 

Scrambled t29=5.1, p<0.001  t29=-4.6, p<0.001  t29=3.3, p=0.003  
RH Narrative t29=2.1, p=0.12 t29=1.8, p=0.12 t29=-6.0, p<0.001 t29=-0.6, p=0.57 t29=-0.2, p=0.82 t29=-2.3, p=0.09 

Scrambled t29=1.1, p=0.30  t29=-5.3, p<0.001  t29=1.7, p=0.16  

 
Table S8. Summary statistics for combined early and middle peak amplitude comparisons 
for cohort entropy and word onsets. Other details as in Table S2. 

  Cohort Entropy  Word Onset  
  Non-words Scrambled Non-words Scrambled 
LH Narrative t29=1.2, p=0.25 t29=2.3, p=0.08 t29=-2.5, p=0.06 t29=1.7, p=0.12 

Scrambled t29=-1.5, p=0.20  t29=1.6, p=0.12  
 
Table S9. Summary Statistics for unigram surprisal TRF peak amplitude comparisons. 
Other details as in Table S2. 

  Unigram Early Unigram - Late 
  Scrambled Scrambled 
LH Narrative t29=1.4, p=0.16 t29=-4.2, p<0.001 
RH Narrative t29=1.8, p=0.08 t29=-2.1, p=0.04 

 

Table S10. Summary Statistics for contextual vs unigram word surprisal TRF peak 
amplitude comparisons. Other details as in Table S2. 

  Early Late 
    Unigram Surprisal Unigram Surprisal 
LH Contextual word surprisal t29=5.2, p<0.001 t29=5.0, p<0.001 
RH Contextual word surprisal t29=5.2, p<0.001 t29=3.5, p=0.001 
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Figure S2. Neural Responses to acoustic features (A) Gammatone envelope and (B) 

Gammatone envelope onset in left (LH) and right (RH) hemispheres. This figure expands 

on the data shown in Fig. 3. The TRFs exhibit an early positive and a late negative polarity 

peak indicated by  and  respectively. Right panel bar plots compare the peak amplitudes 

across passage types. LH and RH denotes left and right hemisphere respectively. Both early 

and late responses are stronger for speech compared to non-speech. Differences between 

the speech passages were found only for the envelope responses and in the left hemisphere. 

*p<0.05, **p<0.01, ***p<0.001 
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Figure S3. Neural responses to sub-lexical and word onset speech features (A). 

Phoneme onset, (B). word onset, (C). phoneme surprisal, and (D). cohort entropy (TRF 

magnitude plots and TRF peak bar plots as in Figure S2). This figure expands on the data 
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shown in Fig. 4. TRFs exhibit an early positive and a late negative polarity peak indicated 

by  and  respectively. For both word onset and cohort entropy responses, non-words 

showed a robust positive polarity peak between early and late peaks. These early, middle, 

and late peaks are indicated by , , and  respectively. The right column bar plots 

compare the peak amplitudes across passage types. LH and RH denotes left and right 

hemisphere respectively. Overall, the early responses were differently modulated by the 

linguistic content. The middle peak was stronger for non-words, while the late peak was 

stronger for scrambled passages.  No differences, except the strong middle responses for 

non-words were found in the right hemisphere.  
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Figure S4. Neural responses to lexico-semantic features (A) Unigram word surprisal 

and (B) Unigram vs contextual word surprisal for the narrative passage (TRF magnitude 

plots and TRF peak bar plots as in Figure S2). This figure expands on the data shown in 

Fig. 5. The late peak in unigram surprisal responses is stronger for scrambled words 

compared to narrative passages. Contextual word surprisal is stronger compared to unigram 

(local) word surprisal. LH and RH denotes left and right hemisphere respectively. TRFs 

exhibit an early positive and a late negative polarity peak indicated by  and  

respectively. The late unigram surprisal responses (N400-like) are stronger for scrambled 

passages compared to narrative passage. Contextual word surprisal responses are stronger 

compared to unigram surprisal responses. Note that the peak amplitudes for unigram 

surprisal in (A) and (B) are different, as the TRF model in (A) does not include contextual 

surprisal.  
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Figure S5. Comparison of predictor variables between passage types. (a). Acoustic 

feature comparisons between non-speech and (non-word) speech passage: they share 

similarities in the distribution of envelope onset predictor values, but not of envelope 

predictors. (b). Phoneme surprisal and cohort entropy comparison between non-words and 

meaningful words (scrambled passage): both predictor distributions depend strongly on the 

stimulus type. (c). Unigram and contextual word surprisal comparisons between scrambled 

and narrative passages: the two unigram word surprisal distributions are nearly identical, 

by design, but the contextual word surprisal distributions diverge strongly (the narrative 

case is strongly biased toward low surprisal, as expected; additionally, in the scrambled 
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word case, both forms of surprisal are highly correlated, collapsing into a narrow diagonal 

distribution. In each panel, the top and right plots show frequency histograms that present 

the distribution of each feature, where the y-axis represents the bin density of points, scaled 

to integrate to one.; the bottom left scatterplot shows a visualization of the correlation 

between the two predictor variables.    
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Figure S6. Comparison of Stimulus Acoustic Properties. (A). Periodograms and (B). 

Modulation spectrum obtained using the methods of 88. Even though the spectral 

characteristics are similar between the stimulus types, the slow temporal modulation is 

different between speech and non-speech. There is no visible difference in acoustic 

properties between the speech passages. Periodograms and modulation spectra were 

computed for 10 chunks of 6 seconds each, per each passage type and then mean ± standard 

error is plotted to illustrate data. 
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