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SUMMARY
The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of
therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status
from radiological images by combining radiomics and deep learning analyses. Usingmulti-institution cohorts
of 2,686 patients with gastric cancer, we show that the radiological model accurately predicted the TME sta-
tus and is an independent prognostic factor beyond clinicopathologic variables. The model further predicts
the benefit from adjuvant chemotherapy for patients with localized disease. In patients treated with check-
point blockade immunotherapy, the model predicts clinical response and further improves predictive accu-
racy when combined with existing biomarkers. Our approach enables noninvasive assessment of the TME,
which opens the door for longitudinal monitoring and tracking response to cancer therapy. Given the routine
use of radiologic imaging in oncology, our approach can be extended to many other solid tumor types.
INTRODUCTION

Gastric cancer (GC) is a highly prevalent malignancy and is the

leading cause of cancer-related deaths worldwide.1 Currently,

the most important factor in risk stratification and treatment de-

cisions is the TNM staging system.2 However, large variations in

treatment response and outcomes are observed for patients with

disease of identical stage, suggesting that the current prognostic

model could not provide complete predictive information.2,3

Therefore, an improved stratification of GC is needed to more

accurately predict patient prognosis and treatment response.

Extensive research on the tumor microenvironment (TME) has

shed new light on the molecularly based classification of can-

cers.3–8 Based on the quantification of various cell subpopula-

tions in the TME, several biomarkers have been shown to be

associated with prognosis and with response to chemotherapy

and immunotherapy such as immune checkpoint inhibitors.3,7
Cell Rep
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In GC, patients whose tumors are infiltrated by cytotoxic CD8+

T lymphocytes have a prolonged survival, while those with a

high amount of neutrophils have a poor prognosis.3,7,9

The gold standard for TME evaluation is based on histopathol-

ogy. However, this approach suffers from the fundamental limi-

tation of sampling bias due to intratumor heterogeneity10 and

is also limited by insufficient tumor tissue available in practice.

Therefore, a noninvasive means to assess the TME would be

valuable, especially in the neoadjuvant therapy setting or meta-

static disease.

Radiological imaging allows visualization of the entire tumor

and is routinely used for diagnosis, staging, evaluation for treat-

ment response, and follow up of patients with cancer. Sophisti-

cated imaging analysis can reveal the link between subtle radio-

logical phenotypes and specific aspects of the underlying

pathobiology including the TME.11 Two broad approaches

have been explored: (1) radiomics analysis with hand-crafted
orts Medicine 4, 101146, August 15, 2023 ª 2023 The Author(s). 1
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Figure 1. Study design for the discovery and validation of a deep learningmodel based onCT images to assess tumormicroenvironment and

treatment outcomes in gastric cancer

Both CT images and IHC stains were available for patients in the SMU-1 (training) cohort and the SMU-2 and SYSUCC-1 (internal and external validation) cohorts,

which were used for testing the model’s accuracy for predicting tumor microenvironment status. All patients had CT and treatment outcomes available, which

were used for testing the prognostic and predictive value of the model. CT, computed tomography; IHC, immunohistochemistry; SMU, Southern Medical

University; SYSUCC, Sun Yat-sen University Cancer Center.

Article
ll

OPEN ACCESS
image features12–14 and (2) deep learning, which can automati-

cally learn feature representations from images.15–20 While

most applications are focused on clinical diagnosis, emerging

studies have shown the feasibility of using deep learning to pre-

dict biological features from medical images.21

We previously developed and validated a machine learning

classifier of the overall TME status based on immunohistochem-

istry assessment of eight immune and stroma features, which

predicted survival and benefit from adjuvant chemotherapy in

GC.7 In this study, we aim to develop a noninvasive imaging-

based model of the TME classifier by combining deep learning

and radiomics analysis. We will further validate the model for

predicting prognosis and response to chemotherapy and

immunotherapy.

RESULTS

Patient characteristics
Table S1 lists the clinicopathological characteristics of the pa-

tients in the training (n = 398), internal validation 1 (n = 196), inter-

nal validation 2 (n = 602), external validation 1 (n = 101), and

external validation 2 (n = 1,068) cohorts. All these patients (n =

2,365) had resection for GC (Figure S1). Among them, 1,615

(68.3%) were men, and the median age was 57 (interquartile
2 Cell Reports Medicine 4, 101146, August 15, 2023
range: 48.5–64) years. The majority of patients (n = 1,773,

75%) had stage II or III disease, among whom 881 (49.7%) pa-

tients received adjuvant chemotherapy. The clinicopathological

data of the immunotherapy cohort are shown in Table S2.

Deep learning radiomics model predicts TME classifier
from CT images
We trained a deep learning radiomics model to predict the TME

classifier from computed tomography (CT) images (Figures 1 and

S2). The model combines a deep convolutional neural network

with hand-crafted features to derive an imaging-based TME

classifier, i.e., deep learning radiomics signature (DLRS). The im-

plementation of the deep learning radiomicsmodel is available at

https://github.com/MontaEllis/HR-Rad-Net. Figures S3 shows

some representative cases with CT images and visualization of

the network prediction. The proposed model had an area under

the curve (AUC) of 0.937 (95% confidence interval [CI], 0.914–

0.960) for predicting the TME classifier in the training cohort (Fig-

ure 2A). Similarly, the model achieved high levels of discrimina-

bility with AUCs of 0.912 and 0.909 in the internal and external

validation cohorts, respectively (Figure 2A). As expected, the

model’s output DLRS was significantly higher in the TME-high

group than that in the TME-low group in all three cohorts (Fig-

ure 2B). Additional performance metrics including the overall

https://github.com/MontaEllis/HR-Rad-Net


Figure 2. Performance of the deep learningmodel to assess tumor microenvironment in the training cohort, internal validation cohort 1, and

external validation cohort 1

(A) Receiver operator characteristic (ROC) curves.

(B) Distributions of DLRS by IHC-defined TME classifier.

(C) Performance of the image signature in the training and validation cohorts.

(D) Confusion matrices in the training and validation cohorts. The confusion matrices show the pairwise comparison; diagonal: number cases of correctly

classified; off-diagonal: number cases of in correctly classified. AUC, area under the curves; TME, tumor microenvironment; DLRS: deep learning radiomics

score.
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Figure 3. Kaplan-Meier analyses of disease-free survival (DFS) and overall survival (OS) according to theDLRS in patientswith gastric cancer

(A) Disease-free survival.

(B) Overall survival. Training cohort (n = 398), internal validation cohort 1 (n = 196), internal validation cohort 2 (n = 602), external validation cohort 1 (n = 101), and

external validation cohort 1 (n = 1,068).
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accuracy, sensitivity, and specificity are shown in Figure 2C.

Consistently, the confusion matrix showed that the model pre-

dictions agreed well with the TME classifier defined by immuno-

histochemistry (IHC) (Figure 2D). The calibration curve also

showed excellent agreement between the predicted probabili-

ties for the TME classifier and observations in all cohorts (Fig-

ure S4A). The decision curve analysis showed a high net benefit

for the model across a range of relevant threshold probabilities

(Figure S4B).

Based on the optimum cutoff determined by the receiver oper-

ating characteristic (ROC) curve analysis in the training cohort

(Figure 2A), patients were divided into a DLRS-low group

(DLRSs < 0.428) and a DLRS-high group (DLRSs R 0.428).

The relationships between the DLRS and clinicopathological

characteristics are summarized in Table S3.

Additionally, we compared performance of the proposed HR-

Rad-Net model with alternative deep-learning approaches for

predicting the TME classifier. In both validation cohorts, our

model improved the prediction accuracy compared with the

model trained without including radiomics features as well as

the original HR-Net model trained without incorporating the

squeeze and excitation strategy (Figure S5).

DLRS is correlated with immune cell infiltration and
stroma abundance
We assessed the relationship between DLRS and individual TME

features in 695 patients for whom IHC data were available (i.e.,

by merging patients in the training cohort, internal validation

cohort 1, and external validation cohort 1). This analysis revealed

two distinct clusters: a dominant cluster of 9 features for DLRSs
4 Cell Reports Medicine 4, 101146, August 15, 2023
and lymphocytes (CD3TC, CD3IM, DLRS, CD8TC, CD8IM,

CD45ROTC, CD45ROIM, CD57TC, and CD57IM) and a second

cluster of 6 features for fibroblast, microvessel, andmyeloid cells

(a-SMA, CD34, CD66bTC, CD66bIM, CD68TC, and CD68IM)

(Figure S6A). A positive correlation was observed between the

DLRS and lymphocyte features (all p < 0.05), and a negative cor-

relation was observed between the DLRS and features of fibro-

blast, vessel, and myeloid cells (Figures S6–S12). We also as-

sessed the distribution of DLRSs, recurrence and survival

status, and the expression of the 14 TME features. Tumors

with high DLRSs generally exhibited increased expression of

CD3IM, CD3TC, CD8IM, and CD45ROTC and reduced expres-

sion of fibroblast, microvessel, and myeloid cells. High-DLRS

patients had fewer recurrences and deaths than low-DLRS pa-

tients did (Figures S13–S15).

DLRS is associated with prognosis
We assessed the prognostic value of the DLRS. In the training

cohort, the 5-year disease-free survival (DFS) and overall survival

(OS) were 21.1% and 28.5% for the low-DLRS group; by

contrast, the 5-year DFS and OS were 48.9% and 54.0% for

the high-DLRS group (Figure 3). Similarly, in the internal valida-

tion cohort 1, the 5-year DFS and OS were 21.9% and 24.8%

for the low-DLRS group compared with 48.7% and 55.5% for

the high-DLRS group (Figure 3). We further confirmed signifi-

cantly different prognoses for patients stratified by the DLRS in

all internal and external validation cohorts (Figure 3).

We performed multivariate Cox regression analysis adjusting

for clinicopathological variables. The DLRS remained an inde-

pendent prognostic factor for predicting DFS and OS in the
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training and validation cohorts (Tables S4 and S5). We per-

formed additional analyses within subgroups of patients strati-

fied by various clinicopathological risk factors. Of note, patients

with high DLRS had improved DFS and OS compared with pa-

tients with lowDLRSs within each stage I, II, III, or IV (Figure S16).

In addition, when stratified by other factors such as tumor size,

location, histology, and differentiation, the DLRS remained a sta-

tistically significant prognostic factor in these subgroups

(Figures S17 and S18). These data show that the DLRS is a

strong independent prognostic factor in GC.

DLRS predicts benefit from adjuvant chemotherapy
We further evaluated predictive value of the DLRS regarding the

benefit of adjuvant chemotherapy after surgery in stage II and III

patients. To do this, we first performed propensity score match-

ing to ensure that the characteristics of patients who received

chemotherapy were similar to those who did not (Tables S6).

We then compared the survival for patients who either received

or did not receive chemotherapy according to the DLRS.

We found that for patients in the high-DLRS group, adjuvant

chemotherapy was associated with an improved prognosis for

both stage II and III disease, e.g., for DFS, stage II: hazard ratio

(HR) 0.474 (95% CI, 0.243–0.927), p = 0.025, and stage III: HR

0.570 (0.438–0.740), p < 0.001 (Figures 4A and 4B). On the other

hand, for patients in the low-DLRS group, adjuvant chemo-

therapy was not associated with an improvement in DFS in either

stage II or III disease. In fact, for stage II patients, chemotherapy

was associated with a significantly worse DFS (HR = 1.704 [95%

CI, 1.248–2.327], p = 0.007) in the low-DLRS group. A statistical

interaction test was performed between the DLRS signature and

chemotherapy, which confirmed a significant interaction effect

(p < 0.05) regarding the impact on DFS and OS. Additionally,

we performed the above analyses using all the patients without

propensity score matching and obtained similar results (Fig-

ure S19). We also performed multivariate logistic regression

analysis and found that DLRS is an independent factor for pre-

dicting chemotherapy sensitivity in GC (Table S7). These data

suggest that the DLRS may be predictive of the benefit from

adjuvant chemotherapy in stage II and III disease.

For the stage II and III patients treated with chemotherapy (n =

881), we divided them into two groups, chemo-sensitive vs.

chemo-resistant, based on if they derived or did not derive a sur-

vival benefit from chemotherapy (DFS R or <2 years). Chemo-

sensitive patients had significantly higher DLRS scores than

chemo-resistant patients in the training and validation cohorts

(Figure 5A). Consistently, patients with high DLRS scores had a

significantly higher probability of being chemo-sensitive than

those with low DLRS scores, and vice versa (Figure 5B). We

further explored the association between chemotherapy respon-

siveness and individual TME features (Figures 4C and 5C).
Figure 4. Relationship between the DLRS and DFS in matched patient

(A) Stage II (n = 610).

(B) Stage III (n = 1,052). Patients were stratified by the receipt of adjuvant chemoth

predicted DLRS low vs. high and adjuvant chemotherapy: pinteraction = 0.001 and

adjuvant chemotherapy: pinteraction = 0.001 and 0.006 for stage II and stage III.

(C) Hierarchical tree structure classifying the stage II and III patients who receiv

expression (red) and low expression (green).

6 Cell Reports Medicine 4, 101146, August 15, 2023
Chemo-sensitive GC had a higher expression of lymphocytes

such as CD3IM, CD3TC, CD8IM, and CD45ROTC (Figure 5C).

On the other hand, chemo-resistant GC had a higher expression

of fibroblasts and neutrophils (a-SMA, CD66bTC, and CD66bIM)

(Figure 5C).

DLRS predicts response to anti-PD-1 immunotherapy
We finally investigated relationships between the DLRS and the

response to anti-PD-1 immunotherapy in a cohort of 321 patients

with advanced GC. The overall objective response rate was

39.6%. Patients in the high-DLRS group achieved a substantially

higher objective response rate (57.8%) compared with those in

the low-DLRS group (14.2%) (Figure 6A). For all patients, theme-

dian progression-free survival (PFS) was 10 months. Kaplan-

Meier analysis showed that the DLRSs were significantly associ-

ated with PFS (p < 0.001; Figure 6B). The median PFSs were 18

and 7 months in patients in the high- and low-DLRS groups,

respectively.

Although the combined positive score (CPS) of PD-L1 expres-

sion, a clinically approved biomarker of immunotherapy

response, was also associated with objective response (Fig-

ure S20A), the predictive accuracy was quite modest, with an

AUC of 0.642 (95% CI, 0.580–0.703) (Figures 6C and 6D). In

comparison, the DLRSs showed a higher accuracy for predicting

objective response (AUC: 0.722 [0.665–0.778]; Figure 6C). In

multivariate regression analysis, DLRSs had a stronger effect

on objective response than CPS (Figure 6E). Importantly,

DLRSs can further distinguish patients with differential response

within the CPS-moderate and CPS-high subgroups (Fig-

ure S20B), suggesting complementary value between the two.

Therefore, we combined CPS and DLRS into an integrative

model (Figure 6C), which significantly improved the accuracy

for immunotherapy response prediction (AUC: 0.783 [0.734–

0.833], p < 0.0001) compared with CPS. Furthermore, we per-

formed the subgroup analysis in 83 patients who were treated

with single-agent immunotherapy, and observed similar results

for predicting response to immunotherapy (Figure S21).

Molecular correlates of the DLRS
We performed radiogenomics analysis to investigate the biolog-

ical underpinnings of the DLRS. For this analysis, we leveraged

the TCGA/TCIA-STAD dataset, which contains publicly available

genomic/transcriptomic data andmatched CT images for 42 pa-

tients with GC. We processed the CT images to compute DLRSs

and performed gene set enrichment analyses to identify the un-

derlying molecular pathways associated with the DLRSs. This

analysis showed that tumors in the DLRS-low group were signif-

icantly enriched for multiple cancer hallmark-related pathways

such as MYC signaling, KRAS signaling, and epithelial mesen-

chymal transition that are associated with aggressive tumor
s who were treated with or without adjuvant chemotherapy

erapy. Statistical interaction tests were performed for the following: (left panel)

0.011 for stage II and stage III; (right panel) predicted DLRS low vs. high and

ed chemotherapy according to the levels of DLRS and 14 TME features: high
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phenotypes (Figure 7A). In addition, tumors in the DLRS-low

group were also enriched for immune suppression-related path-

ways such as negative regulation of immune system and effector

processes as well as chemokine signaling that may play a role in

the migration of myeloid-derived suppressor cells into the tumor

(Figures 7A and 7C). Interestingly, we also found several meta-

bolism-related pathways, including glycolysis, oxidative phos-

phorylation, and fatty acid metabolism pathways, associated

with DLRS-low tumors (Figures 7B and 7C). Overall, these find-

ings are consistent with their unfavorable prognosis and

response rates and might suggest potential therapeutic targets

for overcoming resistance to immunotherapy.

Finally, we assessed the relationship between the DLRSs and

established biomarkers of immunotherapy response including

TMB, PD-L1, GZMB, and T effector signatures. We did not

find any significant associations between DLRSs and these ex-

isting biomarkers, suggesting that DLRSs might provide addi-

tional information for predicting immunotherapy response

(Figure S22).

DISCUSSION

In this study, we developed and validated an imaging signature

to noninvasively assess the TME in GC by quantitative analysis

of CT images. Further, we demonstrated prognostic value of

the imaging signature, which was independent of traditional clin-

icopathologic risk factors. Importantly, we showed that the im-

aging signature could identify which patients will benefit from

adjuvant chemotherapy as well as improve the prediction of

response to immunotherapy.

There is growing evidence for the prognostic and predictive

relevance of TME, which has been established as a key determi-

nant of treatment response and outcomes in many cancers.

However, major challenges remain for the reliable evaluation of

TME. In addition to the need for high-quality tissue, which is often

limited in clinical practice, the current histological approach is

prone to sample errors due to intratumor spatial heterogeneity

and dynamic evolution of the TME.

Radiological imaging provides some unique advantages that

may overcome these challenges. Imaging allows noninvasive

evaluation and longitudinal monitoring of the entire tumor in

situ. Because radiological phenotypes are fundamentally driven

by the underlying pathophysiology, quantitative imaging analysis

may reveal subtle relations between the two.22 The feasibility of

this idea has been demonstrated in previous studies.12,23–25 Sun

et al. developed a radiomic signature of CD8 T cells, which was

correlated with clinical response and outcomes of patients

treated with anti-PD1 immunotherapy.12 In our recent work, we

developed a deep learning-based imaging signature of tumor

stroma, which predicted prognosis and the benefit of adjuvant

chemotherapy in GC.

Our study represents a clinical and technical advance over

prior work in several aspects. First, previous studies have pri-
Figure 5. Relationship between the DLRS and chemotherapy response

(A) Violin plot showing DLRS scores in stage II and III patients resistant or sensit

(B) Rate of clinical response (resistant, sensitive) to adjuvant chemotherapy in hi

(C) Violin plot showing TME features in stage II and III patients resistant or sensit
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marily focused on tumor-infiltrating lymphocytes,12,26 which

only provide a simplified and partial view of the TME. Here, we

evaluated both lymphoid/myeloid immune cells as well as stro-

mal and vascular components that better capture the complexity

and heterogeneity of the TME across patients. We note that the

ground truth for TME status was based on IHC staining of large

surgical specimens, which is more representative of the tumor

than a small biopsy. Second, in deriving the imaging signature,

we combined the respective merits of knowledge-based radio-

mics and data-driven deep learning approaches and showed su-

perior performance over either approach. Third, we validated the

prognostic and predictive values of ourmodel in largemulti-insti-

tutional cohorts of patients treated with chemotherapy and

immunotherapy.

The standard treatment for localized GC includes surgery fol-

lowed by adjuvant chemotherapy to prevent disease recurrence

and improve survival. However, some studies have reported that

certain subgroups of patients may not benefit from adjuvant

chemotherapy.2,3,27,28 The optimal criteria for selection of candi-

dates for adjuvant chemotherapy remain controversial. In our

study, we found that only stage II/III patients classified as high

DLRS were able to derive survival benefit from adjuvant chemo-

therapy, whereas patients classified as lowDLRS did not benefit.

In future clinical trials, novel personalized approaches to dein-

tensify or intensify treatment based on the risk profile and TME

status for these patients could be tested to enhance the efficacy

of systemic therapies.

There is an unmet need for reliable biomarkers to identifywhich

patients will respond to immunotherapy, which has become a

standard treatment for many cancer types. We showed that the

DLRS could predict response to anti-PD-1 immunotherapy in

advanced GC. Specifically, tumors with high immune cell infiltra-

tion showedgood response to immunotherapy.However, tumors

with high stroma and vasculature had poor response. This is

consistent with previous findings based on molecular ap-

proaches to TME evaluation.29 The imaging signature of TME

had a stronger predictive effect than PD-L1 expression, a clini-

cally approved biomarker of immunotherapy response. Impor-

tantly, combining the TME classifier with PD-L1 expression

significantly improved the accuracy for response prediction.

Although tumors with mismatch repair deficient (dMMR)/

microsatellite instability-high (MSI-H) status have a much higher

response rate, our model could identify a subset of tumors that

do not respond to anti-PD-1 immunotherapy, and combination

treatment strategies will be required for these patients.

Rather than studying the relation between radiological imaging

and TME, an alternative approach is to apply radiomic or deep-

learning analysis to directly predict treatment response or

outcome, and many studies have reported promising results in

gastric and other cancers.30–35 However, a critical issue has

been the lack of biological interpretation of these imaging signa-

tures. By contrast, our work builds on the extensive evidence for

the well-established role of the TME in disease progression and
and TME characteristics

ive to adjuvant chemotherapy.

gh- or low-DLRS score groups.

ive to adjuvant chemotherapy.
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Figure 6. Relationship between the DLRS and clinical response and outcomes in patients treated with anti-PD-1 immunotherapy

(A) Response rates in patients of the DLRS-high vs. -low groups.

(B) Progression-free survival in patients of the DLRS high vs. low groups.

(C) ROC curves of the predicted TME classes, CPS, and composite models combining TME classes and CPS for predicting immunotherapy response (n = 321);

AUC: DLRS vs. CPS, p = 0.04; DLRS+CPS vs. CPS, p < 0.0001; DLRS+CPS vs. DLRS, p < 0.0001.

(legend continued on next page)
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Figure 7. Molecular correlates of the DLRS in gastric cancer

(A) Bar plot shows the top enriched molecular pathways by normalized enrichment score (NES) in the DLRS-high group (blue) and the DLRS-low group (red). A

positive NES score indicates the pathway is significantly enriched in theDLRS-low group, and a negative NES indicates the pathway is significantly enriched in the

DLRS-high group.

(B) Bubble plot shows the top enriched pathways by gene counts along with p values.

(C) Examples of the enrichment plot for the molecular pathways significantly associated with the DLRS.
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its impact on treatment response,36–39 thus providing the biolog-

ical rationale behind the model predictions.

Limitations of the study
Our study is retrospective, which makes it susceptible to selec-

tion biases. To address this issue, we included large indepen-

dent cohorts of patients from multiple institutions to validate

our findings. Second, the decision about use of chemotherapy

was made by the clinicians and/or patients, and thus the predic-

tive effect of our imaging model should be validated in prospec-

tive randomized trials. Third, patients were enrolled from one

geographic region in China; the distribution of clinical and path-

ological characteristics might be different in other populations.
(D) Alluvial diagram of the correspondence among patients classified according to

cohorts (n = 321).

(E) Forest plot for the multivariate logistic regression analysis for objective respons

positive score of PDL1 expression; OR, objective response (complete and partia

10 Cell Reports Medicine 4, 101146, August 15, 2023
Future work will focus on prospective validation of the imaging

signature to confirm the generalizability and reproducibility in

larger populations and across different scanners. While imaging

will not replace tissue-based evaluation for TME, we envision

that it could be used as an adjunct tool (like liquid biopsy for tu-

mor genomics) to supplement current histopathology ap-

proaches where tumor tissue is unavailable or inadequate.

In conclusion, we developed a noninvasive radiological model

for the assessment of TME status using deep learning and radio-

mics analysis of CT images. The imaging signature has the po-

tential to refine prognosis and guide personalized therapy of

GC. Prospective studies and randomized trials are required to

confirm its clinical validity and clinical utility.
the immunotherapy response, DLRS, and CPS in the merged immunotherapy

e. AUC, area under the receiver operator characteristic curve; CPS, combined

l response); SD, stable disease; PD, progressive disease.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study design and patients
The overall study design is shown in Figure 1. This study followed the Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) reporting guideline. Ethical approval was obtained from the institutional review boards of

Nanfang Hospital of Southern Medical University and Sun Yat-sen University Cancer Center (SYSUCC), and patient consent was

waived for this retrospective analysis. We retrospectively reviewed data for 5,213 patients who underwent surgery for gastric cancer

in two academicmedical centers. The inclusion criteria were: histologically confirmed diagnosis of GC; resection of the primary tumor

with at least 15 lymph nodes harvested; preoperative abdominal computed tomography (CT) images available; and complete clin-

icopathological and follow-up data available. We excluded patients who had other synchronous malignant neoplasms, or previously

received neoadjuvant chemotherapy; patients whose primary tumor could not be identified on CT were also excluded.
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A total of 2,686 patients in six independent cohorts were included in this study (Figure S1; Tables S1 and S2).). The training cohort

and two internal validation cohorts included 398, 196, and 602 patients whowere consecutively treated at Nanfang Hospital of South-

ern Medical University (Guangzhou, China) from January 1 2005 to June 30 2009, from July 1 2009 to December 31 2012, and from

January 1 2013 to June 30 2017 respectively. The two external validation cohorts included 1,169 patients consecutively treated at

SYSUCC (Guangzhou, China) between June 1 2007 and June 30 2013. Here, we divided patients into training and validation cohorts

by time of surgery instead of random sampling. This strategy substantially reduces arbitrariness in data splitting, which allows more

rigorous assessment and independent validation of the model. Moreover, this approach mimics the situation where a model is first

trained on existing data and then tested on future patients.

Clinicopathologic data including age, gender, tumor and lymph node status, tumor differentiation, Lauren histology type, carci-

noembryonic antigen (CEA), and cancer antigen 19-9 (CA19-9) was collected. D2 lymph node dissection was performed in most pa-

tients (>90%) in accordance with clinical guidelines.40,41 Tumor staging was performed on the basis of the 8th Edition of the American

Joint Committee on Cancer TNM Staging Manual.42 There were 164 (51.10%), 109 (44.0%), 258 (49.5%), and 525 (46.8%) patients

who received 5-fluorouracil–based adjuvant chemotherapy in the training cohort, internal validation cohorts 1 and 2 from Nanfang

Hospital, and external validation cohort from SYSUCC, respectively. Among these patients, 171 (32.2%) from Nanfang Hospital

and 179 (34.1%) from SYSYCC received the XELOX (capecitabine–oxaliplatin) chemotherapy regimen, while 360 (67.8%) and 346

(65.9%) received the FOLFOX (fluorouracil–folinic acid–oxaliplatin) regimen in the two institutions.

The immunotherapy cohort consists of 321 patients with advanced GC treated at Nanfang Hospital and Guangdong Provincial

Hospital of Chinese Medicine (Table S2). Anti-PD-1 drugs include: Nivolumab, Pembrolizumab, or Toripalimab. Clinical data,

including patient demographics, treatment information, laboratory and pathologic examinations, and CT scans were acquired. Mi-

crosatellite instability (MSI) status was assessed by either IHC or DNA sequencing.

METHOD DETAILS

Immunohistochemistry (IHC) staining and scoring
Formalin-fixed paraffin-embedded (FFPE) samples were cut into 4-mm thick sections, which were then processed for immunohisto-

chemistry as previously described.3,7 The samples were de-waxed in xylene and rehydrated in decreasing concentrations of ethanol.

Prior to staining, the sections were subjected to endogenous peroxidase blocking in 1%H2O2 solution diluted in methanol for 10 min

and then heated in a microwave for 30 min with 10 mmol/L citrate buffer (pH 6.0). Serum blocking was performed using 10% normal

rabbit serum for 30 min. The slides were incubated overnight with an antibody against human immune cell biomarkers (CD3 (pan

T cells), CD8 (cytotoxic T cells), CD45RO (memory T cells), CD45RA (naive T cells), CD57 (natural killer cells), CD68 (macrophages),

CD66b (neutrophils)), a microvascular marker (CD34), and a stromal marker (a-SMA) at 4�C, followed by incubation with an amplifi-

cation system with a labeled polymer/HRP (EnVision, DakoCytomation, Denmark) at 37�C for 30 min. The reaction was visualized

using diaminobenzidine (DAB)+ chromogen, and nucleus was counterstained using hematoxylin. In all assays, we included negative

control slides with the primary antibodies omitted. Every staining run contained a slide of positive control. And all slides were stained

with DAB dyeing for the same time for each antibody (Table S8).

As previously described,7 we calculated a machine learning classifier to assess the overall TME status based on the expression of

eight IHC markers, including CD3 IM, CD3 TC, CD8 IM, CD45RO TC, CD57 IM, CD68 TC, CD66b IM and CD34 (IM: invasive margin,

TC: tumor core). Patients were classified into two groups: TME-high vs. TME-low.

The IHC markers were evaluated independently by two gastrointestinal pathologists who were blinded to the clinical data. A third

pathologist was consulted to reach a consensus when different opinions arose between the two primary pathologists. In detail, the

tissue sections were screened at low power (1003) using an inverted research microscope (model DM IRB; Leica, Germany), and 5

most representative fields were selected. The density of immune cells was measured at 2003magnification for two respective areas

at tumor core (TC) and invasivemargin (IM). The nucleated stained cells in each area were quantified and expressed as the number of

cells per field. For micro-vessels, any discrete cluster or single cell stained positive for CD34 was counted as one micro-vessel.9,43

For the stromal marker (a-SMA), stain intensity was graded as 0 (negative staining), 1 (weak staining), 2 (moderate staining), and 3

(strong staining); stain extent was graded as 0 (0%–4%), 1 (5%–24%), 2 (25%–49%), 3 (50%–74%), and 4 (>75%).44,45 Values of

the stain intensity and extent were multiplied and then averaged over the five fields as the final score.

CT acquisition and image processing
All patients underwent contrast-enhanced abdominal CT scans prior to surgery. Following intravenous contrast administration, arte-

rial and portal venous-phase contrast-enhanced CT scans were performed after delays of 28 s and 60 s, respectively. Iodinated

contrast material in the amount of 90–100 mL (Ultravist 370, Bayer Schering Pharma, Berlin, Germany) was injected at a rate of

3.0 or 3.5 mL/s with a pump injector (Ulrich CT Plus 150, Ulrich Medical, Ulm, Germany). The type of CT scanners included GE Light-

speed 16, GEHealthcareMilwaukee,WI; 64-section LightSpeed VCT, GEMedical Systems, Milwaukee,WI; USA. The CT acquisition

protocols were as follows: 120 kV; 150–190 mAs; 0.5- or 0.4-s rotation time. Contrast-enhanced CT was reconstructed with a field of

view, 350 3 350 mm; data matrix, 512 3 512; in-plane spatial resolution 0.607–0.75 mm; axial slice thickness, 1.25–7.5 mm.
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CT images were resampled to a consistent spatial resolution of 0.753 0.753 2.5 mm by using trilinear interpolation. We normal-

ized the CT intensity to a window of [-150, 150] HU to highlight the soft-tissue contrast. To focus analysis on the most relevant region

(i.e., gastric carcinoma), we delineated the primary tumor as the region of interest.

CT images at the portal venous phase were analyzed given its better contrast. The primary tumor was delineated by two radiolo-

gists (C.C. andQ.Y. with 11 and 10 years of clinical experience in abdominal CT interpretation, respectively) using the ITK-SNAP soft-

ware. Both radiologists reached consensus regarding tumor delineation.

Development of an imaging model to assess IHC-based TME classifier
We trained a deep learning radiomics model (named ‘‘HR-Rad-Net’’) to predict the IHC-based TME classifier using CT images. The

input image to themodel consists of three channels: the original full CT image, CT imagewith tumormask, and the binary tumormask,

all with a size of 64 3 64. To leverage the respective advantages of knowledge-based radiomics and data-driven deep learning ap-

proaches, we combined the two components in a unifyingmodel (Figure S2A). This idea ismotivated by prior work showing that either

approach can extract useful information for assessing TME.12,13,33,35 The proposed model consists of two parts: feature represen-

tation learning via convolutional neural network and radiomic feature extraction. HR-Rad-Net draws on HR-Net’s ability to effectively

learn reliable high-resolution representations. Here, we incorporate a squeeze and excitation (SE) module into HR-Net to better

extract multi-scale image features (Figure S2B).46,47 The squeeze operation utilizes average pooling to extract the global information

from each channel of the feature; while the excitation operation adopts a multi-layer perceptron to learn channel-wise weights to re-

weight each channel.

For radiomics analysis, we computed a total of 361 radiomics features, including 9 shape features, 72 first-order statistical fea-

tures, 96 Gray Level Cooccurrence Matrix (GLCM) features, 64 Gray Level Run Length Matrix (GLRLM) features, 64 Gray Level

Size Zone Matrix (GLSZM) features, and 56 Gray Level Dependence Matrix (GLDM) features.48 Then, the radiomics information of

the CT image and annotation information was calculated and embedded into the feature space via a full connection layer. Given

the prohibitive cost of manually delineating full 3D tumor contours for over 2600 patients in the study, these radiomics features

were computed based on the image slice containing the largest tumor size.

The network learned features and radiomics features are fused in a fully connected layer to generate the final prediction. Both types

of features are standardized by the Z score method before being fed into the fully connected layer. To demonstrate effectiveness of

the proposed approach, we performed ablation experiments and compared the performance with the models trained without radio-

mics or SE module separately. Finally, to investigate and visualize which areas in the image are important for prediction, we used the

gradient-weighted class activation mapping approach.49

Model architecture and training
We propose an HR-Radiomics-Net to predict the TME status of gastric tumors fromCT images. The proposed model consists of two

parts: feature representation learning via convolutional neural network and radiomic feature extraction, which are fused in a fully con-

nected layer to generate the final prediction (Figure S2). We used a cohort of 398 patients from Nanfang Hospital, Southern Medical

University, China for training purposes.

To reduce overfitting, we applied data augmentation and learning rate decay. Specifically, the augmentation included image reflec-

tion along the patient’s anterior/posterior or left/right directions and random rotation with an angle sampled from (�30�, +30�). We

used focal loss as the objective function which is defined as:

FLðptÞ = � að1 � ptÞglogðptÞ
where pt is the output of the network, a;g are set to balance the positive and negative samples.

In this study, we set a to 1 and g to 2. The batch size was set to 16, the learning rate was set to 1e-3 and the learning rates decay half

per 10 epochs. The optimizer used for training was the Adam algorithm. The proposed HR-Radiomics-Net was implemented on the

open source Pytorch platform and trained using an NVIDIA GTX 1080TI.

Visualization and interpretation of network prediction
After training the network, we visualize the heatmap of the network that shows themore important features of the image for themodel

prediction. To achieve this, we use the Guided Grad-CAM.49 Guided Grad-CAM generates a corresponding heatmap of the input

image, which indicates how much the position contributes to the classification. In addition, Guided Grad-CAM can also give a guide

based on the returned gradient map, which provides a visualization of the network classification at a fine-grained level. (Figure S3)

Model validation and comparison with alternative methods
We tested the model performance in the internal and external validation cohorts. To demonstrate effectiveness of the proposed

approach, we performed ablation experiments and compare the performance with the radiomics and deep learning module trained

separately, as shown in Figures S5.
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Accuracy of the imaging model for TME classification
We evaluated the accuracy of the CT imaging-based model to assess the TME classifier defined by IHC. Metrics including the area

under the receiver operating characteristic curve (AUC), overall accuracy, sensitivity, and specificity were computed. The optimal

cutoff value for the deep learning radiomics signature (DLRS) was determined using Youden’s index in the training cohort, which

maximizes the sum of sensitivity and specificity. This analysis was performed for patients in the training cohort, internal validation

cohort 1, and external validation cohort 1 for which IHC data was available. Calibration plots were used to graphically represent

the agreement between the predicted and actual probability of the TME classifier. A decision curve analysis was performed to eval-

uate the model’s clinical usefulness by quantifying the net benefit at various threshold probabilities.

Imaging model’s association with prognosis and chemotherapy response
We assessed the imaging model’s association with survival outcomes including disease-free survival (DFS) and overall survival (OS).

DFS was defined as the time from surgery to disease progression or death. OS was defined as the time to death from any cause. This

analysis was performed for all 2,365 patients in 5 independent cohorts for which outcome data were available. Additionally, we eval-

uated the prognostic value in patient subgroups as defined by clinicopathological factors.

We further assessed the association between DLRS and adjuvant chemotherapy response in patients with stage II and III gastric

cancer. Tominimize potential selection bias and confounding effects, we used amatching strategy to balance patients in eachDLRS-

defined group. Propensity score matching (PSM) was performed for patients who received vs. did not receive chemotherapy using

1:1 nearest matching. The following variables were matched: age, gender, differentiation, CEA, CA19-9, location, depth of invasion

(T stage), lymph node metastasis (N stage), tumor size, and Lauren type.

Imaging model’s association with immunotherapy response
We finally assessed the image model’s relation to clinical response and outcomes using an independent cohort of 321 advanced GC

patients treatedwith anti-PD-1 immune checkpoint blockade. Response to immunotherapywas evaluated according to the irRECIST

criteria50 and defined as complete response (CR), partial response (PR), stable disease (SD), or progressed disease (PD). Objective

response was defined for patients who achieved either CR or PR. Progression-free survival (PFS) was calculated from the start of

treatment until disease progression, death, or last follow up. The combined positive score (CPS) was defined as the total number

of PD-L1 positive cells (tumor, lymphocytes, and macrophages) divided by the number of tumor cells. CPS was categorized as

high (CPSR10), intermediate (10>CPSR1), and low (CPS<1).

Radiogenomics analysis
We used the TCGA/TCIA-STAD dataset for radiogenomics analysis, which contains publicly available genomic/transcriptomic data

and matched CT images for 42 gastric cancer patients. We processed the CT images to compute DLRS and performed gene set

enrichment analyses to identify the underlying molecular pathways associated with the DLRS. We identified genes that are signifi-

cantly correlated with the imaging signature by the Spearman’s rank test. Multiple testing will be corrected using the Benjamini-

Hochberg method. To elucidate the biological meaning of DLRS, we performed the gene set enrichment analysis (GSEA) and

gene ontology (GO) kyoto encyclopedia of genes and genomes (KEGG) analyses using the GSEA software (version 4.1.0).51 All pa-

rameters were set to their default values, and an adjusted P-value of <0.05 was considered statistically significant.

We further assessed the relationship between the DLRS and established biomarkers of immunotherapy response using patients in

the TCGA/TCIA dataset. The PD-L1 andGZMB expression valueswere determined based on the transcriptomic data from the TCGA.

Tumor mutation burden (TMB) was computed using the R package ‘‘Matfools’’.52 Furthermore, two well established T effector sig-

natures were evaluated, namely, OAK-T effector signature (based on PD-L1, CXCL9, IFNG)53 and POPLAR-T effector signature

(based on CD8A, GZMA, GZMB, IFNG, PD-L1, EOMES, CXCL9, CXCL10, and TBX21).54

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
We compared two groups using the t-test for continuous variables and the chi-square test or Fisher exact test for categorical vari-

ables, as appropriate. Survival curves were generated according to the Kaplan-Meier method and compared using the log rank test.

Univariate and multivariate analyses were performed using the Cox proportional hazards model. Interaction between the imaging

model and adjuvant chemotherapy was assessed by means of the Cox model. Statistical analysis was conducted with R software

(version 4.1.0) and SPSS software (version 21.0). A two-sided p value <0.05 was considered statistically significant.
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