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Abstract: Sepsis refers to a systemic inflammatory response syndrome resulting from 
microbial infections, and is partly attributable to dysregulated inflammation and associated 
immunosuppression. A ubiquitous nuclear protein, HMGB1, is secreted by activated leuko-
cytes to orchestrate inflammatory responses during early stages of sepsis. When it is released 
by injured somatic cells at overwhelmingly higher quantities, HMGB1 may induce macro-
phage pyroptosis and immunosuppression, thereby impairing the host’s ability to eradicate 
microbial infections. A number of endogenous proteins have been shown to bind HMGB1 to 
modulate its extracellular functions. Here, we discuss an emerging possibility to develop 
therapeutic antibodies against harmless proteins that collude with pathogenic mediators for 
the clinical management of human sepsis and other inflammatory diseases. 
Keywords: antibody, HMGB1, immunosuppression, inflammation, innate immune cells, 
pyroptosis, sepsis

Introduction
Cohabitating with microbes, mammals employ epithelial barriers as the first layer 
of defense to limit the access of many pathogens. If they are breached, the host 
mounts an immediate immune response termed “inflammation” (“set on fire” in 
Greek) to eliminate these invading pathogens.1 For instance, circulating monocytes 
are ceaselessly patrolling the body to search for invading pathogens, and immedi-
ately infiltrate into the infected tissues upon detecting microbial products.2 Once 
reaching extravascular tissues, these monocytes are terminally differentiated into 
tissue-specific resident macrophages, which ingest and eradicate pathogens together 
with neutrophils and other phagocytes.3

Meanwhile, macrophages/monocytes are also equipped with Pattern 
Recognition Receptors [PRR, such as the Toll-like Receptor 2 (TLR2), TLR3, 
TLR4 and TLR9] that can bind distinct Pathogen-Associated Molecular Patterns 
molecules (PAMPs, such as bacterial peptidoglycan, double-stranded RNA, endo-
toxin and CpG-DNA).4,5 The engagement of PAMPs with respective PRRs triggers 
the immediate release of tumor necrosis factor (TNF),6 interleukin (IL)-1,7 and 
interferon (IFN)-α,8 which collectively facilitate pathogen elimination. If unsuc-
cessful, invading pathogens can leak into the bloodstream to trigger a systemic 
inflammatory response and life-threatening organ dysfunction termed “sepsis”.9 

The pathogenesis of sepsis is complex but attributable to dysregulated inflammatory 
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responses and immunosuppression. 10−12 For instance, 
neutralizing antibodies against TNF, the first cytokine ela-
borated in the inflammatory cascade, were protective in 
animal models of endotoxemic/bacteremic shock.6 

However, the early release of TNF makes it difficult to 
target in clinical settings,13 prompting the search for other 
late mediators with wider therapeutic windows.

High Mobility Group Box 1 (HMGB1)
High mobility group 1 (HMG-1) was initially identified as a 
30-kDa protein with a high mobility on electrophoresis gels,14 

and recently renamed as the high mobility group box-1 
(HMGB1).15 It contains a continuous stretch of negatively 
charged residues in the C-terminus, and two internal repeats 
of positively charged domains (“HMG boxes” known as “A 
box” and “B box”) in the N-terminus (Figure 1).16 These 
HMG boxes enable HMGB1 to bind chromosomal DNA to 
fulfill its nuclear functions in stabilizing nucleosomal structure 

and stability, and facilitating the binding of transcription fac-
tors to their cognate DNA sequences during gene expression.-
16,17 Conditional knockout of HMGB1 expression renders 
animals more susceptible to both infectious18 and injurious 
insults,19,20 supporting a beneficial role of intracellular 
HMGB1 in health.

Secretion by Activated Macrophages/ 
Monocytes
Two decades ago, we initiated an effort to search for late 
mediators that could contribute to the pathogenesis of lethal 
sepsis. Specifically, we stimulated macrophage cultures with 
an early cytokine (eg, TNF) and screened the cell-conditioned 
medium for proteins that were released relatively late. This 
effort led to the identification of 30-kDa protein with an 
N-terminal amino acid sequence identical to HMG-1 
(HMGB1).15,21 Subsequently, we and others demonstrated 
that many exogenous PAMPs (eg, ds-RNA, CpG-DNA and 
endotoxins)21,22 and endogenous cytokines [eg, interferon 
(IFN)-γ, IFN-β, serum amyloid A (SAA), and Cold-inducible 
RNA-binding protein (CIRP)]23–26 similarly induced HMGB1 
translocation to cytoplasmic vesicles.23,27–30 Consequently, 
these activated macrophages/monocytes secrete cytoplasmic 
HMGB1 vesicles via non-classical endoplasmic reticulum- 
Golgi exocytotic pathways.21,23,27–30

Release by Injured Somatic Cells
In addition, HMGB1 can be passively released by somatic 
cells undergoing cytoplasmic membrane destruction due to 
accidental (mechanical or chemical) events or regulated pro-
cesses governed by specific caspases or kinases. For instance, 
many PAMPs induce a form of programmed necrosis, pyrop-
tosis (Figure 1),31 that is characterized by the oligomerization 
of the apoptosis-associated speck-like protein containing a 
C-terminal caspase recruitment domain (ASC) and its integra-
tion with pro-caspase-1 and a NOD-Like Receptor (eg, 
NLRP3) to form a large inflammasome complex (pyropto-
some) that eventually disrupts cytoplasmic membranes.32,33 

Similarly, many proinflammatory cytokines (eg, TNF and 
IFN-γ) induce another form of programmed necrosis (necrop-
tosis) via activating protein kinase receptor-interacting protein 
3 (RIP3) and the interferon-induced double-stranded RNA- 
activated protein kinase R (PKR) (Figure 1).34–36 Collectively, 
pyroptosis33,37 and necroptosis38 allow passive HMGB1 
release following ischemia/reperfusion,39,40 non-penetrating 
trauma,41,42 chemical toxemia,43 or radiation,44 leading to 
massive HMGB1 release during lethal infections and injuries.
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Figure 1 Pathogen-Associated Molecular Pattern molecules (PAMPs) trigger 
HMGB1 release through inducing pyroptosis or necroptosis.
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Extracellular HMGB1 and Innate 
Immunity
Extracellular HMGB1 binds many cell surface receptors 
such as the TLR445–47 and the receptor for advanced 
glycation end products (RAGE) (Figure 2).48–51 Due to 
its dramatically (4–30-fold) different affinities to TLR4/ 
MD2 (KD = 22.0 nM)47 and RAGE (KD = 97.7–710 
nM),48,49 HMGB1 may first bind TLR4/MD2 when it is 
actively secreted by innate immune cells at relatively 
lower amount.52 However, when it is passively released 
by somatic cells at relatively higher levels, HMGB1 may 
also bind RAGE48,50,53 and other low-affinity receptors. 
Like TLR4,4,45–47 RAGE also recognizes many other 
ligands including the advanced glycation end-products 
(AGEs), complement component (eg, C1q, KD = 5.6 
µM) or endotoxins (KD = 2–35 nM).51 Thus, HMGB1 
may orchestrate divergent inflammatory responses through 
activating different PRRs interacting with a wide array of 
inflammatory ligands.

Extracellular HMGB1 Amplifies 
Inflammation
First, as a highly charged molecule, HMGB1 binds and facil-
itates the cellular uptake of negatively charged PAMPS (eg, 
CpG-DNA and LPS) via RAGE-receptor-mediated 
endocytosis.53 Upon reaching acidic endosomal and lysoso-
mal compartments near HMGB1’s isoelectric pH, HMGB1 

becomes neutrally charged and sets free its cargos,53 thereby 
facilitating their recognition by respective receptors such as 
TLR954 or caspase-11 53. Second, the engagement of RAGE 
with HMGB1 also induces chemotaxis55 and the migration of 
monocytes, dendritic cells56,57 and neutrophils,58 thereby facil-
itating the recruitment of innate immune cells to the sites of 
infection and injury (Figure 2).55 Third, HMGB1 can even 
directly activate macrophages59 and endothelial cells60 to pro-
duce various cytokines and chemokines,45,46,60–63 thereby sus-
taining a dysregulated inflammatory responses during 
infections (Figure 2).64 Thus, extracellular HMGB1 functions 
as an alarmin signal to alert, recruit and activate immune cells, 
thereby amplifying inflammatory responses.

Following traumatic injury, HMGB1 is detected in the 
circulation within a few hours,41,42,65 and its systemic levels 
correlated with post-traumatic inflammatory responses41,66 

and worsening clinical scores.67 Accordingly, HMGB1-neu-
tralizing antibodies have been proven protective in animal 
models of ischemia/reperfusion,39,68,69 trauma,70,71 chemical 
toxemia,72–74 atherosclerosis,75 gastric ulcer,76 and 
hyperoxia,77 supporting a pathogenic role of HMGB1 in 
injury-elicited inflammatory diseases.

Extracellular HMGB1 Induces 
Immunosuppression
It is well known that antecedent traumatic injury often 
dampens subsequent innate immunity against secondary 
infections, suggesting a possible pathogenic role of 
DAMP in immune tolerance or immunosuppression. As 
aforementioned, when HMGB1 is passively released by 
damaged tissues at overwhelmingly high levels, it can bind 
RAGE48–50,78 to induce TLR4 internalization and desensi-
tization to subsequent stimulation with inflammatory 
ligands (eg, endotoxin). Furthermore, at relatively higher 
doses (eg, 10 µg/mL), HMGB1 could also binds RAGE to 
trigger macrophage pyroptosis,53,79 apoptosis80 and 
necrosis,80 resulting in possible depletion of innate 
immune cells and immunosuppression (Figure 2). 
Therefore, excessive HMGB1 accumulation may induce 
immune tolerance81,82 as well as immunosuppression83 

that compromises the host’s ability to eradicate microbial 
infections during lethal injuries and infections.84,85

HMGB1 as a Late Mediator of 
Lethal Sepsis
In preclinical settings, sepsis is routinely induced by the 
infusion of bacterial endotoxins (endotoxemia) or the 
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Figure 2 Extracellular HMGB1 induces divergent inflammatory responses through 
different receptors. Note that RAGE is involved in HMGB1 endocytosis and induc-
tion of leukocyte pyroptosis and possible immunosuppression due to immune cell 
depletion.
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disruption of host epithelial barrier to induce microbial 
translocation by a surgical procedure termed cecal ligation 
and puncture (CLP).86 In murine models of endotoxemia 
and CLP-sepsis, HMGB1 is first detected in the circulation 
8 hours after the disease onset, and subsequently increased 
to plateau levels from 16 to 32 hours,21,87 distinguishing 
HMGB1 from TNF and other early proinflammatory 
cytokines.13 The pathogenesis of HMGB1 in endotoxemia 
was inferred from studies using HMGB1-neutralizing anti-
bodies, which conferred a dose-dependent protection 
against endotoxin-induced tissue injury and lethality.21,88 

Intriguingly, anti-HMGB1 antibodies did not affect endo-
toxin-induced cytokine production in the lung inflamma-
tion model, suggesting that HMGB1 may contribute to 
lung injury through additional inflammation-independent 
mechanisms.88 Indeed, it has been shown that excessive 
HMGB1 accumulation in the bronchoalveolar space 
adversely compromised bacteria-killing capacities of 
alveolar macrophages,77 which were similarly reversed 
by HMGB1-neutralizing antibodies.89

In a more clinically relevant animal model of sepsis 
(induced by CLP), delayed administration of HMGB1-spe-
cific neutralizing antibodies, beginning 24 h after CLP, 
dose-dependently rescued rodents from lethal sepsis.87,90,91 

Moreover, targeted inhibition of HMGB1 expression in 
macrophages and dendritic cells reduced systemic 
HMGB1 accumulation, and similarly rescued mice from 
sepsis.92 Taken together, these experimental data establish 
extracellular HMGB1 as a critical late mediator of experi-
mental sepsis, which can be therapeutically targeted with 
wider therapeutic windows than other early 
cytokines.1,13,93,94

Endogenous HMGB1-Binding 
Proteins
To prevent potentially harmful inflammatory responses, 
mammals have also developed many strategies to coun-
ter-regulate HMGB1-mediated cytokine productions. For 
instance, an endothelial anticoagulant cofactor, thrombo-
modulin (TM), could bind HMGB1 to prevent its interac-
tion with macrophage cell surface receptors,95 thereby 
preventing HMGB1-induced inflammatory response.96,97 

Similarly, a liver-derived acute-phase protein, haptoglobin 
(Hp), could capture HMGB1 to trigger CD163-dependent 
endocytosis of HMGB1/Hp complexes, and instead 
induced the production of anti-inflammatory enzymes 
(heme oxygenase-1) and cytokines (eg, IL-10).98 

Moreover, a complement factor C1q also interacted with 
HMGB1 (KD = 200 nM) and formed a tetramolecular 
complex with RAGE and LAIR-1, resulting in the produc-
tion of anti-inflammatory cytokines (eg, IL-10) and pro- 
resolution lipid mediators.99,100 Thus, in a sharp contrast to 
exogenous PAMPs (eg, CpG-DNA and LPS), many endo-
genous proteins can bind HMGB1 to tilt the balance 
towards anti-inflammatory responses via distinct signaling 
pathways.95,98–100

Development of Antibodies Against 
an Endogenous Protein 
(Tetranectin, TN) Colluding with 
HMGB1
Tetranectin (TN) was initially characterized as an oligo-
meric plasminogen-binding protein101 exhibiting >75% 
amino acid sequence identity between humans and 
rodents.102 It is expressed abundantly in the lung103 but 
also present at relatively high levels (10–12 µg/mL) in the 
bloodstream of healthy humans 104. In rodents, enhanced 
expression or genetic depletion of TN led to abnormal 
osteogenesis 105, excessive curvature of the thoracic 
spine-spinal deformity,106 deficient motor function (such 
as limb rigidity),107 or impaired wound healing,108,109 

suggesting a generally beneficial role of TN in health.

TN Depletion in Sepsis
While searching for endogenous proteins modulating 
HMGB1 release, we noticed that the blood level of a 20- 
kDa protein was almost completely depleted in a patient 
who died of sepsis. This 20-kDa protein was identified as 
human TN by mass spectrometry and immunoblotting 
assays.110 Further analysis of a cohort of 44–45 age- 
matched healthy controls and critically ill patients revealed 
a 60–70% reduction of plasma TN levels in patients with 
sepsis or septic shock. In accordance with these clinical 
findings, circulating TN levels were similarly decreased in 
experimental sepsis, with a >70% reduction at 24 h after 
disease onset— a time point when some septic animals 
started to lose survival.110

Surprising Discovery of TN-Specific 
Protective Antibodies
To understand the role of TN in sepsis, we would normally 
perform three sets of experiments to find out what would 
happen if we: 1) genetically knocked out its expression; 2) 
pharmacologically supplemented septic animals with 
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recombinant TN protein; and 3) treated septic animals with 
TN-specific antibodies? First, genetic disruption of TN 
expression rendered animals more susceptible to lethal 
sepsis with exacerbated lung inflammation and injury, 
suggesting a protective role of TN in sepsis.110 

Conversely, supplementation of sub-physiological dose of 
TN at 2 and 24 h after the onset of lethal sepsis conferred a 
dose-dependent protection, further confirming its protec-
tive role in disease. Surprisingly, when we treated septic 
animals with polyclonal antibodies (pAbs) generated in 
four rabbits, we found that total IgGs purified from two 
rabbits reproducibly reduced septic lethality even when the 
first dose was given 22 h after CLP.110

Screening a library of peptides spanning the entire 
sequence of human TN revealed that these two protective 
pAbs uniquely recognized a peptide (P5) harboring an 
epitope sequence (NDALYEYLRQ, “P5-5”) exhibiting 
60–70% identity between humans and rodents, but a 
100% identity between humans and many other mamma-
lian species (ranging from pigs to monkeys). We thus 
strategically immunized mice with human TN antigen 
and generated several hybridoma clones producing P5-5- 
reactive monoclonal antibodies (mAbs). When adminis-
tered to septic mice 24 h after CLP, three P5-5-reacting 
mAbs similarly and significantly rescued mice from lethal 
sepsis by attenuating sepsis-induced TN depletion, tissue 
injury, as well as bacteremia.110 It suggests a possibility 
that TN domain-specific mAbs conferred protection 
against lethal sepsis partly by facilitating pathogen 
elimination.

TN Interacts with HMGB1 to Facilitate 
HMGB1 Endocytosis and Macrophage 
Pyroptosis
Intriguingly, highly purified TN protein selectively inhib-
ited the LPS- and SAA-induced HMGB1 release without 
affecting the parallel release of other cytokines and chemo-
kines. This selective inhibition of HMGB1 release was 
attributable to TN’s capacity in capturing HMGB1 and 
facilitating the endocytosis of TN/HMGB1 complexes by 
macrophage cultures (Figure 3).110 Consistent with pre-
vious findings that HMGB1 endocytosis triggered macro-
phage pyroptosis,53,79 we found that TN enhanced 
HMGB1-induced translocation of nuclear ASC to cytoplas-
mic regions, where ASC either aggregated into minute 
puncta that appeared to be secreted through microvesicle 
shedding, or aggregated into a larger focus or speck 

(pyroptosome) that would trigger pyroptosis.110 

Consequently, TN significantly enhanced HMGB1-induced 
uptake of trypan blue dye and parallel release of LDH and 
ASC, a marker for macrophage pyroptosis.111 Taken 
together, these findings suggest that TN could capture 
HMGB1 released into the circulation during sepsis, thereby 
promoting HMGB1 endocytosis and macrophage pyropto-
sis, leading to possible immunosuppression that may com-
promise effective pathogen elimination (Figure 3).

TN-Specific mAbs Prevent Harmful TN/ 
HMGB1 Interaction and Macrophage 
Pyroptosis
To understand the protective mechanism of TN domain- 
specific mAbs, we tested their possibility in disrupting TN/ 
HMGB1 interaction using the Surface Plasmon Resonance 
technique. When the TN-conjugated sensor chip was pre- 
treated with mAb, the SPR response signal for subsequent 
HMGB1 application was reduced by >85%, which was 
paralleled by an almost 6-fold increase of KD, indicating 
that these TN domain-specific protective mAbs effectively 
interrupted TN/HMGB1 interaction (Figure 3).110 

Furthermore, these protective mAb markedly prevented 
the reciprocal enhancement of cellular uptake of HMGB1 
and TN, and prevented the TN/HMGB1-induced cytoplas-
mic ASC translocation or aggregation into large ASC 
specks in macrophage cultures. It suggests a possibility 
that TN domain-specific mAbs may confer protection 
against lethal sepsis partly by preventing harmful TN/ 
HMGB1 interaction that may adversely trigger macro-
phage pyroptosis and immunosuppression (Figure 3).

Conclusion
Sepsis remains a major clinical problem that accounts for 
approximately 20% of total deaths worldwide,112 and 
annually costs more than $62 billion in the US alone.113 

Despite a robust increase in the understanding of the patho-
physiology of sepsis, many antibody-based strategies target-
ing early pro-inflammatory cytokines (such as TNF or IL-1) 
failed in clinical settings. Currently, there is still no effective 
therapy114 other than adjunctive use of antibiotics, fluid 
resuscitation, and supportive care.113 By using a bedside to 
bench approach, we have identified additional unexpected 
biological targets with potential translational promise. The 
interaction of a harmless protein (TN) with a pathogenic 
mediator (HMGB1) released into the circulation during sep-
sis adversely promoted HMGB1 endocytosis and 
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macrophage pyroptosis (Figure 3), which triggers both 
excessive inflammation and ineffective pathogen elimination 
in a feed-forward mechanism ultimately leading to host 
lethality.114 Although pyroptosis normally serves as a host 
defense mechanism against infection,115 it could also allow 
the excessive release of HMGB1 and other proinflammatory 
cytokines (eg, IL-1β) that adversely drive a life-threatening 
inflammatory response.114 Meanwhile, excessive pyroptosis 
also depletes the number of innate immune cells necessary 
for pathogen clearance, resulting in a possible immunosup-
pression (Figure 3).

An antibody that interferes with TN/HMGB1 interac-
tion thus represents a rational therapeutic approach to 

prevent macrophage cell death and resultant sequelae. 
Our recent discovery of several TN-specific mAbs capable 
of recognizing a highly conserved epitope sequence 
(NDALYEYLRQ) in humans and many mammalian spe-
cies (including baboon, bovine, cougar, elephant, monkey, 
pig and tiger) has suggested a promising therapy for sepsis 
in clinical settings. At present, it remains elusive whether 
these TN-specific mAbs also attenuate HMGB1-induced 
apoptosis or necrosis that are similarly associated with 
poor outcomes in preclinical settings. It is also not yet 
known whether TN-specific mAbs similarly affect TN 
interaction with other proteins (for example, plasminogen) 
that may affect sepsis-induced dysregulated coagulopathy. 

NDALYEYLRQ

R Q
E

D

N

Microbial Infections

HMGB1 / TN

Pyroptosis

Immunosuppression

Ineffective
Pathogen Elimination

mAb8

HMGB1 TN

Figure 3 Proposed model for tetranectin domain-specific monoclonal antibody (mAb)-mediated protection against lethal sepsis. Severe microbial infections cause systemic 
accumulation of HMGB1 and concurrent depletion of TN, partly because circulating HMGB1 binds to TN to facilitate the endocytosis and degradation of TN/HMGB1 
complexes by innate immune cells. The endocytosis of TN/HMGB1 complex also adversely triggers macrophage pyroptosis and immunosuppression that may compromise 
effective pathogen elimination and animal survival. Some TN-reactive mAbs, such as mAb8, could bind to specific epitope sequence (NDALYEYLRQ) of TN to interrupt its 
interaction with HMGB1, thereby impairing HMGB1 endocytosis and macrophage pyroptosis, and consequently reversing the sepsis-induced immunosuppression and animal 
lethality.
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Finally, given the pathogenic role of HMGB1 in injury- 
elicited inflammatory diseases, the role of TN in other 
inflammatory diseases should also be explored.114

Thus, it would be exciting to translate these pre-clinical 
findings into clinical applications through the use of huma-
nized TN-specific mAbs capable of preventing its undesired 
interaction with pathogenic mediators that could cause macro-
phage pyroptosis and immunosuppression during lethal infec-
tions or injuries.110 Moreover, the discovery of mAbs capable 
of disrupting TN/HMGB1 interaction and endocytosis and 
rescuing animals from lethal sepsis has suggested an exciting 
possibility to develop therapeutic antibodies against harmless 
proteins colluding with disease mediators.
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