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Abstract
Background: We present here the recent update of AMS algorithm for identification of post-translational modification 
(PTM) sites in proteins based only on sequence information, using artificial neural network (ANN) method. The query 
protein sequence is dissected into overlapping short sequence segments. Ten different physicochemical features 
describe each amino acid; therefore nine residues long segment is represented as a point in a 90 dimensional space. 
The database of sequence segments with confirmed by experiments post-translational modification sites are used for 
training a set of ANNs.

Results: The efficiency of the classification for each type of modification and the prediction power of the method is 
estimated here using recall (sensitivity), precision values, the area under receiver operating characteristic (ROC) curves 
and leave-one-out tests (LOOCV). The significant differences in the performance for differently optimized neural 
networks are observed, yet the AMS 3.0 tool integrates those heterogeneous classification schemes into the single 
consensus scheme, and it is able to boost the precision and recall values independent of a PTM type in comparison 
with the currently available state-of-the art methods.

Conclusions: The standalone version of AMS 3.0 presents an efficient way to indentify post-translational modifications 
for whole proteomes. The training datasets, precompiled binaries for AMS 3.0 tool and the source code are available at 
http://code.google.com/p/automotifserver under the Apache 2.0 license scheme.

Background
Post-translational modification (PTM) is the chemical
modification of a protein after its translation. During pro-
tein synthesis, a protein is build using twenty different
amino acids, yet after translation a post-translational
modification of amino acids can be observed by attaching
to them other biochemical functional groups such as ace-
tate, phosphate, various lipids and carbohydrates, by
changing the chemical nature of an amino acid, or by
making structural changes, like the formation of disulfide
bridges. In the advent of massive (complex and time-con-
suming) sequencing experiments, the availability of
whole proteomes requires accurate computational tech-
niques for investigation of protein modification sites for
the high-throughput scale. To address these needs we
propose here our improved technique to identify PTM

sites by using artificial neural network, trained on pro-
teins from the current version of Swiss-Prot database [1]
and Phospho.ELM dataset [2,3].

The automatic prediction of PTM sites is now very
important area of interest for the bioinformatics research
community. The currently available PTM prediction tools
can be categorized into four major groups based on the
used types of classification schemes. The first category
includes general PTM related resources like ELM [4] that
perform rapid regular expression pattern search in order
to predict Eukaryotic Linear Motifs (ELMs) in protein
sequences. Another web service, namely PROSITE [5]
predicts many types of PTMs based on the consensus of
sequence patterns. Consensus based approaches combine
several signature recognition methods to scan a given
query protein sequence against observed protein signa-
tures. The Scansite tool [6] predicts kinase-specific and
signal transduction relevant motifs. The conserved
sequence motifs represent footprints of important bio-
chemical properties or biological functions performed by
those proteins. GPS approach predicts kinase-specific
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phosphorylation sites from protein primary sequences
for 71 different PK groups by family-based phosphoryla-
tion scoring technique [7,8]. The PHOSITE [9] algorithm
for prediction of phosphorylation sites is based on case-
based sequence analysis to obtain predictions with con-
stant specificity and sensitivity.

The second class of methods covers different neural
network prediction tools. These include phosphorylation
related prediction servers like NetPhos [10] and Net-
PhosK [11,12], glycosylation based tools like NetOGlyc
[13], NetNGlyc, DictyOGlyc [14], YinOYang [15], predic-
tion of cleavage sites in protein sequences [16-18], pre-
diction of N-terminal myristoylation on protein
sequences [19] and many others. The most popular
among these servers is NetPhosK that allows the user to
choice its preferred 'threshold' value during prediction. In
our manuscript we present the results with three thresh-
old levels: 0.3, 0.5 and 0.7 for making the predictions and
they are called respectively as NetPhosK_0.3,
NetPhosK_0.5 and NetPhosK_0.7.

The third category of methods involves several support
vector machine (SVM) based prediction techniques.
Among the recent works, protein methylation site predic-
tion is attempted using bayesian feature extraction tech-
nique and SVM based classifier [20]. In another work, the
prediction of Lysine acytelation sites is done using SVM
[21] based classifiers. PredPhospho [22] is another SVM
based system that attempts to predict phosphorylation
sites and the type of kinase that acts at each site. Our pre-
viously developed web-server AutoMotifServer (AMS)
[23] for prediction of post-translational modification sites
in protein sequences, also uses SVM classifier with both
linear and polynomial kernels. This software is available
freely at http://ams2.bioinfo.pl/. KinasePhos 2.0 [24] is
another web server for identifying protein kinase-specific
phosphorylation sites based on 9 amino acid long
sequences and coupling patterns. There are several
options provided in this prediction program, including
three different levels of specificity: 90%, 95% and 100%.
These three options are named respectively
KinasePhos_90, KinasePhos_95 and KinasePhos_100.

The fourth category consists from the remaining other
types of machine learning based PTM prediction tools. It
includes for example Sulfinator [25] that predicts tyrosine
sulfation sites using a combination of HMM models; pre-
diction of glycosylation sites using random forests [26];
PPSP prediction of PK-specific phosphorylation sites [8]
that deploys Bayesian decision theory (BDT); and many
others. The PPSP predicted the plausible phosphoryla-
tion sites accurately for approximately 70 PK (Protein
Kinase) groups. For our tests we choose the
PPSP_balanced model that seems to provide the best
overall performance for all types of protein families. In
the important work of Wan et al. [27] the efficient meta

predictor is designed that organize and process predic-
tions from individual source prediction algorithms. They
compiled and evaluated their technique on four unbiased
phosphorylation site datasets, namely the four major pro-
tein kinase families: CDK, CK2, PKA and PKC. In addi-
tion to the aforementioned classification software/tools,
the dbPTM database [28] compiles diverse information
on protein post-translational modifications (PTMs), such
as the catalytic sites, solvent accessibility of amino acid
residues, protein secondary and tertiary structures, pro-
tein domains and protein variations. The database
includes a majority of the experimentally validated PTM
sites from Swiss-Prot, PhosphoELM and O-GLYCBASE.
The recent survey [29] describes available resources for
predicting kinase-specific phosphorylation sites from
sequence properties. They compare strengths and weak-
nesses of variety of prediction tools, as described above.

Despite almost ten years of work and above reported
computational solutions, still we are unable to boost the
precision of in silico methods to be really useful in high
throughput context of personalized medicine. Therefore,
the present research improvements concentrate on two
important factors. The first is to further optimize predic-
tion accuracy in comparison with the current state-of-
the-art methods for variety of PTM sites, especially
focusing on selecting more informative feature descrip-
tors. The second factor is the speed of a prediction proce-
dure that is needed for the virtual screening of whole
proteomes. Therefore, we present here an extensively
optimization scheme for selecting the most informative
amino acids features, than used for training the very fast
machine learning method, namely artificial neural net-
work.

We have improved significantly the accuracy of the pre-
vious versions of AMS prediction tool [23,30] using an
efficiently designed Multi Layer Perceptron (MLP) pat-
tern classifier. In the current version of the tool, the query
protein sequences are dissected into overlapping short
segments. Ten different physico-chemical features repre-
sent each amino acid from a sequence segment; therefore
the nine amino acids segment is represented as the point
in a 90 dimensional abstract space of protein characteris-
tics. The MLP used in this work, special Artificial Neural
Network (ANN) algorithm, is developed to replicate
learning and generalization abilities of human's behavior
with an attempt to model the functions of biological neu-
ral networks of the human brain. The MLP architecture is
build from a feed-forward layered network of artificial
neurons, where each artificial neuron in the MLP com-
putes a sigmoid function of the weighted sum of all its
inputs.

The MLP based ANNs (see Figure 1) are observed to be
capable of classifying highly complex and nonlinear bio-
logical sequence patterns, where correlations between
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amino acid positions are important. Unlike earlier
attempts, in the current design of the neural network we
have implemented three different network models for
each of the PTM types, by independently optimizing the
network weights for three factors: optimum recall (sensi-
tivity); precision; and maximizing the receiver operating
characteristics of the prediction model. The consensus
build by those three ANNs for each type of PTM gives an
additional advantage in comparison to the previously
reported ANN based PTM prediction models. In our pre-
vious publications on AMS [23,30], the SVM based classi-
fication model failed to classify several PTM types with
limited number of positive samples. The current MLP
based design is much better suited to highly unbalanced
ratio between positives and negatives in the training data-
set, therefore preferred over the previously chosen SVM
based approach.

Summarizing, the AMS 3.0 tool (available at http://
bio.icm.edu.pl/~darman/ams3 and http://
code.google.com/p/automotifserver/) integrates hetero-
geneous classification schemes for different PTM types,
and it is designed to boost both the efficiency and speed
in comparison with previously presented computational
methods. As discussed earlier, the neural network is
designed in much more efficient and unique way to pre-
dict post-translational modifications than previously
used ANN algorithms. A detailed discussion on the
architecture of the neural network, details of the machine
learning algorithm is given in the first section. The next
section presents the results on several benchmarking
datasets, and finally the discussion part of the paper
report the major advances of our work.

Results
The performance of the networks is evaluated on the
training and test datasets for each of the PTM types. Dur-
ing training of the feed-forward neural network with
back-propagation learning algorithm, the learning rate

(η) and acceleration factors (δ) are chosen as 0.8 and 0.8
respectively. The classification performance is described
by the following measures of accuracy:

where, TP is the number of true positives, FP is the
number of false positives, TN is the number of true nega-
tives, and FN is the number of false negatives. The classi-
fication error (E) is used to provide an overall error
measure, recall (R) corresponds to the percentage of cor-
rect predictions, precision (P) measures the percentage of
observed positives that are correctly predicted, true posi-
tive rate (TPR) is similar to recall or sensitivity measure
and false positive rate (FPR) estimates the false alarm rate
or fall-out. We also estimate the receiver operating char-
acteristic (ROC) by plotting the fraction of true positives
(TPR) vs. the fraction of false positives (FPR). More spe-
cifically, the ROC curves are drawn for both training and
test datasets in each of the three runs of experiment, i.e.,
optimal AUC, recall and precision values. This ROC anal-
ysis provides a tool to select possibly optimal network
models and to discard suboptimal ones independently
from the class distribution. The area under the ROC
curve (AUC) is also calculated in the current experiment
and presented in Table 1. The AUC is equivalent to the
probability that a classifier will rank a randomly chosen
positive instance higher than a randomly chosen negative
one [31].

The detailed performance analysis of the current soft-
ware using three random sub-sample validations on
training and test datasets of different PTM types is given
in the Additional file 1. The three sets of results (corre-
sponding to the AUC, Recall and Precision optimiza-
tions) for each PTM type corresponds to the training of
the network based on the optimized AUC area, recall and
precision values for the random test dataset under con-
sideration. Each such network is trained with possible
variations of hidden neurons from 2 to 20 (with step size
2). The number of hidden neurons, for which a given net-
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Figure 1 MLP algorithm. A block diagram of an MLP shown as a feed 
forward layered neural network.
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work is observed to give best possible recognition accu-
racy, is also listed in the detailed experimental datasheet
of the Additional file 1. It may be observed that the high
recall value (more than 70%), reasonable precision (more
than 50%) and AUC area (more than 0.75) is achieved on
independent test datasets of most of the PTM types.

The performance of the current technique is observed
to be significantly better for most PTM types in compari-
son with the results of the previous version of AutoMotif
Server, i.e., AMS 2.0. In AMS 2.0, classification results
using Support Vector Machine on the training datasets
for respective PTM types are shown, which improved the
earlier recognition performance of the earlier version of

the server AMS 1.0 [23]. A relative comparison of the
training set results of our technique with the correspond-
ing results of the AMS 2.0 is shown in Table 2. Detailed
results related to respective test set accuracies and due to
variations in nomenclature, the current version of Swiss
Prot dataset sometimes could not be matched precisely
with all the PTM types, experimented in AMS2. How-
ever, a detailed experiment is also conducted with the old
dataset to show the level of improvement for the current
methodology. The results in both cases (with old and new
datasets) clearly indicate that the developed software out-
performs/improves the performance of the previous
server.

Table 1: Single Amino-Acids Features Selection.

Accession 
number

Brief feature description Reference Selected/Rejected

ARGP820101 Hydrophobicity index Eur. J. Biochem. 128, 565-575 (1982) Rejected

BIOV880101 Information value for 
accessibility; average fraction 
35%

Protein Engineering 2, 185-191 (1988) Selected

BIOV880102 Information value for 
accessibility; average fraction 
23%

Protein Engineering 2, 185-191 (1988) Selected

BLAS910101 Scaled side chain 
hydrophobicity values

Analytical Biochemistry 193, 72-82 (1991) Selected

BLAS910101 Scaled side chain 
hydrophobicity values

Analytical Biochemistry 193, 72-82 (1991) Rejected

BULH740101 Surface tension of amino acid 
solutions: A hydrophobicity 
scale of the amino acid 
residues

Arch. Biochem. Biophys. 161, 665-670 (1974) Rejected

FASG760101 Molecular weight Handbook of Biochemistry and Molecular 
Biology, 3rd ed., Proteins - Volume 1, CRC 
Press, Cleveland (1976)

Rejected

HOPA770101 Hydration number Intermolecular Interactions and 
Biomolecular Organizations, Wiley, New 
York (1977)

Selected

KRIW710101 Side chain interaction 
parameter

Biochim. Biophys. Acta 229, 368-383 (1971) Selected

KRIW790101 Side chain interaction 
parameter

Biochim. Biophys. Acta 576, 204-228 (1979) Selected

KRIW790102 Fraction of site occupied by 
water

Biochim. Biophys. Acta 576, 204-228 (1979) Selected

KRIW790103 Side chain volume Biochim. Biophys. Acta 576, 204-228 (1979) Selected

LAWE840101 Transfer free energy, CHP/
water

J. Biol. Chem. 259, 2910-2912 (1984) Selected

OOBM850105 Optimized side chain 
interaction parameter

Bull. Inst. Chem. Res., Kyoto Univ. 63, 82-94 
(1985)

Selected

WARP780101 Average interactions per side 
chain atom

J. Mol. Biol. 118, 289-304 (1978) (Gly 0.81) Rejected

List of experimentally chosen features used in the current experiment from the AAindex database with the corresponding feature accession 
number, brief description and the journal reference.



AMS 3.0 (New SwissProt dataset)

Recall Precision AUC
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Table 2: Improvement of the performance of the AutoMotifServer 3.0.

AMS 2.0 AMS 3.0

PTM type Agent Recall Precision Recall Precision AUC

3,4-dihydroxyproline - 88,89 66,67 95,45 87,5 0,9622

4-carboxyglutamate - 90,56 95,93 96,27 99,65 0,9808

4-hydroxyproline - 65,59 85,31 86,88 83,94 0,9059

5-hydroxylysine - 12,79 84,62 97,3 38,92 0,8452

Asymmetric 
dimethylarginine

- 84,62 82,09 94,55 94,55 0,9652

dihydroxyphenylalanine - 29,41 76,92 86,17 86,17 0,9146

Glycine amide - 84,38 90 97,92 97,92 0,9776

Hydroxyproline - 28,8 85,71 89,62 94,06 0,9421

Leucine amide - 98,97 97,96 98,1 99,36 0,9890

Methionine amide - 100 93,75 100 93,75 0,6666

N-acetylglycine - 79,17 90,48 97,83 97,83 0,9857

N-acetylmethionine - 100 95,42 98,4 98,93 0,9905

N-acetylserine - 98,24 99,64 98,22 99,4 0,9901

N-acetylthreonine - 76,47 88,64 89,8 97,78 0,946

N6-acetyllysine - 12,76 74,32 94,3 93,23 0,9534

N6, N6, N6-trimethyllysine - 7,5 60 85,71 97,5 0,9260

Omega-N-methylated 
arginine

- 0 0 78 58,21 0,82

Phenylalanine amide - 98,59 93,33 99 99 0,9866

Phospho PKA 63,64 77,78 90,72 86,27 0,9396

Phospho PKC 32,56 84,85 86,17 97,59 0,9288

Phospho autocatalysis 13,16 96,15 79,35 93,59 0,8883

Phospho CDC2 85,71 80,9 89,55 75,95 0,9160

Phosphoserine - 97,06 91,34 94,33 95,56 0,949

Phosphoserine PKA 68,42 78,31 91,67 72,64 0,9220

Phosphoserine PKC 23,29 80,95 96,43 95,29 0,9754

Phosphoserine autocatalysis 10 85,71 75 90,7 0,8683

Phosphoserine CK2 29,73 70,97 88,14 59,77 0,8823



95 85,2 97,4 0,905598

47 94,96 99,82 0,974381

75 91,75 98,97 0,952053
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81,82 52,94 0,862032

100 72,22 0,975
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Phosphothreonine - 46,12 75,46 78,16 69,73 0,8284

Phosphothreonine autocatalysis 0 0 73,47 80 0,8493

Phosphotyrosine - 9,32 71,2 84,24 96,69 0,917

Phosphotyrosine autocatalysis 1,41 12,5 92 92 0,9514

Pyrrolidone carboxylic acid - 60,31 97,11 91,58 97,92 0,9552

Sulfotyrosine - 70,19 85,88 98,39 97,6 0,9889

Valine amide - 94,29 97,06 98,57 98,57 0,9866

Phospho.ELM - 98 91,68 - - -

Phospho.ELM Abl 0 0 - - -

Phospho.ELM AMPK_group 6,25 100 - - -

Phospho.ELM ATM 92,98 81,54 - - -

Phospho.ELM CaM-KIIalpha 41,67 88,24 - - -

Phospho.ELM CaM-
KII_group

14,55 88,89 - - -

Phospho.ELM CDK1 41,73 63,04 - - -

Phospho.ELM CDK2 7,14 45,45 - - -

Phospho.ELM CDK_group 59,8 67,03 - - -

Phospho.ELM CK1_group 0 0 - - -

Phospho.ELM CK2 alpha 38,98 67,65 - - -

Phospho.ELM CK2_group 43,33 72,22 - - -

Phospho.ELM EGFR 0 0 - - -

Phospho.ELM Fyn 0 0 - - -

Phospho.ELM GRK_group 2,7 100 - - -

Phospho.ELM GSK-3beta 18,37 75 - - -

Phospho.ELM GSK-3_group 12,5 66,67 - - -

Phospho.ELM IGF1R 26,09 100 - - -

Phospho.ELM IKK_group 0 0 - - -

Phospho.ELM InsR 6,67 60 - - -

Phospho.ELM Lck 11,76 60 - - -

Phospho.ELM Lyn 0 0 - - -

Phospho.ELM MAPK1 45,88 67,24 - - -

Phospho.ELM MAPK14 4 22,22 - - -

Phospho.ELM MAPK3 74,7 78,48 - - -

Table 2: Improvement of the performance of the AutoMotifServer 3.0. (Continued)
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Phospho.ELM MAPK8 14,71 41,67 - - -

Phospho.ELM MAPKAPK2 3,03 100 - - -

Phospho.ELM MAPK_group 54,9 77,78 - - -

Phospho.ELM PDK-1 42,86 85,71 - - -

Phospho.ELM PKA alpha 42,42 82,35 - - -

Phospho.ELM PKA_group 58,15 90,43 - - -

Phospho.ELM PKB_group 79,76 65,05 - - -

Phospho.ELM PKC alpha 19,7 72,22 - - -

Phospho.ELM PKC_group 25,21 80 - - -

Phospho.ELM PLK1 0 0 - - -

Phospho.ELM Src 0,67 5 - - -

Phospho.ELM Syk 6,67 30 - - -

Comparison of best performances of the AMS 2.0 server with the current AMS version 3.0 on best results obtained on the training data

Table 2: Improvement of the performance of the AutoMotifServer 3.0. (Continued)
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Many researchers concentrated their efforts on predic-
tion of four major kinase families, namely CDK, CK2,
PKA and PKC. To compare the current technique with
the existing ones, we have conducted detailed experi-
ments with those four kinase families from the latest
Phospho.ELM dataset. Figure 2 (a-b) shows scopes of
AUCs for these four kinase families for the train and test
datasets of AMS3. In the current work we have compared
the performance of AMS3 with the existing state-of-the-
art prediction systems for phosphorylation sites in pro-
tein sequences. Figure 3 shows a comparative analysis of
the current technique with standard predictors, namely
GPS, KinasePhos, NetPhosK, PPSP, PredPhospho, Scan-
site and Meta Predictor. Table 3 lists the comparative per-
formances, i.e. sensitivity, specificity and accuracy, of
aforementioned prediction systems (and their variations)
with the current one. In another comparison, we have
plotted the ROC curves of the four kinase families Figure
4(a-d) for different runs of trainset/testset results for
AMS3 and compared the same with claimed ROC values
of the standard predictors.

Among the other comparable works in this domain, the
NetPhos 2.0 server predicts serine, threonine and
tyrosine phosphorylation sites in eukaryotic proteins and
NetPhosK 1.0 server [11] predicts kinase specific eukary-
otic protein phosphoylation sites. Similar to our
approach, both servers use neural network based classifi-
ers for prediction of amino acid sequences. The perfor-
mance of the NetPhosK server is reported on 5 different
PTM types, i.e. PKA, PKC, CaM-II, cdc2 and CKII on
independent test datasets. Table 4 shows the comparative
analysis of best recognition performances of both the
servers on test samples of comparable PTM types. It can
be observed that our current technique also shows supe-
rior performances in all the cases under consideration.
Due to variations in nomenclature and datasets, the fur-
ther (unbiased) comparison with NetPhosK and other
available servers could not be carried out exhaustively.

Average execution time for the current software is
around 25 ms for 100 entries of short amino acid
sequences. Each such short sequence contains nine
amino acids, extracted from a complete FASTA format-
ted protein sequence. The experiment is conducted on a
moderately powerful desktop with 1.6 GHz processor and
768 MB primary memory in Linux based operating envi-
ronment.

Discussion
The present method provides a fast and accurate system
for prediction of post-translational modification sites that
is capable of classifying highly complex local biological
sequence features. The current design of the neural net-
work implements three different network models for each
of the PTM types by independently optimizing the net-

work weights for optimum recall/precision/AUC values
on randomly chosen test patterns.

The efficiency of classification and the prediction
power of our method, estimated on training and test
datasets for each PTM types using the sensitivity (recall),
precision values and area under ROC curves, clearly out-
performs the previously reported results. As evident in
Tables 2, 3 and 4, the current technique improves the ear-
lier versions of the AutoMotifServer (AMS 1.0, 2.0) and
also outperforms the other state-of-the-art systems, GPS,
KinasePhos, NetPhosK, PPSP, PredPhospho, Scansite and
Meta Predictor, designed for kinase-specific prediction of
phosphorylation sites in protein sequences. For compari-
son with our earlier version of AMS, the new Swiss Prot
dataset could not be used because of the new nomencla-
ture in the current version. Therefore, we partially ran the
experiments with the old version of the dataset. However
in the case of Phospho.ELM, the complete experimenta-
tion is done, together with the new version of the Swiss
Prot dataset. Significant differences in the performance of
differently optimized neural networks (for different PTM
types) are observed, yet the AMS 3.0 tool integrates those
heterogeneous classification schemes and it is able to
boost the precision and recall values independent of a
PTM type in comparison. Performances of AMS3 are also
evaluated on four kinase families CDK, CK2, PKA and
PKC and compared with the aforementioned predictor
systems. We could observe that the performance of the
current technique is comparable with the best among the
rest. However, there are cases when the current technique
fails to beat all other predictors. As shown in Figure 3, for
the best AUC value for kinase type PKC, Meta Predictor
outperforms AMS3. Similarly, in case of kinase type CK2,
AMS3 comes third, below NetPhosK and PPSP. In
another illustration related to ROC values, similar find-
ings could be observed, where the ROC values of differ-
ent predictors and their variations mostly come within
ROC curves of AMS3 train sets and independent test
sets.

There are two key reasons behind the performance
boost of the current version of the AMS. Firstly, prudent
choice of the feature descriptors from the AAindex data-
base by exhaustive trial and error with different possible
features. Secondly, the choice and design of the MLP base
classifier. Despite popular choice of SVM in binary classi-
fication problems, we have got better accuracy with MLP
by exhaustively tuning variety of learning parameters and
experimented on a wide range of hidden neuron varia-
tions. The prudent choice of train/test ratios in positive
and negative samples and the novel idea of optimizing
respective networks separately on peak AUC/Recall/Pre-
cision values, also boosted the overall performance pre-
serving the generality of the tool.
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Table 3: The best PTM predictors.

Sensitivity Specificity Accuracy MCC POS

CDK

GPS 0,908 0,8 0,844 0,695 294

KinasePhos_90 0,884 0,717 0,784 0,589

KinasePhos_95 0,799 0,837 0,822 0,632

KinasePhos_100 0,571 0,923 0,782 0,542

KinasePhos_bitscore 0,912 0,685 0,776 0,588

NetPhosK_0.3 1 0 0,4 N/A

NetPhosK_0.5 0,639 0,748 0,705 0,387

NetPhosK_0.7 0,065 0,998 0,624 0,188

PPSP_highsens 0,983 0,075 0,438 0,128

PPSP_balanced 0,905 0,796 0,839 0,687

PPSP_highspec 0,054 0,982 0,611 0,1

PredPhospho 0,898 0,823 0,853 0,708

Scansite_low 0,667 0,884 0,797 0,571

Scansite_medium 0,405 0,971 0,744 0,479

Scansite_high 0,153 0,993 0,657 0,29

Meta Predictor 0,912 0,832 0,864 0,73

AMS 3 (trainset) 0,957 0,94 0,941 104

AMS 3 (testset) 0,971 0,94 0,943

CK2 229

GPS 0,699 0,895 0,816 0,613

KinasePhos_90 0,581 0,904 0,774 0,523

KinasePhos_95 0,476 0,95 0,76 0,504

KinasePhos_100 0,266 0,985 0,698 0,386

KinasePhos_bitscore 0,594 0,901 0,778 0,53

NetPhosK_0.3 0,961 0,525 0,699 0,506

NetPhosK_0.5 0,755 0,948 0,871 0,73

NetPhosK_0.7 0,245 1 0,698 0,403

PPSP_highsens 0,93 0,227 0,509 0,208

PPSP_balanced 0,742 0,933 0,857 0,7

PPSP_highspec 0,048 1 0,619 0,171

PredPhospho 0,594 0,959 0,813 0,616

Scansite_low 0,576 0,983 0,82 0,64

Scansite_medium 0,38 0,997 0,75 0,512

Scansite_high 0,135 1 0,654 0,293

Meta Predictor 0,878 0,904 0,893 0,779

AMS 3 (trainset) 0,733 0,95 0,921 248

AMS 3 (testset) 0,675 0,94 0,921

PKA

GPS 0,817 0,809 0,812 0,618 360

KinasePhos_90 0,722 0,843 0,794 0,569

KinasePhos_95 0,65 0,887 0,792 0,56

KinasePhos_100 0,361 0,952 0,716 0,405
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The current technique is very fast in comparison to our
previously developed SVM based version of the server. As
mentioned earlier, the average prediction time for 100
short amino acid sequences is estimated at around 25 ms
on a standard desktop computer. In a nutshell, the MLP
based pattern classifier, with independent recall/preci-
sion/AUC optimized networks, along with an effective
feature descriptor is found to be more suitable to the
massive prediction of post-translational modifications for
whole proteomes. The availability of the precompiled,

standalone version allows for high-throughput screening
of large sequence datasets, the main problem that the sci-
entific proteome community is now considering heavily.

Conclusions
Summarizing, the AMS 3.0 tool integrates heterogeneous
classification schemes for different PTM types, and it is
designed to boost both the efficiency and speed in com-
parison with previously presented computational meth-
ods. Our fast and accurate system for prediction of post-

KinasePhos_bitscore 0,775 0,804 0,792 0,573

NetPhosK_0.3 0,878 0,724 0,786 0,59

NetPhosK_0.5 0,694 0,874 0,802 0,583

NetPhosK_0.7 0,483 0,959 0,769 0,525

PPSP_highsens 0,967 0,231 0,526 0,27

PPSP_balanced 0,85 0,806 0,823 0,645

PPSP_highspec 0,008 0,998 0,602 0,048

PredPhospho 0,808 0,839 0,827 0,642

Scansite_low 0,644 0,917 0,808 0,596

Scansite_medium 0,422 0,981 0,758 0,515

Scansite_high 0,158 0,991 0,658 0,288

Meta Predictor 0,883 0,828 0,85 0,699

AMS 3 (trainset) 0,917 0,891 0,896 345

AMS 3 (testset) 0,87 0,892 0,89

PKC

GPS 0,718 0,753 0,739 0,466 348

KinasePhos_90 0,649 0,789 0,733 0,441

KinasePhos_95 0,48 0,864 0,71 0,378

KinasePhos_100 0,129 0,977 0,638 0,211

KinasePhos_bitscore 0,687 0,722 0,708 0,404

NetPhosK_0.3 0,716 0,695 0,703 0,403

NetPhosK_0.5 0,491 0,841 0,701 0,358

NetPhosK_0.7 0,333 0,935 0,694 0,348

PPSP_highsens 0,954 0,274 0,546 0,289

PPSP_balanced 0,741 0,743 0,743 0,477

PPSP_highspec 0,006 1 0,602 0,059

PredPhospho 0,598 0,805 0,722 0,412

Scansite_low 0,411 0,866 0,684 0,315

Scansite_medium 0,17 0,946 0,636 0,189

Scansite_high 0,069 0,994 0,624 0,179

Meta Predictor 0,773 0,791 0,784 0,558

AMS 3 (trainset) 0,82 0,98 0,961 267

AMS 3 (testset) 0,629 0,931 0,912

Comparison of best recognition performances of different state-of-the-art phosphorylation site prediction programs with AMS-3 for four 
kinase families CDK, CK2, PKA and PKC.

Table 3: The best PTM predictors. (Continued)
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translational modification sites in protein sequences is
capable of classifying highly complex and nonlinear bio-
logical sequence patterns. We have implemented three
different network models for each of the PTM types by
optimizing the model for optimum recall/precision/AUC.
The features for the current experiment are chosen by
exhaustive experimentation on the AAindex database,
based on the previously proven amino acid characteris-
tics for prediction of side chain interaction sites, second-
ary structure information and related attributes. The
developed Predictor tool, reads primary protein
sequences in FASTA format and decides whether an
overlapping short amino acid sequence qualifies for a
potential PTM site or not, along with a probabilistic con-
fidence for such a decision. The user also specifies the
type of PTM for a specific prediction and the nature of
optimization required (based on AUC area, Recall and
Precision values).

The training datasets and precompiled binaries for
AMS 3.0 tool are available at http://bio.icm.edu.pl/~dar-

man/ams3 and the source code at http://
code.google.com/p/automotifserver under the Apache
2.0 license scheme.

Methods
Current dataset is extracted from the Swiss Prot Release
57.5 (dated 07-Jul-2009, consisting from 470,369 entries).
All these data samples are available for free download
from http://www.uniprot.org/. The dataset consists of 9
amino acid long sequence fragments centered on the
post-translationally modified site used as positive
instances. The negative instances were randomly selected
such that they do not include experimentally verified
PTM sites of any type. For each of the known thirty four
(34) PTM types under consideration, separate positive
and negative datasets were collected. We have also used
Phospho.ELM dataset version 8.2 downloaded from
http://phospho.elm.eu.org/dataset.html web site (April
2009). Phospho.ELM version 8.2 contains 4687 substrate
proteins covering 2217 tyrosine, 14518 serine and 2914

Figure 2 AUC for four kinase families. Scope of AUC values for the kinase families PKA, PKC, CDK and CK2, computed on sample train and test da-
taests using AMS3.

http://bio.icm.edu.pl/~darman/ams3
http://bio.icm.edu.pl/~darman/ams3
http://code.google.com/p/automotifserver
http://code.google.com/p/automotifserver
http://www.uniprot.org/
http://phospho.elm.eu.org/dataset.html
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threonine instances. Data from high-throughput experi-
ments have been included.

The features for the current experiment are chosen by
exhaustive optimization and search in all different hun-
dreds (exactly 544 in the current version) of AAindex
database release 9.0 http://www.genome.jp/aaindex/. Dif-
ferent features are considered based on their previously
proven characteristics for the prediction of side chain
interaction sites and secondary structure information.
More specifically, features based on different side-chain
interaction parameters like side-chain volume/hydropho-
bicity values; some typical amino acid attributes like
hydration number, transfer free energy; information
value for accessibility, surface tension, molecular weight
etc.; and different secondary structure prediction param-
eters are considered for the selection of the optimum fea-
ture subset used here. We initially chose 15 different
amino acid features (as shown in Table 1) from the AAin-
dex database. Different combinations of those features
descriptors are heuristically evaluated on sample train/
test datasets of different representative PTM types (Phos-
pho-PKA, Phospho-PKC, Phospho-autocatalysis and
Phospho-CDC2). After exhaustive trial and error, ten dif-
ferent features are found that generate optimal recogni-
tion performance on the test datasets under
consideration. Table 1 shows the list of accepted/rejected
feature descriptors considered in the procedure. Possible
reasons behind rejection of some apparently significant

features (like ARGP820101, WARP780101 etc.) may be
redundancy, or high correlation between the feature val-
ues. In other word, the rejected features failed to provide
complementary/additional information to the existing
feature set. The final list of accepted feature descriptors
constitute a 90 dimensional feature vector for evaluation
of recognition performances using an MLP based classi-
fier on the benchmarking datasets for different PTM
types under consideration. The chosen set of features can
therefore be used as the best proven attributes related to
post transactional modifications in amino acid
sequences. Table 1 briefly lists these features (and the
rejected ones) along with their AAindex accession num-
bers and short references.

A feed-forward artificial neural network is trained with
back-propagation learning algorithm to optimize the
classification accuracy between the positive and the nega-
tive samples in the randomly chosen test dataset. The
optimization procedure is tuned to produce separately
optimum recall, precision and the AUC area for the test
dataset chosen for each of the PTM types. This is
required to address specific requirements from the biolo-
gists, generating high recall/precision values for any given
query sequence, using respective recall/precision opti-
mized network setups. Also, the network setup for opti-
mum AUC area gives balanced prediction for query
sequence, resulting in moderately high both recall and
precision values. The performance of each model is

Figure 3 AUC values for predictors. Comparison of scope of AUC best values for the kinase families PKA, PKC, CDK and CK2, using AMS3, GPS, Ki-
nasePhos, NetPhosK, PPSP, PredPhospho, Scansite and Meta Predictor.

http://www.genome.jp/aaindex/
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therefore calculated for both the training and the test
datasets under consideration in three different optimiza-
tion models. The classification results are generated
along with a probabilistic confidence measure for such
decision. More specifically, the designed neural network
model generates a confidence measure Cij (0 ≤ Cij ≤ 1) for
the ith query sequence in the jth class (in this experiment,
either positive or negative). This confidence measure is
estimated as the normalized responses (Rj) of respective
output neurons in the output layer of the MLP. Such that,
for an ith sequence:

An MLP consists of one input layer, one output layer
and one (or more) hidden or intermediate layer(s), as
shown in Figure 1. The output from every neuron in a
layer of the MLP is connected to all inputs of each neuron
in the immediate next layer of the same as also illustrated
in Figure 1. Neurons in the input layer of the MLP are
dummy neurons, as they are used simply to pass on the

C
R j
Rk

k

ij =
∑ (5)

Figure 4 ROC values for four kinase families. Comparison of ROC values for the kinase families PKA, PKC, CDK and CK2, using GPS, KinasePhos, Net-
PhosK, PPSP, PredPhospho, Scansite and Meta Predictor with the corresponding ROC curves for training and test datasets using AMS3.

Table 4: NetPhosK and AMS web servers.

NetPhosK AMS 3.0

Positives Recall Positives Recall

PKA 258 82 121 87.5

PKC 193 62 118 70.83

CaM-II 26 73 57 82.05

cdc2 22 37 84 88.24

CKII 85 75 248 73.3

Comparison of best recognition performances on independent test sets between the servers NetPhosK and AMS 3.0.



Basu and Plewczynski BMC Bioinformatics 2010, 11:210
http://www.biomedcentral.com/1471-2105/11/210

Page 14 of 15
input to the next layer just by computing an identity func-
tion.

The numbers of neurons in the input and the output
layers of an MLP are chosen as respectively ninety and
two for the current problem, in order to match the
dimensionality of the input feature descriptor vector and
the number of output classes (positives and negatives)
respectively. The number of neurons in other layers and
the number of layers in the MLP are determined by
exhaustive trial and error method during its training. The
MLP used for the present work requires supervised train-
ing. During training of an MLP weights or strengths of
neuron-to-neuron connections, also called synapses, are
iteratively tuned so that the MLP can respond appropri-
ately to all training data and also to other data, not con-
sidered at the time of training. Learning and
generalization abilities of an ANN are determined on the
basis of how best it can respond under these two respec-
tive situations.

The MLP classifier designed for the present work is
trained with the Back Propagation (BP) algorithm. The
algorithm is applied to minimize the sum of the squared
errors for the training samples by conducting a gradient
descent search in the weight space. The number of neu-
rons in a hidden layer is also varied during its training.

In our work we have implemented random sub-sam-
pling validation, to estimate the unbiased error rate of the
designed technique. This method randomly splits the
dataset into training and test (validation) data. For each
such split, the classifier learns to the training data, and
predictive accuracy is assessed using the test data. The
results are then averaged over multiple such splits. For
most of the PTM types, the training and test samples for
positive instances are populated in the ratio of 4:1 from
all available positive samples. The number of negative
samples for each type of PTM is chosen to be significantly
larger than the positive samples for both the train and test
datasets (the ratio of positive, negative samples is main-
tained as 1:5 in most cases). Random sub-sampling pro-
duces better error estimates than a single train-and-test
split. The advantage of this method (over k-fold cross val-
idation) is that the proportion of the training/validation
split is not dependent on the number of iterations (folds).
In the current work we have performed three random
splits in the positive/negative datasets for each PTM.
This is done so to eliminate possible bias during the train-
ing procedure in any given train/test dataset combina-
tion. The neural network for each PTM type is trained
separately for the best possible AUC, the recall and preci-
sion values on the three randomly chosen independent
test datasets. Each of these experiments, for any PTM
type, is repeated at least 10 times by varying number of
neurons in the hidden layer of the network. More specifi-
cally, the experiment is conducted with variation of the

number of hidden neurons starting from 2 up to 20 in
steps of 2. The optimum networks, giving high AUC,
recall and precision values with low error rates, are saved
for further consideration.

The problem of overfitting is addressed by optimizing
each training network on independent test datasets, i.e.,
during the iterative training process the network weights
that maximizes recognition accuracy on a separate test
set (not the training set) is saved. Three random runs of
training and test sample sets are considered for generat-
ing AUC, Sensitivity (Recall) and Precision optimized
neural network models for design of the software tool.
Average training and test set accuracies over these three
and average over AUC and Recall accuracies are given in
the in the Additional file 2.

Leave-one-out cross-validation (LOOCV) often works
well for estimating generalization error for continuous
error functions such as the mean squared error, but it
may perform poorly for discontinuous error functions
such as the number of misclassified cases (like the cases
considered here). LOOCV can also run into trouble with
various model-selection methods. Again, one problem is
lack of continuity - a small change in the data can cause a
large change in the model selected [32]. LOOCV is usu-
ally very expensive from computational point of view
because of the large number of times the training process
is repeated. Due to the large training data sizes for many
PTM types and problem of choosing one single training
model for each PTM type, LOOCV methodology is
adopted in our experiments for only part of PTM types.

The developed software tool executes in two phases. In
the first part, a Sequence Generator program reads any
number of protein sequences in FASTA format, written
in an input file and generates 9 amino acid long overlap-
ping sequences for prediction. The Predictor program
reads these short sequences and generates output. The
user can specify the type of PTM for specific prediction
and the nature of optimization required (based on AUC
area, Recall or Precision values). The output is generated
in the following format both as a binary decision
(whether the sequence qualifies for a potential PTM site
or not) and as a probabilistic confidence measure (Cij, for
the ith query sequence in the decision class) for each short
amino acid sequence, given as an input to the Predictor
program. For example:
LCLYTHIGR 0 0.9853
CLYTHIGRN 0 0.9855
LYTHIGRNI 1 0.7823
YTHIGRNIY 0 0.9667
THIGRNIYY 0 0.9132
HIGRNIYYG 0 0.9763,
where, 0 and 1 signify potential negative and positive

sequences respectively.
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