
Introduction
Cis-regulatory sequences control when, where and with 
what intensity genes are expressed. Key to this control is 
the recruitment of transcription factors (TFs) that bind 
to regulatory sequences, such as promoters, enhancers, 
repressors and insulators. These target sequences are 
spread across DNA. Probably reflecting the secondary 
structure properties of looped DNA within a nucleus, there 
are confirmed cases of cis-regulatory elements up to about 
106 bp distant from the transcription initiating promoter 
of a gene [1]. Mutations in TF binding sites (TFBSs) can 
disrupt the essential protein-DNA interactions required 

for the appropriate patterning or magnitude of gene 
expression. Similarly, mutations can disrupt other sequence-
specific regulatory controls, such as elements regulating 
RNA splicing or stability. Although much emphasis in the 
age of exome sequencing has been placed on variation 
within protein-encoding sequences, it is apparent that 
regulatory sequence disruptions will become a key focus 
as full genome sequences become widely accessible for 
medical genetics research.

The emerging collection of cis-regulatory variations 
that cause human disease or altered phenotype is grow
ing [2-4]. Reports identify cis-acting, expression-altering 
mutations observed within introns, far upstream of 
genes, at splicing sites or within microRNA target sites. 
For example, cis-regulatory mutations have roles in hemo
philia, Gilbert’s syndrome, Bernard-Soulier syndrome, 
irritable bowel syndrome, beta-thalassemia, cholesterol 
homeostasis and altered limb formation [5-11]. The 
number of cis-regulatory variants reported in the litera
ture has continued to expand over the past 2 years [12‑18]. 
In addition, compilations of cis-regulatory variants have 
been reported [4,19,20]. Although many studies associate 
cis-regulatory variations with phenotype, it is rare for 
researchers to conclusively demonstrate causality. The 
strongest causal evidence is obtained with transgenic 
approaches, in cell culture or animal models, to identify 
phenotypes triggered by such variations [21,22]. The 
importance of regulatory changes is nevertheless apparent.

Ultimately genetics researchers seeking regulatory 
mutations are best served by high-quality annotations of 
the human genome, with clearly designated functional 
elements. Most routinely expressed protein coding exons 
are known, making initial identification of protein-
altering genetic changes simple. In contrast, despite 
ongoing ambitious efforts to annotate non-coding 
genome features, the inventory of cis-regulatory elements 
is far from complete. Large-scale chromatin immuno
precipitation (ChIP) experiments provide the vast 
majority of data, eclipsing the compiled information of 
the past 25 years derived from targeted studies of specific 
regulatory elements. Many of the new ChIP-derived data, 
however, highlight segments of DNA (about 200 to 
1,000  bp) containing a functional element rather than a 
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specific element (average <15 bp). Similarly, DNase I 
hypersensitivity analysis specifies regions likely to contain 
regulatory elements [23]. Thus, the experimentally 
defined regions must be coupled to additional methods 
to assess the potential for a specific DNA variation to 
affect gene activity. Some of the key data resources 
reporting regulatory regions and delineating specific 
elements are introduced below.

Our perspective is biased to elements with sequence-
specific properties, including TFBSs, microRNA, splice-
regulating target sequences, and immediate core-
promoter sequences critical to the initiation of trans
cription (Figure 1). Although diverse types of cis-regula
tory variations will become accessible for future studies, 
at present the bioinformatics resources for the study of 
variation within TFBSs are the most accessible and there
fore our primary focus here.

We begin by outlining an example workflow. Then we 
step through elements of the workflow in greater detail, 
including a brief overview of the discovery of sequence 
variations from high-throughput sequence data. Finally, 
we review TFBS identification approaches and strategies 
for the prioritization of cis-regulatory variations for 
further analysis. We conclude with a brief mention of two 
emerging experimental techniques that may be used in 
the future to associate cis-regulatory variants and their 
gene targets. Our aim is to assist medical genetics 
researchers to identify potential regulatory variants 
within non-coding regions of the human genome.

A workflow for identifying disease-causing 
cis‑regulatory variants
An example workflow for the identification of cis-
regulatory TFBSs linked to a disease is outlined in the 
following section, and is illustrated in Figure 2. Given a 
set of high-throughput sequencing data from an 
individual, the short sequences are individually aligned to 
a reference human genome sequence. Sets of overlapping 
reads are analyzed to determine the genotype at each 
position for which sufficient aligned sequences are 
available. Common polymorphisms and rare variants are 
distinguished relative to the reference genome. For 
familial studies, variations segregating with the pheno
type can be determined, and researchers emerge with a 
set of disease-causing candidates. For each candidate for 
causality, it is desirable to assess the potential for the 
sequence mutation to disrupt a biological function. Many 
researchers will be content to focus on the subset of 
candidates predicted to create a severe alteration in a 
protein sequence. Software for the prediction of damag
ing changes, including modules from SIFT [24] and 
PolyPhen-2 [25], identify variants that substitute amino 
acids expected to cause changes in protein structure, 
alter a critical position in a protein domain, or change an 
amino acid of high evolutionary conservation. Many 
researchers will stop at this step.

For those interested in potential cis-regulatory changes, 
a panel of computational analyses can be performed on 
the candidate variations. At the core of the processes is a 

Figure 1. Classification of the regulatory sequences in a gene that can be modified by genetic variation. The four colored groups reflect 
mutations that have a deleterious impact on gene transcription (class 1 in red), splicing (class 2 in blue), RNA stability (class 3 in orange) and 
translation (class 4 in green). A fifth class, non-coding RNA interaction sites, is not shown as sites can occur throughout DNA and RNA sequences.
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method for TFBS prediction based on position weight 
matrices, known alternatively as position-specific scoring 
matrices (PSSMs, called ‘possums’). Each matrix is a 
quantitative description of the frequency of each nucleo
tide at each position of a set of known TFBSs for a 
specific TF. Methods related to the generation and appli
cation of the matrices are described below. Such matrices 
can be useful for predicting the biochemical capacity of a 
TF to interact with a specific DNA sequence, but the 
models have no capacity to assess whether a specific 
DNA segment in the genome will be accessible to the TF. 
Thus, TFBS predictions are almost always combined with 
one or more ‘filters’ to specify regions of the genome 
expected to function as cis-regulatory regions. Such 
filters may include data about epigenetic modifications or 
DNA accessibility, the observed binding of TFs, or 
sequence conservation (phylogenetic footprinting). The 

process will be explored in greater detail in the following 
sections.

For researchers who do not have bioinformatics tools 
in the laboratory, the comparison of coordinate positions 
between datasets (between variants and TFBSs, or 
variants and regulatory region filters) can be done using 
the Galaxy tools (a set of web-based, fundamental bio
informatic tools for extracting and manipulating text-
based data) [26]. Tutorials and help documentation are 
accessible through the Galaxy wiki.

Overview of variant identification from 
high‑throughput sequence data
The first step in the identification of disease-causing 
regulatory variants in individual genomes requires both 
sequencing technologies and software for processing the 
data to distinguish technical errors from true variations. 

Figure 2. Overview of a workflow for cis-regulatory variant detection. The boxes represent steps in the workflow, and the italicized 
descriptions under the boxes correspond to analysis resources listed in Table 1. For identification of regulatory elements and regions, the order 
in the workflow may be changed without loss of information. Common variants, flagged by an asterisk, may be eliminated from the analysis or 
alternatively flagged for later tracking.
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Both of these methods are in a period of rapid 
development [27,28] and it is unlikely that they will 
become stable for several years. We will therefore begin 
this section by outlining general concepts for working 
with high-throughput sequencing data, before highlight
ing the most promising recent developments. In Table 1 
we provide specific examples of well-maintained open-
resource databases and software, including resources for 
conceptual classes of software mentioned below.

The process of identifying a variation or mutation 
anywhere in a DNA sequence begins with mapping the 
sequenced DNA of interest to a reference human genome 
sequence. Sequencing generates DNA segments termed 

reads. Given a combination of technological sequence 
errors and genetic variation, coupled to the extensive 
sequence repetition in the human genome, many reads 
cannot be uniquely mapped to a single reference co
ordinate region. False variations may arise, in part, from 
the incorrect mapping of reads. One can identify and set 
aside reads that map to multiple locations in the genome 
with nearly equal alignment quality, denoting such cases 
as potential sources of variant-calling errors.

Once a set of uniquely mapped reads is determined, the 
next step in an analysis pipeline is the identification of 
genetic variations from the reference genome based on 
the shared characteristics of overlapping reads. Greater 

Table 1. Data and analysis tools (open-source)

Genetic variant data

	 dbSNP	 http://www.ncbi.nlm.nih.gov/projects/SNP/

	 1000 Genomes	 http://www.1000genomes.org/

	 HapMap Project	 http://hapmap.ncbi.nlm.nih.gov/

Coding variant characterization

	 SIFT	 http://sift.jcvi.org/

	 Polyphen-2	 http://genetics.bwh.harvard.edu/pph2/

ChIP-Seq data 

	 Gene Expression Omnibus (GEO)	 http://www.ncbi.nlm.nih.gov/geo/

	 ENCODE project	 http://genome.ucsc.edu/ENCODE/

	 PAZAR	 http://www.pazar.info/

Motif discovery

	 Meme-ChIP	 http://meme.nbcr.net/

TFBS profiles

	 JASPAR	 http://jaspar.genereg.net/

	 PAZAR	 http://www.pazar.info/

TFBS databases		

	 PAZAR	 http://www.pazar.info/

	 ORegAnno	 http://www.oreganno.org/

TFBS variant characterization

	 Variant effect predictor	 http://uswest.ensembl.org/tools.html

	 is-rSNP	 http://www.genomics.csse.unimelb.edu.au/is-rSNP/

	 rSNP-MAPPER 	 http://genome.ufl.edu/mapper/

RNA-Seq splice analysis 

	 TopHat	 http://tophat.cbcb.umd.edu/

	 MapSplice	 http://www.netlab.uky.edu/p/bioinfo/MapSplice

Splice enhancer discrimination

	 SFmap	 http://sfmap.technion.ac.il/

	 ESE Finder	 http://rulai.cshl.edu/tools/ESE

Data management and visualization

	 Galaxy (tool kit)	 http://galaxy.psu.edu/

	 UCSC Genome Browser	 http://genome.ucsc.edu/

	 Ensembl BioMart	 http://www.ensembl.org/biomart/martview/
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read depth (the number of times a nucleotide is 
sequenced) is advantageous for more reliable statistical 
confidence in the determination of a genotype at a 
position. But depth is not the only influence to consider, 
as systematic mismapping of reads can result in false calls 
even with many reads overlapping. The complex nature 
of the data causes genotype ‘calling’ software to be one of 
the most rapidly changing components of the variant 
identification process, with continuously improving methods 
emerging in a constant stream of publications [29].

Given a set of variations, it is common to classify 
observed variants as common or rare. Common varia
tions, such as single nucleotide polymorphisms (SNPs), 
occur with at least a minimum frequency in a population 
(commonly a minimum allele frequency of 1% is applied). 
Lists of common variants can be obtained from HapMap 
[30,31], dbSNP [32], and 1000 Genomes [33] databases, 
but recently dbSNP has been consolidating data from 
most of the major resources and may be sufficient for 
most users. Please note that contrary to the formal 
meaning of SNP, the dbSNP resource also includes rare 
variations.

After filtering common variants from a dataset, the 
remaining variants are categorized as rare (and conse
quently considered by many researchers as more likely to 
be causal for extremely rare phenotypes) [34]. Although 
it has been frequent practice in genome sequencing 
studies of familial disorders to exclude all previously 
observed variants (both rare variants and polymor
phisms), it is our perception that the rapidly growing 
collection of genome sequence data and variants makes it 
increasingly likely that such screens will exclude relevant 
causal mutations. For each individual genome sequenced, 
the researcher emerges with a categorized set of variants - 
common polymorphisms, previously reported rare 
variants, and novel variants. A recent technical report 
presents a framework for variation discovery and 
genotyping that reflects the above concepts [35].

For each individual sequenced, the number of variants 
in each of the three categories will be large. The number 
of variants to consider can be reduced by focusing on 
variations that segregate with a phenotype in a family 
study [36]. In addition, it has been common practice to 
focus on mutations predicted to severely alter an encoded 
protein, such as nonsense mutations. However, there is 
now a growing interest in the impact of variants located 
in the non-coding portion of a genome. The following 
sections highlight methods that researchers can use to 
focus on variants located within cis-regulatory elements, 
in particular TFBSs.

Detection of cis-regulatory elements
The identification of variants situated in TFBSs is depen
dent on the identification of bona fide TFBSs, which is a 

challenge. Common approaches include three primary 
components: (i) databases of known TFBSs; (ii) compu
tational prediction of TFBSs using software models; and 
(iii) prediction of regions likely to contain TFBSs - a 
process we term ‘filtering’. The first two components will 
be introduced below, followed by the introduction of a 
method highly related to the second component, for 
predicting the subset of putative regulatory variants likely 
to alter the binding energy of a TF-DNA interaction. The 
third component - filtering - is described in the subsequent 
section.

Databases of experimentally defined TFBSs
At some point in the future, there will be a reliable 
database reporting every TFBS in the human genome, 
the gene promoter(s) that each acts on, the biological 
condition(s) under which each TFBS is active and the 
TF(s) that interact with each. There have been attempts 
over previous decades to develop databases housing such 
information; nevertheless, none of these are ideal, and all 
are constrained by a lack of high-resolution experimental 
data. One of the most widely known databases of this 
kind is Transfac, which operates under a commercial 
access model [37]. Open-access proponents have imple
mented alternative databases. The ORegAnno database 
aims to collect a broad range of TFBS data, using a 
convenient data format that allows rapid submission [38]. 
The PAZAR database has a more complex data model, 
which allows rich annotation of the evidence underlying 
each TFBS, as well as a full description of the TFBS 
(conditions, interacting TFs, cell types, and so on) [39]. 
There are many databases restricted to lower resolution 
data, such as ChIP with sequencing (ChIP-Seq), that 
specify regions of DNA bound by a TF (such data are also 
contained by ORegAnno, PAZAR, and the ENCODE 
data center at the University of California, Santa Cruz - 
UCSC [40]).

The data from the open-access collections can be 
downloaded for high-throughput comparisons of TFBS 
positions with variant positions. The logistics of such 
comparisons are described in the subsection below on 
‘Assessing the impact of sequence variations on TF-DNA 
interactions’.

Computational prediction of TFBSs
Although a small set of TFBSs has been experimentally 
validated as functional and recorded in reference data
bases, this probably represents an insignificant portion of 
the entire set of TFBSs in the human genome. We must 
therefore, for now, rely heavily on computational methods 
to predict TFBSs. A description of the most common 
method follows.

A TFBS motif model summarizes what is known, at the 
sequence level, about the properties of a set of TFBSs for 
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a given TF (Figure 3). Once constructed, such a model can 
be used to scan a DNA sequence of interest in ‘windows’ of 
the same length as the regulatory element that the motif 
model represents. A computer program incrementally 
moves along a DNA sequence in 1 bp steps, returning a 
score at each step to indicate the strength with which each 
window of the DNA sequence matches the motif. The top 
scoring windows are the most similar to the consensus 
sequence of the TFBS bound by a TF.

As defined above, the most commonly used motif 
models for predicting the location of TFBSs are termed 
PSSMs. A single TF will recognize similar DNA sequences, 
but will tolerate variation from the consensus TF binding 
site pattern [41]. A PSSM is generated from a DNA 
sequence alignment of experimentally confirmed TFBSs 
for a TF (Figure 3). Such alignments are commonly gener
ated using pattern discovery software such as MEME 
[42]. Once aligned, a matrix is created that reports the 
frequency of each nucleotide (A, C, G, and T) at each 

position of the alignment - the resulting matrix is called a 
position frequency matrix (PFM). The last step in 
obtaining a PSSM is to convert the PFM using a 
logarithmic function that weights the frequency of each 
nucleotide at each position by the frequency of that 
nucleotide in the genomic background (in many software 
implementations the default background frequency is set 
to 0.25 for each nucleotide) [43]. The widths of most 
published TFBS PSSMs fall in the range 8 to 14 bp. The 
scores produced are analogous to binding energies [44] 
and can thus be considered a prediction of the strength of 
association of a TF protein with a specific DNA sequence. 
Software for scanning DNA sequences using the matrix 
models is widely available through computer program
ming modules (TFBS [45]), downloadable software 
(RSAT [46]) or online websites (ORCAtk [39]). Active 
discussions are ongoing in the bioinformatics field about 
how the models can be improved in light of the increasing 
amount of TFBS data arising from ChIP-Seq studies [47].

Figure 3. Transcription factor binding site (TFBS) motif model. Sequences known to be bound by a specific transcription factor (for example, 
SPI1) are aligned. A position frequency matrix (PFM) is generated by counting the number of times each type of nucleotide occurs at each position 
of the alignment. The PFM is then converted to a log-scale position-specific scoring matrix (PSSM). The score of any DNA sequence window, having 
the same length as the matrix, is calculated by summing the corresponding nucleotide values from the PSSM. The PFM may also be represented as 
a binding site logo, depicting the nucleotide properties of the TFBSs.
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PSSMs are available from open-resource databases 
such as JASPAR [48], PAZAR [49] or Uniprobe [50]. Until 
recently, the number of TFs with PSSMs has increased 
slowly, but high-throughput laboratory approaches for 
the profiling of TF-bound sequences have resulted in a 
striking increase in the number and quality of PSSMs 
[48,50]. Such high-throughput experimental data typically 
arise from either in vivo ChIP, such as ChIP-Seq [51], or 
from in vitro protein binding studies, such as protein 
binding microarrays [52]. In ChIP-Seq experiments, 
protein-DNA complexes are isolated using an antibody 
specific to the TF of interest, and the recovered DNA 
sequence is determined. For protein binding microarrays, 
double-stranded DNA of known sequence is affixed to 
the microarray surface and the adherence of a fluores
cently labeled protein preparation of a TF (or frequently 
just the DNA-binding domain from a TF) is measured; 
the bound sequences are subsequently analyzed to deter
mine the DNA sequence patterns targeted by the protein. 
Driven by these new technologies, the number of TFs 
with PSSMs in the open access JASPAR database has 
increased fivefold in the past year, rising from 100 to 500 
PSSMs (about 25% of the 1,500 vertebrate TFs are now 
represented).

The prediction of functional regulatory elements by 
PSSMs, although having good sensitivity (most true 
positives are found), suffers from poor specificity (many 
false positives are predicted) [53]. With regard to speci
ficity, a simple biochemical explanation of the problem is 
that the TFBS-predicting PSSMs determine sequences 
that a TF can bind in vitro, but in vivo the DNA may not 
be accessible to the TF. For instance, a predicted TFBS 
may be buried in compact chromatin. Thus, a prediction 
of a TFBS in isolation has limited relevance to the proba
bility that a segment in the human genome will function 
as a cis-regulatory element. Approaches to reduce the 
specificity problems by filtering are discussed in the 
section below on ‘Refining cis-regulatory predictions 
with filters’.

The same concepts underlying the use of PSSMs to 
predict TFBSs apply to most motif discrimination methods 
for sequence-specific regulatory elements, ranging from 
splice enhancers to translation start sites [54-56]. We 
focus here principally on TFBSs, which are DNA-related; 
more information about RNA-related cis-regulatory 
elements can be found in a recent review [57].

Assessing the impact of sequence variations on TF-DNA 
interactions
Given a PSSM for a specific TF, and both the reference 
DNA sequence and the DNA sequence containing a 
variant, one can predict whether the variant alters the 
DNA sequence in a manner that strengthens or weakens 
the biochemical interaction of the TF with the DNA. The 

reference sequence and the variant sequence are both 
scanned and scored by the PSSM model. If the difference 
between observed scores is large, and at least one of the 
sequence isoforms is a known TFBS or is assigned a score 
that exceeds a user defined threshold for TFBS presence, 
the variation is predicted to have a functional impact. 
Such thresholds depend on the software used. The impact 
of the variant is calculated as the reported difference 
between the two scores. The higher-scoring allele is 
predicted to be bound by the TF with greater affinity. The 
calculation of PSSM score differences has two directions 
as variants have the potential to either knock out or 
create a TFBS. The action of the variant is captured by 
the sign (+/-) of the score difference in the above 
calculation.

Software for prediction of TFBS alterations by 
sequence variations includes the variant effect predictor, 
is-rSNP, and rSNP-MAPPER tools [58-60]. Although use
ful for identifying mutations overlapping known TFBSs, 
in the absence of additional information, such compari
sons have limited value for predicted TFBSs (including all 
cases of de novo generation of TFBSs) [61,62], as the high 
rate of false TFBS predictions by PSSMs remains un
addressed. In the following section we outline additional 
data that may be incorporated to improve TFBS 
prediction specificity.

Similar allele comparison programs have been 
developed to predict altered microRNA target sites [63] 
and splicing elements [64].

Refining cis-regulatory predictions with filters
As stated above, predictions of TFBSs are unreliable 
because of a high false positive prediction rate (poor 
specificity). Predictions of cis-regulatory elements can be 
overlaid with genome annotations or experimental data 
to focus attention on the regions that are more likely to 
be functional [18,65]. An increase in specificity can be 
obtained by filtering predicted regulatory elements 
against complementary data, such as: (i) gene structure 
(topology filters); (ii) regions of sequence conservation 
(phylogenetic footprinting); (iii) TF-bound regions 
defined experimentally (such as ChIP-Seq for TFs); or (iv) 
structurally accessible (or inaccessible) regions (such as 
ChIP-Seq for epigenetic marks or DNase I hypersensi
tivity analyses). All the filters can be used individually or 
in combination, where it is functionally relevant; their 
main purpose is to add supporting evidence that a 
predicted regulatory element is functional. Although 
biologically relevant filters can dramatically increase the 
specificity of cis-regulatory element predictions, there 
may be a loss in sensitivity with the use of multiple 
filters, so it is recommended that a researcher assess 
results based on one filter before incorporating 
additional filters.
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Topology filter
The activity of many cis-regulatory elements is spatially 
dependent (see Figure 1 for locations of cis-regulatory 
elements). For instance, splice-regulating elements are 
positioned adjacent to splice sites (reviewed in [57]) and 
the target sequences for non-coding RNA, such as micro
RNAs, may be preferentially situated within 3’ untrans
lated regions [66]. Specific types of TFBSs within the core 
and proximal promoters, such as the TATA box and the 
downstream proximal element, are topologically con
strained to occupy a specific location relative to the 
transcription start site (TSS) [67]. Genome annotations 
and laboratory data can specify TSS locations, allowing 
researchers to focus on variants situated with functionally 
relevant spatial localization. Existing annotations from 
high-throughput profiling of 5’ capped RNA [68] and 
cDNA sequencing in genome annotation databases can 
delineate such regions. Increasingly, however, the anno
tation of exons is defined by RNA-Seq experiments 
applied to patient samples [69].

Each of these genomic data types can be retrieved as 
genomic positions from either a genome browser (for 
example, using the Galaxy tools [26] or Ensembl BioMart 
[70]) or from laboratory data, and should be chosen for 
their relevance to the type of regulatory element of 
interest. The positions of topological annotations can 
be compared with the positions of the predicted 
regulatory elements, using data analysis tools such as 
those that the Galaxy system provides. Where 
topological features are proximal to or overlap with 
corresponding variant-altered regulatory element 
predictions, the variants may have greater reliability 
than predictions lacking such support.

Conservation filters (phylogenetic footprinting)
Sequence conservation in the human genome can focus 
attention on regions with functional roles, a process 
termed phylogenetic footprinting. Using conservation 
scores based on multiple species alignments, such as the 
Phylogenetic P-values (PhyloP) [71] (obtainable using 
the Galaxy system or directly from the UCSC genome 
annotation database), researchers can restrict attention 
to regions more likely to have sequence-specific 
function. Although there is evidence of functional 
regulatory sequences being conserved over moderate 
periods of evolution [72], there is also ample evidence of 
plasticity in regulatory sequences [73]. Conservation-
based filters can enrich for functional sequences, but, as 
for all filters, functionally relevant sequences without 
sequence conservation may be lost [65]. If the position 
of a predicted variant-altered regulatory element 
overlaps a conserved region, then the cis-regulatory 
potential of the variant is considered to have functional 
support.

TF binding filters
Increasing access to high-throughput profiles of ChIP 
data is key to improved regulatory sequence studies. In 
the ChIP method, a specific antibody targeting a protein 
of interest is used to recover DNA sequences bound by 
the protein [51]. The nucleotide sequence of the 
recovered DNA is increasingly being identified by high-
throughput sequencing, resulting in the procedure 
known as ChIP-Seq. Regions containing a site bound by a 
targeted protein are identified in ChIP-Seq experiments 
as displaying a higher abundance of sequence reads 
recovered relative to a control set of data at a specific 
position in the genome. The method delivers two impor
tant advances for cis-regulatory element detection over 
past methodologies. First, it can be applied to detect TF 
or transcription co-activator bound regions across the 
entire genome of any species that has been sequenced 
[74]. Second, the results provide improved resolution of 
the boundaries for functional regulatory regions, provid
ing the researcher with a refined search space for deter
mining the active cis-regulatory element(s) in the region.

We focus here on two classes of ChIP-Seq experiments - 
those that profile interactions between a sequence-
specific binding TF with DNA and those proteins that 
associate in a sequence-independent manner with regu
latory regions (discussed in the next section).

With ChIP-Seq it is common to map the protein-DNA 
interactions to regions as small as about 300 bp. Although 
useful, the study of genetic variants requires more precise 
mappings of individual TFBSs. Thus, ChIP-Seq-defined 
regions are used as filters to refine the computational 
predictions generated with PSSMs. If no PSSM is 
available for the TF, the ChIP-Seq regions can be used in 
a motif discovery program (such as MEME [42]) to 
generate a PSSM that can be used in turn to predict TFBS 
positions. As with the previous filters, for each predicted 
TFBS-altering variant, those overlapping a ChIP-Seq-
delineated region can be considered of sufficient relia
bility to motivate further laboratory studies.

Regulatory region accessibility filters
In addition to data pertaining to the sequence-specific 
binding of TFs, ChIP-Seq data can be obtained that 
delineate regions of a genome that are likely to contain 
elements involved in gene regulation. Such approaches 
may be based on antibodies that recognize specific epi
genetic marks associated with cis-regulatory activity (for 
example, histone modifications), or antibodies that 
recognize proteins, such as co-activators, associated with 
regulatory sequences that interact with DNA-bound TFs. 
DNase I accessibility analysis likewise reveals regions 
with potential regulatory roles.

Studies focused on individual histone modifications 
have shown that certain marks, such as H3K4me3, 
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associate with active promoter regions, whereas others, 
such as H3K27me3, are pronounced at silent promoters 
[75]. Combined with cis-regulatory predictions, combi
nations of epigenetic marks can be used to more precisely 
delineate regulatory regions with potential active roles. 
Focusing cis-regulatory element predictions proximal to 
or within epigenetic regions associated with active regu
lation improves the specificity of cis-regulatory element 
prediction [76,77].

The transcriptional co-activator p300, a component of 
many regulatory protein associations, has been targeted 
in ChIP-Seq studies to define transcriptional enhancers - 
genomic regions containing multiple TFBSs that collect
ively enhance transcription [78]. Visel et al. [78] took 86 
regions associated with p300, tested them for regulatory 
activity in vivo, and found that 88% of the predicted 
regions were active regulatory regions. They found that 
using p300-predicted enhancer regions reduced the rate 
of false-positive predictions made by alternative methods 
by four-fold. Given the difficulty in obtaining high quality 
antibodies to proteins, and as the number of co-activators 
(about 101) is small relative to the number of sequence-
specific TFs (about 103), it is likely that ChIP-Seq data for 
the complete set of co-activators will become a preferred 
means of delineating likely regulatory regions active in 
each cell type.

In both classes of ChIP-Seq experiments, the defined 
regulatory regions from the ChIP-Seq studies can be used 
to select the predicted regulatory elements and variants 
most likely to affect cis-regulatory function.

Examples of applied regulatory sequence variation 
prediction
Use of such filters as outlined above for the prediction of 
regulatory variants is starting to emerge in the literature. 
As interest rises with respect to the non-coding regula
tory portions of the genome, we can expect to see more 
examples similar to the two we briefly outline below.

A key paper has recently emerged, highlighting the 
potential power behind combining SNP identification 
and different lines of regulatory evidence. Ernst et al. [79] 
combined non-coding disease-associated SNPs derived 
from multiple genome-wide association studies with 
epigenetic evidence for potential regulatory enhancer 
regions, and TFBS predictions. Non-coding SNPs were 
found to significantly overlap with enhancers predicted 
by epigenetic analyses, and the SNP-containing enhan
cers tended to be detected in cell types relevant to the 
disease. For instance, SNPs associated with systemic 
lupus erythematosus coincided with enhancer regions 
detected in lymphoblastoid cells. The authors further 
investigated these regulatory variant predictions by 
examining the potential of these disease-associated SNPs 
to interrupt or strengthen predicted TFBSs in the 

overlapping enhancer regions, such as an ETS1 binding 
motif in the aforementioned lupus example.

Oishi et al. [80] assessed multiple layers of regulatory 
evidence, such as topology, conservation, TFBS predic
tion, and TF binding, for regulatory variation prediction. 
They focused on the KLF5 gene locus because of the 
potential role of its upstream regulatory programs in 
hypertension. Genotyping array experiments on 20 hyper
tensive individuals identified an associated SNP located 
upstream of a KLF5 transcription initiation site. The SNP 
was observed to be situated at a position conserved 
between humans, mice, and rats. Bioinformatics analysis 
of TFBS motifs predicted an overlapping binding site for 
MEF2a, which was subsequently confirmed by ChIP 
analysis (in human aortic smooth muscle cells). Experi
mental analysis demonstrated that the SNP altered the 
MEF2a binding affinity.

These two examples highlight the effectiveness of using 
regulatory annotation data and predictions to focus 
attention on variants that might have an impact on gene 
regulation.

Case studies of filter-based support of regulatory variant 
predictions
We provide two examples of disease-associated variants 
and some data filters that, if these variants were un
known, could be overlaid to support a cis-regulatory 
variant prediction (Figures 4 and 5). These case reviews 
were in part chosen because they lend themselves to 
viewing in the UCSC Genome Browser. The first variant 
(Figure 4) is causal for hemophilia B Leyden and the 
second (Figure 5) is associated with protection against a 
disease; the latter is a case of a mutation creating a new 
regulatory element. We selected genome annotations 
from four tracks available on the UCSC Genome 
Browser: (i) distance from a TSS (topology) - RefSeq gene 
track; (ii) two databases for literature- derived TFBSs - 
PAZAR and ORegAnno tracks; (iii) mammalian conser
vation - PhyloP track; and (iv) known sequence variants - 
dbSNP track. The UCSC Genome Browser provides 
instructions for researchers wanting to add their own 
data tracks to a display, or wishing to extract data from 
tracks to apply to their own analysis.

A classic example of an inactivating mutation in a 
regulatory sequence is the disruption of a binding site for 
the TF HNF4A present in the promoter of the Factor IX 
endopeptidase gene (F9) involved in blood coagulation 
(Figure 4). The mutation is causal for hemophilia B 
Leyden [5]. A single nucleotide change of T to A at the 
most strongly conserved position of the HNF4A binding 
site results in reduced transcription of F9. The position of 
the variation relative to the regulatory element is 
displayed in the HNF4A PSSM sequence logo (Figure 4b). 
Figure 4c depicts a view of the region surrounding the 
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HNF4A binding site in the UCSC Genome Browser. The 
PAZAR track shows the location of binding sites in the 
region, one of which is for HNF4A, and the RefSeq track 
illustrates that the binding sites are proximal to the gene’s 
TSS. The PhyloP mammalian conservation track reports 
sequence conservation at the HNF4a binding site, contri
buting support to this site as a functional regulatory 
element. For this region no SNP has been reported, as 
represented by the empty track for dbSNP at the bottom 
of Figure 4c. As dbSNP was originally intended as a 
database for sequence polymorphisms and has only 
recently started to acquire rare variants, the empty track 
signifies that this variant may not be common.

Activating mutations may create binding sites. A 
variation in the promoter of the Alox15 gene creates a 
binding site for the TF SPI1 (Figure 5), which results in 
elevated expression of the gene. The SPI1 TFBS-creating 
variation has been linked to protection against athero
sclerosis [81]. Comparing Figure 4 with Figure 5 we see 
that a TFBS common to the population (Figure 4, HNF4A) 
has various data annotations supporting its functional 

importance, whereas a TFBS that has been newly 
generated (Figure 5, SPI1) lacks most such annotations. 
The RefSeq track shows the variant to be within the 
promoter region of the Alox15 gene. However, consistent 
with a variant creating a new regulatory element, no 
overlapping TFBS has been annotated in either of the 
PAZAR or ORegAnno databases, nor is there evidence of 
significant sequence conservation at the location of this 
element. The position of the variation is reported by the 
dbSNP track, even though it is not a polymorphism, 
which suggests this variant is not a technical error. 
However, in this instance it may be present owing to the 
dataset the variant was derived from being uploaded to 
dbSNP. In a case such as this, where a variant is predicted 
to have created a new regulatory element, the only useful 
data filters are likely to be topological, unless a researcher 
has access to ChIP-Seq data generated from the 
individual(s) carrying the variant.

With the conclusion of a workflow, such as that over
viewed here, a researcher will possess a refined list of 
putative cis-regulatory variants. Determining the causality 

Figure 4. Visualization of a causal cis-regulatory mutation for hemophilia B Leyden that alters an HNF4A binding site in the promoter of 
the Factor IX gene. In this example, at least three sets of data support the hypothesis that the variant modifies a functional transcription factor 
binding site (TFBS): a TFBS database, proximity to a transcription start site (TSS; topology filter), and conservation data. (a) Variant location in base 
pairs between the regulatory element and the TSS. (b) Logo of nucleotide binding preferences for HNF4a. The mutated position in the HNF4A 
binding site is highlighted. The height of the letters ‘T’ and ‘A’ at that position indicate the frequency of a thymine or an adenine nucleotide in HNF4a 
TFBSs. The thymine at position 8 is strongly maintained among known TFBSs. (c) UCSC Genome Browser view highlighting four of the data types 
that may be used to support the prediction of a cis-regulatory variant. Red and gold tracks, PAZAR and ORegAnno databases of TFBSs; dark blue 
track, mammalian conservation; black track, data from dbSNP.
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of a variant for a disease and the gene it regulates 
currently lies in the hands of experimental researchers.

The emerging challenge: associating 
variant‑altered TFBSs with target genes
Unaddressed in the workflow reviewed up to this point is 
the challenge of defining the associations between 
potential cis-regulatory variants and target genes. 
Possibly as a result of DNA looping, regulatory sequences 
can act specifically on distant genes, skipping intervening 
genes in some cases [82,83]. Within the nucleus, DNA 
sequences that are not proximal in sequence may be 
brought into proximity by the three-dimensional looping 
of chromatin. Emerging methods that detect such DNA 
proximity (such as the Hi-C method described in [84,85]) 
may provide data suitable for integration into future 
bioinformatics methods for predicting the impact of a 
variant. Alternatively, methods are emerging that specify 
the edges of accessible DNA regions, features termed 
insulators. Such methods, largely based on ChIP-based 

experiments using antibodies to the insulator binding 
protein CTCF, could be used to determine which 
promoter regions are accessible to a TF bound between 
insulator sequences [86,87]. As these techniques are still 
maturing, bioinformatics approaches continue to asso
ciate regulatory elements and putative target genes based 
on distance measurements (the closest gene is the target), 
or through predictions arising from linkage disequi
librium or differential gene expression studies. However, 
we anticipate a time in the future when three-dimen
sional maps of nuclei can be generated experimentally.

Conclusions and future directions
At present the tools for the study of genome-wide regu
latory sequence variations are limited, leading resear
chers to focus on variations predicted to alter genomic 
regions with well developed annotation - protein-coding 
sequences. This is due in part to the nature of the 
regulatory target and in part the availability of data. The 
cis-regulatory elements are short in length, widespread 

Figure 5. Visualization of a cis-regulatory mutation creating a functional SPI1 binding site in the promoter of ALOX15. In this example, 
the variant occurs near the transcription start site (TSS; topology filter), there is slight evidence that the site of the variant is conserved against 
mutations, and the variant is found in dbSNP; thus, it is unlikely to be a technical error. (a) Variant location. (b) Logo of nucleotide binding 
preferences for SPI1. The altered position of the ALOX15 sequence relative to a SPI1 binding site is highlighted. The mutation converts the 
nucleotide at that position from a cysteine to the most strongly conserved nucleotide in all SPI1 binding sites - a thymine. (c) UCSC Genome 
Browser view as in Figure 4.
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throughout the genome and are not confined to specific 
genomic landmarks - they can be both proximal and 
distal to their gene targets. Computational predictions of 
regulatory elements, in turn, are faced with extracting 
short and variable signal from a large genomic space, in 
which there is a mixture of functional elements and 
apparent randomly occurring non-functional sequences. 
Regulatory predictions are further complicated by the 
fact that the cellular environment and stage of 
development affects the functional activity of regulatory 
elements - an element that is active in one cellular 
context may not be active in another, an aspect important 
to the study of disease. However, from the current era of 
high-throughput technology, we can anticipate an 
increased understanding of the biological dynamics of 
cis-regulatory elements to feed into and improve compu
tational algorithms predicting the locations of cis-
regulatory elements. With improved predictions we will 
increase our ability to predict cis-regulatory-associated 
variants and their functional impact on the regulatory 
elements they coincide with.

The ability to look with increased resolution at the non-
coding space of the genome has recently encouraged an 
increasing number of laboratories to investigate the 
impact of cis-regulatory-associated variants on disease, 
which as a result has motivated the development of 
bioinformatics tools for linking variants with regulatory 
elements. Bioinformaticians are still in the early stages of 
developing methods to integrate high-throughput regula
tory data, such as ChIP-Seq and RNA-Seq, with regu
latory element prediction, variant calling, and databases 
of known regulatory elements and variants. At the 
current time, researchers are best served by following a 
workflow such as that described here. However, a critical 
mass of interest in regulatory variants is being reached, 
and automated workflows will become publicly available 
in the near future.

The increased affordability of whole-genome sequenc
ing has dramatically expanded the potential for studying 
cis-regulatory-related diseases in a familial context. The 
added power of having related genomes to study segre
gation of familial sequence variants with a phenotype 
dramatically improves the ability to predict disease-
associated cis-regulatory variants. We anticipate that the 
next few years will see a rapid expansion of such family-
associated studies.

Use of the aforementioned filters and tools in a 
workflow, as outlined here, coupled to the improved 
detection of causal variants provided by genome-wide 
data for multiple related individuals, provides medical 
genetic researchers with the means to prioritize the 
potential regulatory impact of a given a set of variants. In 
the future, integrated tools will consolidate the analysis 
process, bringing diverse analysis methods and data 

sources into a self-contained workbench for regulatory 
variation analysis.
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