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Abstract

A two-dimensional numerical study of flow across rows of identical square cylinders

arranged in staggered fashion is carried out. This study will unreveal complex flow physics

depending upon the Reynolds number (Re) and gap spacing (g) between the cylinders. The

combined effect of Reynolds number and gap spacing on the flow physics around staggered

rows of cylinders are numerically studied for 20�Re� 140 and 1� g� 6. We use the lattice

Boltzmann method for numerical computations. It is found that with increase in gap spacing

between the cylinders the critical Reynolds number for the onset of vortex shedding also

increases. We observed a strong effect of Reynolds number at g = 2 and 4. Secondary cylin-

der interaction frequency disappears for large Reynolds number at g = 6 and 5 and the flow

around cylinders are fully dominated by the primary vortex shedding frequency. This

ensures that at large gap spacing with an increase in the Reynolds number the wakes inter-

action between and behind the cylinders is weaken. Furthermore, it also ensures that the

wake interaction behind the cylinders is strongly influenced by the jets in the gap spacing

between the cylinders. We also found that g = 2 is the critical gap spacing for flow across

rows of staggered square cylinders for the considered range of Reynolds number. Depend-

ing on the Reynolds number we observed; synchronous, quasi-periodic-I, quasi-periodic-II,

and chaotic flow patterns. In synchronous flow pattern, an in-phase and anti-phase charac-

teristics of consecutive cylinders has been observed. The important physical parameters

are also analyzed and discussed in detail.

1. Introduction

The complex flow physics in terms of wake structure mechanism and formation of two rows

of staggered identical square cylinders has attracted researchers’ attention due to its impor-

tance in understanding industrial flows, for example, overhead power-line bundles, tubes in

heat exchangers, chimney stacks, stays, bridge piers, flows around high-rise buildings, and
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offshore platforms, and many more. The vortex, gap flow switch, jets between gaps of cylin-

ders, vortex shedding process, and combined frequencies are the important features of this

flow, which is fascinating and complicated. These phenomena are strongly dependent upon

the Reynolds numbers (Re = U1d/υ, where U1 is the uniform inflow velocity, d is the size of

the cylinder and υ is the kinematic viscosity of the fluid) and gap spacing (g = s/d, where s is

the surface-to-surface distance between the cylinders). For example, due to aerodynamic inter-

ference [1], the collapse of three (out of eight) natural draft cooling towers at Ferry bridge

(UK) in 1965, has attracted researchers interest around such kind of problems. In addition, it

is important to understand the dramatic change in forces and downstream evolution of vortex

frequencies on each cylinder.

In spite the fact that the flow around square cylinders has great relevance to practical engi-

neering applications, it has received much less attention as compared to the flow around circu-

lar cylinders. It is true that such real-life cases are often characterized by large three-

dimensional turbulent fluctuations. But important information regarding basic flow behavior

around two rows of staggered square cylinders can still be gleaned at a low Reynolds numbers

for clear understanding. Computations of square cylinder can reduce number of uncertainties

associated with experimental investigations of a cylinder wake, such as vibration, finite radius

of curvature at the edges, turbulence intensity of the incoming flow and the surface roughness

of the cylinder. The square geometry has some computational advantages, and due to its

round shape it can be easily represented in Cartesian coordinates. To the best of our knowl-

edge, numerical studies of the effect of Reynolds numbers on flow across two rows of staggered

square cylinders have not been reported in literature.

There have been a number of investigations on the wake of two, three, five and row of side-

by-side circular [2–9] and square [10–20] cylinders. Bearman and Wadcock [2] experimentally

studied the flow past a pair of circular cylinders. Chauve and Le Gal [3] studied in detail the

wakes behind a row of sixteen cylinders at (Re, g) = (80, 3). They observed that some of the

wakes intermittently stop oscillation behind the cylinders. Guillaume and LaRue [4] examined

relatively narrow and wide wakes behind three to five cylinders with g = 0.75 and Re = 2500.

Gu and Sun [5] experimentally studied the interference effect of two identical circular cylin-

ders in staggered arrangement for high Reynolds numbers. Zhang and Zhou [6] experimen-

tally examined the effect of unequal gap spacing around three side-by-side circular cylinders

for Reynolds number ranging from 150 to 2000. Kang [7] numerically studied the effect of gap

spacing for flow past three circular cylinders and observed different flow regimes at Re = 100.

Zhou et al. [8] examined experimentally the effect of Reynolds number (Re = 1.5 × 103 to

2 × 104) of flow past two staggered circular cylinders. They discussed in detail the variation of

Strouhal numbers. Yan et al. [9] experimentally and numerically studied the characteristics of

flow around three staggered circular cylinders using the multiple-relaxation-time lattice Boltz-

mann method (MRT-LBM). They found the steady and unsteady flow regions behind the

upstream cylinder by varying the gap spacing between the cylinders from 1 to 10 at a fixed

Reynolds number (Re = 200).

Mizushima and Takemoto [10] numerically examined that each jet between the square cyl-

inders are independent of each other for large gap spacing between the cylinders. However, at

smaller gap spacing between the cylinders confluence of several jets occurs. Agrawal et al. [11]

numerically studied the flow around two side-by-side square cylinders and observed the syn-

chronous and chaotic flow patterns at Re = 73. Sewatkar et al. [12] carried out numerical simu-

lation of the flow past a row of square cylinders. They studied the combined effects of

Reynolds number and gap spacing between the cylinders for 30� Re� 140 and 1� g� 4.

They found that the critical Reynolds number for the onset of vortex shedding increases with

increase in gap spacing between the cylinders. Furthermore, they found the synchronous,
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quasi-periodic-I and quasi-periodic-II flow patterns. Moussaoui et al. [13] numerically exam-

ined the flow characteristics and heat transfer past three staggered square cylinders using the

MRT-LBM. They studied the combined effect of Reynolds numbers (10� Re� 100) and gap

spacing (1� g� 2) between the cylinders. They did not study the jet form between the cylin-

ders and the presence of primary and secondary cylinder interaction frequencies for smaller

and larger gap spacings. Alam and Zhou [14] experimentally examined the wake structure

mechanism behind two identical side-by-side square cylinders at Re = 300 and 1� g� 5. They

discussed in detail the gap vortices, flow switch, merging of two streets into one and stability.

Furthermore, they found single bluff body, narrow and wide streets, transition and the cou-

pled-sheet flow patterns. Abbasi et al. [15] examined the effect of Reynolds number on flow

past four square cylinders in an inline square configuration and discussed in detail the

observed flow patterns. Chatterjee and Biswas [16] reported the chaotic and synchronous flow

patterns at 1� g� 5 for a fixed Reynolds number of 100. They argued that these flow patterns

are the results of primary vortex shedding frequency and secondary cylinder interaction fre-

quency for flow around two rows of staggered cylinders using Finite volume based computa-

tional fluid dynamics (CFD) solver using PISO algorithm. One can find the effect of

Reynolds numbers and gap spacing for flow past three side-by-side square cylinders numeri-

cally [17–19]. These researchers discussed the effect of Reynolds numbers and gap spacing,

and observed various flow patterns. Kumar et al. [20] numerically studied quasi-periodic, syn-

chronous, and chaotic flow patterns at 0.3� g� 12 for a fixed Reynolds number equals to 80.

The above literature shows that not much attention has been paid to flow past two rows of

staggered square cylinders; in particular, the effect of Reynolds numbers has not been studied.

This study aims to partially fill this gap in literature. Chatterjee and Biswas [16] have investi-

gated the different flow patterns and there study is limited to a single Reynolds number and

fixed the stream-wise gap spacing between the cylinders. The main goal of the present study is

to systematically investigate the different flow patterns by changing the Reynolds number. We

show the effect of Reynolds number from 20 to 140 with 1� g� 6. The critical Reynolds num-

ber for the onset of vortex shedding frequency for the proposed problem is also discussed for

the first time. In literature merging of jets [11, 12, 20] and variation in the wake size [13, 14,

17, 18, 19] has been considered separately whereas we discuss in detail the effect of jets between

the cylinders on the wake interaction.

In Section 2 we provide problem description and numerical details. The grid independence,

effect of the computational domain, and a validation are provided in Section 3 based on the

available data of the single and two side-by-side square cylinders in literature. The dependence

of flow patterns on Re and g is presented and discussed in Section 4 systematically. The main

findings of this work are finally concluded in Section 5.

2. Problem description and numerical details

The purpose of this study is to simulate and analyze the flow characteristics of flow past two

staggered rows of square cylinders Fig 1(A). The cylinders are fixed and identical in size (d)

and shape. The spacing (s) between the cylinders is varied (g = s/d = 1, 2, 3, 4, 5 and 6) and the

Reynolds numbers from 20 to 140. The upstream (C11, C12, C13, C14 and C15) and downstream

(C21, C22, C23, C24, C25 and C26) rows have comprised five and six cylinders, respectively. The

cylinders have been marked as C21 through C26 starting from the bottom of the computational

domain. The stream-wise and the transverse directions with the origin of the coordinate sys-

tem are x and y, respectively. The length of the computational domain Lx = Lu + d + s + d + Ld

(where Lu = 8d is the upstream distance from the channel inlet and Ld = 35d is the downstream

distance from the downstream row of cylinders rear to exit of the domain) is taken as 45d. The
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height (Ly) of the computational domain is 11d. The velocity vectors are represented by

u = (u, v). The simulations for the gap spacing 1, 2, 3, 4, 5 and 6 have been carried out using

grids of sizes 441 × 921, 541 × 941, 641 × 961, 741 × 981, 861 × 1001, and 981 × 1021, respec-

tively. An overall mesh at (Re, g) = (140, 4) is shown in Fig 1(B) as a representative case.

A uniform inflow velocity (u = U1; v = 0) is prescribed at the inlet boundary of the channel.

The convective boundary condition (@tu + U1@xu = 0) is applied at the exit of the computa-

tional domain [21]. The exit of the computational domain is far enough from the cylinders to

ensure that there are no effects of the unconstrained movement of fluid. The periodic bound-

ary conditions [22] have been applied on the bottom and top boundaries of the computational

domain. No-slip boundary conditions (u = v = 0) are applied on the surfaces of the cylinders

[21]. The forces on the surfaces of the cylinders are calculated using the momentum exchange

method [23]. The simulation starts with the condition that the flow is initially at rest. The ini-

tial transient variations of physical parameters such as mean drag coefficient (Cdmean) and

Strouhal number (St = fsd/U1, where fs is the vortex shedding frequency) are not included in

the obtained results. The St is computed by performing Fast Fourier Transform (FFT) on the

lift coefficient.

Two-dimensional lattice Boltzmann method (LBM) is used in this particular study. For an

incompressible unsteady flow, the flow field can be described by the continuity equation and

momentum equations,

r:ru ¼ 0; ð1Þ

r
@u
@t
þ ðu:rÞu

� �

¼ � rpþ rur2u: ð2Þ

where u, ρ, p and t are the flow velocities, density, pressure and time, respectively. Applying

the Chapman-Enskog expansion [24] with the restriction of low Mach number the above Eqs

(1) and (2) can be obtained by the discrete lattice Boltzmann Eq (3)

f iðxþ eiDt; tþ DtÞ ¼ f iðx; tÞ � ðf i � f ðeqÞ
i Þ=t: ð3Þ

where fi(x, t) is the distribution function which indicates the position x of a particle at time t,

Δt is the time step, f ðeqÞ
i is the equilibrium distribution function and τ is the single relaxation

time parameter which control the stability of the method. The equilibrium distribution func-

tion is defined by:

f ðeqÞ
i ¼ roi½1þ 3ðei:uÞ þ 4:5ðei:uÞ

2
� 1:5u2�: ð4Þ

Fig 1. (A) Schematic configuration of the flow around two staggered rows of square cylinders. (B) The

computational mesh around the cylinders for the case of (Re, g) = (140, 4).

https://doi.org/10.1371/journal.pone.0184169.g001
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where the weighting coefficient ωi are

oi ¼

4=9; i ¼ 0

1=9; i ¼ 1; 2; 3; 4

1=36; i ¼ 5; 6; 7; 8

8
><

>:

The kinematic viscosity ʋ can be obtained in the following way:

u ¼ c2

s ðt � 0:5ÞðDxÞ2=Dt: ð5Þ

The pressure, density and flow velocity can be obtained by

p ¼ rc2

s ; ð6Þ

r ¼
X8

i¼0
f i; ð7Þ

u ¼
1

r

X8

i¼1
eif i: ð8Þ

The chosen range of Reynolds number fulfills the two-dimensionality requirements. In

LBM, the movement of a large number of particles on a lattice is the basic proposition. In this

study we have used D2Q9 (where D and Q denotes the dimensions and number of velocity

particles, respectively) LBM model. Basically, LBM consist of two main steps: (i) streaming

(left hand side of Eq (3)) and (ii) collision (right hand side of Eq (3)). The collisions take place

between particles at each time step and their velocities change their directions but, the net

mass and momentum are conserved. The boundary conditions are applied after the streaming

step and the entire process is solved iteratively until the convergence is ensured by the follow-

ing relation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l;m½u

ðkþ1Þ

l;m � u
ðkÞ
l;m�

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l;m½u

ðkþ1Þ

l;m �
2

q � 1� 10� 6: ð9Þ

The LBM is found to be a second-order accurate method in space and conditionally stable

depending on the single-relaxation-time parameter ‘τ’. The most important advantage of this

method is the ease of introducing the obstacle in the flow which makes this method fully suited

for the present study. Here, the equilibrium distribution is found to be valid only for small

Mach numbers. Also the density function is represented by particles that move one lattice

length at every time step. Thus the speed of sound calculated from the diffusion velocity of par-

ticles therefore is always larger than the macroscopic velocity which results in small Mach

number restriction. The lattice Boltzmann method actually belongs to a class of the pseudo-

compressible solvers of the Navier-Stokes equations for incompressible fluid flow. In order to

correctly simulate the incompressible fluid flow, it must be ensure that the Mach number,

Ma = U1/Cs<< 1. Furthermore, low Mach number requires that the uniform inflow velocity

U1 be sufficiently small.

The present computational code is originally written and edited using the Intel Fortran

platform with 64-bits. All the computations were performed on an Intel i7-2600, four core

3.2GHz, 4GB DDR3 memory, 320GB hard disk computer, with a Window 7 (64-bits) system.

The present simulation adopts the uniform and square grid. More details can be seen in review
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article of Chen and Doolan [25]; books of Sukop and Thorne [22]; Succi [26] and Kruger et al.
[27], and research articles [28, 29].

3. Grid independence, effect of computational domain and code

validation study

The basic validation of this present computational code, basics of lattice Boltzmann method,

grid independence study and effect of computational domain has already been carried out for

flow past a rectangular cylinder [30], and flow past more than two side-by-side cylinders

[18, 19, 28, 29]. In Fig 2(a) and 2(b) and Tables 1 and 2 the Cdmean1 and Cdmean2 are the mean

drag coefficients of the lower and upper cylinders, respectively, in two side-by-side square cyl-

inders arranged from bottom to top. Similarly, St1 represents the Strouhal number of lower,

and St2 represents the Strouhal number of upper cylinders. The drag and lift coefficients, Cd

and Cl, are obtained by normalizing the forces by 2Fd/ρU2
1 and 2Fl/ρU2

1 (ρ is the fluid den-

sity, Fd is the force along stream-wise direction and Fl is the force along cross-stream-wise

direction).

A grid independence study was performed by comparing the calculated flow characteristics

using 10, 20 and 40 points to discretize the cylinder side for flow past two side-by-side square

Fig 2. The effect of grid points on the flow past two side-by-side square cylinders at (Re, g) = (73, 4) in terms of (a) mean drag

coefficients and (b) Strouhal numbers.

https://doi.org/10.1371/journal.pone.0184169.g002

Table 1. The effect of computational domains on the flow past two side-by-side square cylinders at (Re, g) = (73, 4).

Cases Lx × Ly Cdmean1 Cdmean2 St1 St2

I Lu = 6d; Ld = 35d; Ly = 11d 1.6952 (1.2%) 1.6952 (1.2%) 0.1552 (2.5%) 0.1552 (2.5%)

II Lu = 8d; Ld = 35d; Ly = 11d 1.6752 1.6752 0.1591 0.1591

III Lu = 12d; Ld = 35d; Ly = 11d 1.6714 (0.3%) 1.6714 (0.3%) 0.1591 (0.0%) 0.1591 (0.0%)

IV Lu = 8d; Ld = 25d; Ly = 11d 1.6848 (0.6%) 1.6848 (0.6%) 0.1594 (0.2%) 0.1594 (0.2%)

V Lu = 8d Ld = 45d; Ly = 11d 1.6698 (0.3%) 1.6698 (0.3%) 0.1591 (0.0%) 0.1591 (0.0%)

VI Lu = 8d; Ld = 35d; Ly = 8d 1.6932 (1.1%) 1.6932 (1.1%) 0.1566 (1.6%) 0.1566 (1.6%)

VII Lu = 8d; Ld = 35d; Ly = 14d 1.6702 (0.3%) 1.6702 (0.3%) 0.1594 (0.2%) 0.1594 (0.2%)

https://doi.org/10.1371/journal.pone.0184169.t001
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Table 2. The aerodynamic force characteristics of flow past a single square cylinder at different Rey-

nolds numbers.

Re Cdmean St

75 Present 1.4086 0.1392

Sohankar et al. [32] 1.5090 0.1330

Gera et al. [33] 1.5240 0.1220

100 Present 1.4236 0.1498

Sohankar et al. [32] 1.4440 0.1450

Gera et al. [33] 1.4610 0.1290

120 Present 1.4150 0.1542

140 Present 1.4020 0.1565

https://doi.org/10.1371/journal.pone.0184169.t002

Fig 3. (a) Vorticity contours visualization, (b) velocity profile, (c) drag and lift coefficients and (d) power spectra analysis of flow

past a single square cylinder.

https://doi.org/10.1371/journal.pone.0184169.g003

Table 3. Comparison of present numerical results and Agrawal et al. [11] for flow past two side-by-side square cylinders at Re = 73.

g Cdmean1 Cdmean2 St1 St2

1 Present 1.8668 1.8865 0.1520 0.1520

Agrawal et al. [11] 1.9000 1.9000 0.1750 0.1750

1.5 Present 1.8525 1.8281 0.1680 0.1680

Agrawal et al. [11] 1.9000 1.9000 0.1620 0.1620

2 Present 1.7880 1.7822 0.1622 0.1622

Agrawal et al. [11] 1.8000 1.8000 0.1650 0.1650

4 Present 1.6752 1.6752 0.1591 0.1591

Agrawal et al. [11] 1.7500 1.7500 0.1660 0.1660

6 Present 1.6215 1.6215 0.1582 0.1582

Agrawal et al. [11] 1.7000 1.7000 0.1650 0.1650

https://doi.org/10.1371/journal.pone.0184169.t003
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Fig 4. Onset of vortex shedding of flow from steady to unsteady at (a) Re = 37 and g = 3 and (b) Re = 38 and

g = 3.

https://doi.org/10.1371/journal.pone.0184169.g004
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cylinders. A maximum difference of 1.3%, 1.3%, 0.6% and 0.6% on Cdmean1, Cdmean2, St1 and

St2, respectively, was found between the last two cases. In this study, we adopt a resolution of

20 points for square cylinder. In addition, we choose 20 points, keeping in mind the con-

straints of long running simulations and computational resources. Kumar et al. [20] found

that 16–20 points cylinder resolution is enough to obtain grid independent results. We also

found that Lu = 8d, Ld = 35d and Ly = 11d is the best choice in terms of computational length

see Table 1.

In addition, for the sake of the present numerical study, we have carried out a separate vali-

dation study for flow past a single square cylinder see Fig 3(a), 3(b), 3(c) and 3(d) and Table 2

and two side-by-side square cylinders (see Table 3) at (Re, g) = (73, 4). It is to be noted that in

case of single square cylinder in a channel we adopted the no-slip [21] boundary conditions on

the top and bottom walls of the channel. The same boundary conditions and channel length

adopted as discussed already for the proposed problem in Section 2. The vortex pattern in the

wake behind the cylinder shown in Fig 3(a) composes of negative and positive alternate shed

vortices, i.e. the well-known Karman vortex street at Re = 140. The velocity profile is also pre-

sented in Fig 3(b). It is observed that the drag and lift coefficients are settles to a periodic

behavior Fig 3(c). Furthermore, no other peaks observed in the power spectra analysis of lift

coefficient for Re = 140 in Fig 3(d). In this paper in spectra plots ‘PSE’ stands for power spec-

trum energy. These findings are in good agreement with those observed by Davis and

Moore [31]. Similar characteristics observed for Re = 75, 100 and 120 (not shown). The

force statistics data of different Reynolds numbers are given in Table 2 with available data in

the literature [32, 33]. These findings further gives us the confidence that the present code

recovered correctly all the silent features of an isolated cylinder in a cross-flow. The compari-

son of present results and those of Agrawal et al. [11] are given in Table 3. The minor discrep-

ancy in St found could be due to the difference in the cylinder size and computational domain,

etc. used.

Fig 5. Variation of critical Reynolds number for flow past the two rows of staggered square cylinders with gap spacing.

https://doi.org/10.1371/journal.pone.0184169.g005
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4. Results and discussions

To the authors’ knowledge, there are no experimental measurements and numerical studies of

the flow patterns for the problem under consideration in the open literature to compare with

the numerical work of this study. We will mostly compare our results with flow past a single,

two, three, and row of square cylinders available in the literature. Results are presented for

two-dimensional computations for 75� Re� 140 and 1� g� 6 using the single-relaxation-

time lattice Boltzmann method. In this study C12, C13, C23, and C24 of two consecutive cylin-

ders (arbitrarily chosen) for time history analysis of drag and lift coefficients, and power spec-

tra of lift coefficients to further verified the shedding pattern of observed flow patterns. In

vorticity contours visualization plots the solid and dashed lines represent the positive and neg-

ative shed vortices generated from the lower and upper corners of the cylinders. We used the

Fig 6. Instantaneous vorticity contours visualization corresponding to synchronous flow pattern for (a) (Re, g) = (75, 6), (b) (Re, g)

= (140, 6), (c) (Re, g) = (100, 5) and (d) (Re, g) = (120, 4).

https://doi.org/10.1371/journal.pone.0184169.g006
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solid and dotted lines in drag and lift coefficients plots. The solid line used in power spectra

graphs for chosen cylinders in this study.

One typical example of onset of vortex shedding of flow from steady to unsteady is shown

in Fig 4(a) and 4(b) at g = 3 for two different Reynolds numbers. Our study found that the

maximum value of critical Reynolds number (Recr) is 41.5 at g = 6, and reduces with a reduc-

tion in gap spacing see Fig 5. It is to be noted that to find the critical Reynolds number for each

gap spacing we start from Re = 20 and increase it with the increment of 0.5 until we not find

the critical value. This is actually due to increase in the vorticity production from the boundary

layers with decreasing the separation between the cylinders as a result of gap induced acceler-

ated effects. With a reduction in gap spacing the vorticity generation increased is the main

cause of the reduction of critical Reynolds numbers with increasing the gap spacing [12].

Therefore, the lower limit of Reynolds number for further analysis is set at 75. Saha et al. [34]

Fig 7. Time-history analysis of drag and lift coefficients (a-d) (Re, g) = (75, 6), (e-h) (Re, g) = (140, 6), (i-l) (Re, g) = (100, 5) and (m-p)

(Re, g) = (120, 4).

https://doi.org/10.1371/journal.pone.0184169.g007
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observed that the flow loses its two-dimensionality between 150� Re� 175, therefore the

upper limit of Re in this study has been decided as 140.

The instantaneous vorticity contours visualization plot at (Re, g) = (75, 6), (140, 6), (100, 5)

and (120, 4) are presented in Fig 6. For relatively large gap spacing, g = 6, 5 and 4 the shed vor-

tices are clearly seen from both rows of the cylinders. For (Re, g) = (100, 5) and (120, 4), the

merging of vortices observed at the downstream region; however, for (Re, g) = (75, 6) and

(140, 6) the shed vortices throughout the computational domain almost remain distinct. Fig 6

(a)–6(d) represents the change from the anti-phase to in-phase mode. At the beginning, the

streets behind the cylinders are anti-phase, characterized by the same lateral spectrum between

the shed vortices and same width. As a result, the vortex shedding frequencies from the cylin-

der differ. It is observed that anti-phase vortex shedding is predominant for larger gap spacing

between the cylinders as compared to in-phase vortex shedding behind two consecutive cylin-

ders. Williamson [35] found experimentally the anti-phase vortex shedding flow pattern for

Fig 8. Power spectra analysis of lift coefficients (a-d) (Re, g) = (75, 6), (e-h) (Re, g) = (140, 6), (i-l) (Re, g) = (100, 5) and (m-p) (Re, g) =

(120, 4).

https://doi.org/10.1371/journal.pone.0184169.g008
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two circular cylinders at (Re, g) = (100, 3). Chatterjee and Biswas [16] also had similar numeri-

cal observations. The time history analysis of drag and lift coefficients are given in Fig 7(a)–7

(p). By changing the Reynolds number one can clearly observe the significant variation in the

signal. The lift coefficient signals in these figures clearly indicate that the secondary cylinder

interaction frequency almost vanishes. The shedding pattern behind the cylinders shows some

in-phase and some anti-phase characteristics. Qualitatively, the flow behavior is in good agree-

ment with the results obtained numerically by Chatterjee and Biswas [16] for flow past two

staggered rows of square cylinders. This can be further revealed from the power spectra

analysis of lift coefficients presented in Fig 8(a)–8(p), where Sts = 0.3047 and 0.3006 for

(Re, g) = (75, 6) of C23 and C24, respectively (where subscript ‘s’ denotes secondary). Similarly,

one can see Sts for C23 and C24, respectively; in these figures. The power spectra analysis of

lift coefficients clearly indicates the dominancy of primary vortex shedding frequency

(Stp = 0.1518 and 0.1518 for C12 and C13, respectively; for (Re, g) = (75, 6); where subscript ‘p’

denotes primary). This is interesting that the secondary cylinder interaction frequency disap-

pears at the larger Reynolds number for g = 6, 5 and 4. The concept of secondary cylinder

interaction frequency was proposed by Kumar et al. [20]. They proposed that the existence of

Fig 9. Vorticity contours visualization at (a) (Re, g) = (75, 3) and (b) (Re, g) = (120, 3).

https://doi.org/10.1371/journal.pone.0184169.g009
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secondary cylinder interaction frequency occurs due to narrowing and widening of the wake

behind one cylinder. Chatterjee and Biswas [16] in there simulation for (Re, g) = (100, 5)

obtained Stp = 0.187, which fairly agrees with our present computed results although, the Rey-

nolds numbers are somewhat different. The downstream row of cylinders is shedding vortices

as an isolated cylinder and no sign of the frequency of oscillation of the upstream row of cylin-

ders are noticeable in the spectra analysis of lift coefficients. Our results are in good agreement

with those of the Kumar et al. [20] for flow past a row of square cylinders.

Fig 9(a) and 9(b) shows the vorticity contours of quasi-periodic-I flow pattern. The time

history analysis of lift coefficients for Re = 120 at g = 3 in Fig 10(a)–10(h) also indicates the

existence of secondary cylinder interaction frequency, with Sts = 0.021, and primary vortex

shedding frequency, with Stp = 0.18 in Fig 11(a)–11(f). The time-trace analysis of lift coeffi-

cients for (Re, g) = (120, 3) in these figures indicates the presence of very small secondary cylin-

der interaction frequency. For (Re, g) = (75, 3) and (120, 3), we noticed that the time period of

consecutive primary and secondary cycles is different and approximately constant, respec-

tively. The very similar characteristics are observed for (Re, g) = (100, 3) and (140, 3). On the

basis of these characteristics, we called it quasi-periodic-I flow pattern. Sewatkar et al. [12] had

similar observations at (Re, g) = (100, 3) for flow past a single row of square cylinders.

The instantaneous vorticity contours visualization plot at g = 2 for Re = 75 and 100 are

shown in Fig 12(a) and 12(b). For Re = 100, the shed vortices are seen approximately up to

x/d� 10 and then coalesces with each other shed vortices further downstream of the

Fig 10. Time-trace analysis of drag and lift coefficients at (a-d) (Re, g) = (75, 3) and (e-h) (Re, g) = (120, 3).

https://doi.org/10.1371/journal.pone.0184169.g010

Fig 11. Spectra analysis of lift coefficients at (a-c) (Re, g) = (75, 3) and (d-f) (Re, g) = (120, 3).

https://doi.org/10.1371/journal.pone.0184169.g011
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computational domain. One can clearly see the phase difference of shedding from an adjoining

cylinder of second row. It is observed that the shedding phase difference of certain adjoining

cylinders is maintained for larger time. In case of two side-by-side circular cylinders for

Re = 100 and 1� g� 5, Williamson [35] observed that the changeover between in-phase and

anti-phase vortex shedding mode lasts for a large number of vortex shedding cycles. Further-

more, at g = 2 the time history analysis of drag and lift coefficients for Re = 75 in Fig 13(a)–13

(d) reveals that the primary and secondary cycles are not showing constant behavior for differ-

ent time periods. Similar drag and lift coefficients characteristics are observed in Fig 13(e)–13

(h) for Re = 100, respectively. The power spectra analysis of lift coefficients at g = 2 for different

Reynolds number indicates Stp = 0.0.0149, 0.0089, 0.2160 and 0.2113, and Sts = 0.0208, 0.0327,

0.2101 and 0.1994 for C12, C13, C23 and C24, respectively; for Re = 100. On the basis of above

characteristic, the flow is so-called quasi-periodic-II flow pattern in Fig 14(a)–14(h). In quasi-

periodic-II flow pattern both the primary and secondary cycles have variable time period.

At g = 1, the instantaneous vorticity contour plots for different Reynolds numbers are

shown in Fig 15(a) and 15(b). The shed vortices coalesce together just near downstream of the

second row of cylinders for Re = 100. This shedding coalesce occurs at small downstream of

the second row of cylinders and some of the wakes appear wider and narrower. As a result, the

Fig 12. Instantaneous vorticity contours visualization at (a) (Re, g) = (75, 2) and (b) (Re, g) = (100, 2).

https://doi.org/10.1371/journal.pone.0184169.g012
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strong merging and distortion of shed vortices clearly can be seen as they move downstream

throughout the entire computational domain and the flow completely behaves chaotic. The

similar characteristics observed for Re = 140 in Fig 15(b). The time history analysis of drag and

lift coefficients for different Reynolds numbers confirms that the flow is chaotic in nature

which is presented in Fig 16(a)–16(h). The lift forces on downstream row of cylinders in these

figures are very irregular and anti-phase with each other (only occasionally). It is observed for

Fig 13. Time-history analysis of the drag and lift coefficients (a-d) (Re, g) = (75, 2) and (e-h) (Re, g) =

(100, 2).

https://doi.org/10.1371/journal.pone.0184169.g013
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Fig 14. Power spectra analysis of lift coefficients (a-d) (Re, g) = (75, 2) and (e-h) (Re, g) = (100, 2).

https://doi.org/10.1371/journal.pone.0184169.g014
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small gap spacing that the flow interference between successive cylinders is too strong. Fur-

thermore, the jets are merging immediately behind the cylinders and also interact with the

shed vortices. These observations are also verified from the time history analysis of the drag

and lift coefficients, and the power spectra analysis of lift coefficients (Fig 17(a)–17(h)).The

power spectra analysis of lift coefficients further reveals the behavior of chaotic flows as a result

of broad and continuous spectrum. It is concluded that at lower gap spacing the shed vortices

interact so strongly that the Reynolds number does not affect the basic characteristics of the

flow from Re = 75 to 140. We further observed for chaotic flow pattern that there is no relation

between shed vortices from different cylinders and showing haphazard motion of shed vortices

from the cylinders. The secondary cylinder interaction frequency completely dominates the

primary vortex shedding frequency. The chaotic flow pattern was further confirmed from the

phase portrait plots shown in Fig 18(a)–18(h). From these plots one can clearly see that the

dynamics of the force coefficients of two adjoining cylinders progressively decouples, as sug-

gested by Ravoux et al. [36]. The chaotic nature of flow is shown in the portrait diagram in

these figures of drag versus lift coefficients for (Re, g) = (140, 1). The shed vortices behind the

Fig 15. Instantaneous vorticity contours visualization at (a) (Re, g) = (100, 1) and (Re, g) = (140, 1).

https://doi.org/10.1371/journal.pone.0184169.g015
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Fig 16. Time-history analysis of drag and lift coefficients of (a-d) (Re, g) = (100, 1) and (e-h) (Re, g) =

(140, 1).

https://doi.org/10.1371/journal.pone.0184169.g016
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Fig 17. Power spectra analysis of lift coefficients (a-d) (Re, g) = (100, 1) and (e-h) (Re, g) = (140, 1).

https://doi.org/10.1371/journal.pone.0184169.g017
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cylinders are strongly decoupled. However, the strong jet flow between the cylinders causes a

chaotic state.

In synchronous flow pattern, the lift forces are almost symmetric, resulting in zero mean

lift force as observed in portrait plots. The periodic and repulsive forces between the down-

stream row of cylinders have higher amplitude than those between the upstream row of cylin-

ders. The irregularity of the lift coefficient on downstream row of cylinders is due to the jet

flow between the cylinders. The trajectories in portrait plots are remains in figure-eight shape

for last four figures.

The relationship between the statistical characteristics and vortex patterns is another inter-

esting issue and will be discussed in detail in this section. In coming figures the aerodynamic

characteristics are presented in mean drag coefficient, Strouhal number, root-mean-square

Fig 18. Portrait plot of the drag and lift coefficients of (a-d) (Re, g) = (140, 1) and (e-h) (Re, g) = (140, 6).

https://doi.org/10.1371/journal.pone.0184169.g018
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values of drag and lift forces. For comparison, the results of single isolated cylinder are also

given in these figures. It is found that the Cdmean depends both on the Re and g. The Cdmean of

upstream and downstream row of cylinders are quite different. The Cdmean for the very small

gap spacing (g = 1 and 2) is larger compared to the other gap spacing between the cylinders.

Cdmean for isolated cylinder is smaller than the flow past two staggered rows of cylinders con-

figuration, except the case of (Re, g) = (75–100, 1), where Cdmean of the cylinders (C25, C26) is

lower than the value of single square cylinder. As observed in Fig 19(a)–19(h), the wake

response transition behind the downstream row of cylinders leads to significant change in

Cdmean. For (Re, g) = (75–100, 2), a sudden jump in Cdmean of C25 and C26 is due to changeover

of the chaotic flow pattern to quasi-periodic-II flow pattern. As the gap spacing between the

cylinders is increased to g = 6 and 5, the synchronized vortex shedding behind the cylinders

dominates the wakes, then the Cdmean of downstream row of cylinders is almost similar to that

for flow past a single square cylinder. However, it is not the case for upstream row of cylinders.

Compared to upstream row of cylinders the downstream row of cylinders gives quite different

values.

The variations of the Strouhal number with gap spacing for different Reynolds number are

shown in Fig 20(a)–20(h) together with the Strouhal number of flow past a single square cylin-

der. In these figures, we present only the primary vortex shedding frequency values. As shown

in last four figures, the vortex shedding frequency strongly depends on the gap spacing, espe-

cially at g� 3. For the synchronized flow pattern, the shedding frequency is almost constant

Fig 19. Variation in the mean drag coefficient with gap spacing at (a, c) Re = 75, (b, f) Re = 100, (c, g) Re = 120 and (d, h) Re = 140.

https://doi.org/10.1371/journal.pone.0184169.g019
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and very close to isolated cylinder value, for example, St = 0.1392, 0.1498, 0.1542, and 0.1565 at

Re = 75, 100, 120, and140, respectively. Sudden jumps in vortex shedding frequency are

observed for quasi-periodic-II and chaotic flow patterns. We have not observed Strouhal value

for those cylinders which shows steady behavior. The Strouhal number values for individual

cylinder are smaller than that of a single cylinder for downstream row of cylinders at g = 1 for

all chosen Reynolds numbers. On the other hand, in the case of upstream row of cylinders it is

smaller at g = 2 for Re = 75; g = 1 and 2 for Re = 100 and 120; and g = 2 and 3 for

Re = 140. The discontinuities in Strouhal number occur at the Reynolds number between any

two flow patterns. When the wake of the two rows of staggered square cylinders transits from

chaotic flow pattern to quasi-periodic-I flow pattern at (Re, g) = (75, 1–2) and (100, 1–2); and

from quasi-periodic-I flow pattern to quasi-periodic-II flow pattern at (Re, g) = (75, 2–3) and

(100, 2–3), the Strouhal number shows increasing and decreasing behavior (in last four fig-

ures). The secondary cylinder interaction frequency is 0.04 for all chosen Reynolds number

and is larger than the values observed at g = 6, 5, and 4 (in last four figures).

The root-mean-square values of drag coefficients are given in Fig 21(a)–21(h) together

with a single square cylinder values for comparison. The increasing and decreasing behavior

at relatively large gap spacing (g = 4–6) confirms that in synchronous flow patterns shed

vortices behind the consecutive cylinders change their behavior from in-phase mode to anti-

Fig 20. Variation in the Strouhal number with gap spacing at (a, c) Re = 75, (b, f) Re = 100, (c, g) Re = 120 and (d, h) Re = 140.

https://doi.org/10.1371/journal.pone.0184169.g020
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phase mode. Dramatic drop happens similar to that of quasi-periodic-II flow pattern at

(Re, g) = (100, 3) and quasi-periodic-II flow pattern at (Re, g) = (100, 2).

The root-mean-square values of lift coefficients are given in Fig 22(a)–22(h). The single

square cylinder values are also given in these figures for comparison. The very small Clrms for

g = 6, 5 and 4 indicates that the vortex shedding is very weak behind the cylinders for synchro-

nous flow pattern. Furthermore, the Clrms of downstream rows of cylinders are close to isolated

cylinder with the increase of gap spacing. At all these relatively large gap spacing (g = 6, 5 and

4), we found that as the Reynolds number changes, transition in flow patterns from quasi-peri-

odic-I to synchronous occurs (Fig 23).

The flows patterns map have been demarcated based on the characteristics observed in

terms of vorticity contours visualization; time history analysis of the drag and lift coefficients;

and power spectra analysis of the lift coefficients. The flow patterns map as a function of Re

and g is given in Fig 23. As we observed synchronous, quasiperiodic-I, quasiperiodic-II and

chaotic flow patterns for 75� Re� 140 and 1� g� 6. These flow patterns were also observed

by Sewatkar et al. [12] and Kumar et al. [20] for flow past a single row of square cylinders. The

synchronous flow exists at higher Reynolds number at g = 4 and larger gap spacing (g = 5, 6)

for all chosen Reynolds numbers. The quasi-periodic-I flow pattern was observed at g = 4 and

Fig 21. Variation in the root-mean-square value of drag coefficient with gap spacing at (a, c) Re = 75, (b, f) Re = 100, (c, g) Re = 120

and (d, h) Re = 140.

https://doi.org/10.1371/journal.pone.0184169.g021
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3 with Re� 100 and Re� 140, respectively. Quasi-periodic-II flow pattern was found at g = 2

for Reynolds numbers 75 and 100. The figure also depicts the chaotic flow pattern for all cho-

sen Reynolds numbers at smaller gap spacing (g = 1) and at (Re, g) = (120, 2) and (140, 2). The

same signed vortices and its strength were found behind the second row of cylinders and

approximately equal to that observed for flow past a single row of square cylinders in the syn-

chronous and quasi-periodic-II flow patterns by Sewatkar et al. [12]. As a result, the shed vorti-

ces move independently behind the second row of cylinders in stream-wise direction. In

Quasi-periodic-I and chaotic flow patterns significant merging of shed vortices and transverse

movement were observed behind the second row of cylinders throughout the computational

domain. We found that both the Reynolds number and gap spacing significantly affects the

flow characteristics, with the effect of gap spacing greater than that of the Reynolds number.

5. Conclusions

The numerical results of two-dimensional flow across two rows of identical square cylinders in

staggered arrangement are reported in this study using a lattice Boltzmann method. The main

goal of the study is to systematically understand the Reynolds number effect on steady to

unsteady transition and to further investigate the different flow patterns, at certain spacing.

Furthermore, we study the existence of secondary cylinder interaction frequency in the time

Fig 22. Variation in the root-mean-square value of lift coefficient with gap spacing at (a, c) Re = 75, (b, f) Re = 100, (c, g) Re = 120 and

(d, h) Re = 140.

https://doi.org/10.1371/journal.pone.0184169.g022
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series of lifts coefficients. It is found that the critical Reynolds number, at which onset of vortex

shedding occurs, increases with an increase in gap spacing between the cylinders. It is also

observed that the Reynolds number have substantial effect on the flow characteristics especially

at g = 4 and 2. For g = 6 and 5, the secondary cylinder interaction frequency disappears at large

Reynolds numbers and the flow completely dominates by the primary vortex shedding fre-

quency. This confirms that at such large gap spacing the wakes interaction behind the cylin-

ders is weak and it reduces further with an increase in Reynolds number. For g = 1 and 2 the

secondary cylinder interaction frequency predominates the flow and as a result strong wakes

interaction are observed behind the cylinders at all Reynolds numbers.

The wake interaction mechanism is also discussed in detail. At larger gap spacing (g = 6

and 5), we found weak wakes interaction and throughout the entire computational domain

between the cylinders a continuous jet forms. At relatively small gap spacing (g = 4 and 3), the

wakes interaction behind the cylinders strongly depend on the Reynolds number. The wakes

interaction occurs due to jets coming out of the spacing between the cylinders. In quasi-peri-

odic-I flow pattern, the secondary cylinder interaction frequency depends on the spacing

between the cylinders. In quasi-periodic-II (g = 2) flow pattern, the jets effects is stronger. In

chaotic flow pattern (g = 1) the jets effect is too strong and the wakes are immediately broken

behind the cylinders. The primary vortex shedding frequency is strongly affected by the sec-

ondary cylinder interaction frequency at smaller gap spacing.

Finally, in this work we clearly brought out the wakes interaction behind the cylinders and

the importance of jets forms between the cylinders which were observed experimentally for

higher Reynolds numbers. We also discussed in detail that the physical parameters also

affected due to changeover of flow patterns. Flow around a two rows of staggered square cylin-

ders at higher Reynolds numbers will be studied in near future using the three-dimensional

lattice Boltzmann simulations.

Fig 23. Flow patterns map at different Reynolds numbers and gap spacings.

https://doi.org/10.1371/journal.pone.0184169.g023
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