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ABSTRACT: Efficient and effective drug-target binding affinity (DTBA)
prediction is a challenging task due to the limited computational resources in
practical applications and is a crucial basis for drug screening. Inspired by the
good representation ability of graph neural networks (GNNs), we propose a
simple-structured GNN model named SS-GNN to accurately predict DTBA.
By constructing a single undirected graph based on a distance threshold to
represent protein−ligand interactions, the scale of the graph data is greatly
reduced. Moreover, ignoring covalent bonds in the protein further reduces the
computational cost of the model. The graph neural network-multilayer
perceptron (GNN-MLP) module takes the latent feature extraction of atoms
and edges in the graph as two mutually independent processes. We also
develop an edge-based atom-pair feature aggregation method to represent complex interactions and a graph pooling-based method
to predict the binding affinity of the complex. We achieve state-of-the-art prediction performance using a simple model (with only
0.6 M parameters) without introducing complicated geometric feature descriptions. SS-GNN achieves Pearson’s Rp = 0.853 on the
PDBbind v2016 core set, outperforming state-of-the-art GNN-based methods by 5.2%. Moreover, the simplified model structure and
concise data processing procedure improve the prediction efficiency of the model. For a typical protein−ligand complex, affinity
prediction takes only 0.2 ms. All codes are freely accessible at https://github.com/xianyuco/SS-GNN.

1. INTRODUCTION
Drug development is a process with long cycles, high
investments, and high risks.1,2 Drug-target binding affinity
(DTBA) prediction plays an important role in drug develop-
ment3−6 and is also an important basis for drug screening.
Accurate DTBA predictions will significantly reduce new drug
development costs and speed up the drug discovery process,7

which remain a challenge today. Traditional methods such as
classical scoring functions (SFs)8−11 do not estimate binding
affinity well, and molecular dynamics (MD) simulations12,13

have improved prediction accuracy, but they are too slow for
large-scale applications. With the development of machine
learning (ML), a large number of models for predicting drug-
target interactions based on traditional ML methods14−21 have
emerged. ΔVinaRF20 combines AutoDock Vina and random
forest models to predict binding affinity. ECIF22 introduces
Extended Connectivity Interaction Features to describe
protein−ligand complexes, combined with machine learning
SFs to improve binding affinity prediction. AGL-Score23 and
DCML24 are based on algebraic graph descriptors and the
Dowker complex for molecular representation, respectively,
and are trained via gradient boosted trees (GBT). HPC/
HWPC,25 PerSpect ML,26 and TopBP27 utilize topological
descriptor-based ML methods to predict binding affinity.
These ML models have achieved good results, they typically
use well-designed manual features and require special domain
knowledge and experience.

Deep learning (DL)-based methods can automatically
extract features from available data. Therefore, DL-based
methods have received increasing attention, and a large
number of DL-based methods7,28−31 have been proposed for
binding affinity prediction, most of which have better
performance and greater potential for capacity enhancement
than traditional ML algorithms. Among them, the most
commonly used methods are convolutional neural networks
(CNNs) and graph neural networks (GNNs). With the
increase in ligand-target 3D structural data, learning to predict
binding affinity from 3D structural complexes has become a
hot area of research. To encode the structural information on
proteins and drugs as comprehensively as possible, some DL
models based on 3D structure embedding32−36 have been
proposed. In OnionNet,37 the contacts between proteins and
ligands are grouped according to different distance ranges, and
the resulting features are fed into a CNN. In OnionNet-2,38 the
contact logarithms between protein residues and ligand atoms
are used as input features to the CNN model to predict
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binding affinity. In KDeep,39 FAST,40 and Pafnucy,35 3D grids
are applied to represent protein−ligand complexes, and 3D
CNNs are applied to generate feature embeddings. Further-
more, Nguyen et al. propose to describe biomolecular
structures through mathematical representations.41,42 TNET-
BP43 combines topological and convolutional neural networks
to achieve state-of-the-art predictive performance in affinity
prediction. Mol-PSI44 uses 2D images to represent the
molecular structures and interactions and combines the
CNN model to improve the affinity prediction accuracy.

In order to better represent the structural features of
molecular graph, GNNs with good representation ability are
used for DTBA prediction.32,45−51 In GNN-based models,
graph structures are applied to represent atoms and their
covalent bonds, and GNNs are applied to predict drug-target
binding affinity. Some new methods have been proposed that
consider the spatial information on the relative positions of
atoms between ligands and proteins to improve GNN-based
DTBA prediction models. The SGCN model52 proposed by
Danel et al. considers the spatial information on the nodes.
SIGN53 proposed by Li et al. introduces polar coordinates and
considers angle information and the case of long-range
interactions between atoms. The IGN model proposed by
Jiang et al.54 encodes the chemical and structural information
in 3D space into a molecular graph, which comprehensively
represents protein−ligand interaction patterns and adopts
three molecular graphs to represent complexes. The model has
good performance on the PDBbind data set. The MP-GNN55

proposed by Li et al. is a multiphysics graph neural network
model that exhibits good predictive ability in predicting SARS-
CoV/SARS-CoV-2 inhibitor complexes.

The graphDelta56 model applies a multitask learning method
based on graph convolutional neural networks. The
AweGNN57 model is a neural network model based on
geometric features, which can be automatically parametrized,
and the model can achieve advanced performance of molecular
property prediction. PIGNet58 uses physics-informed equa-
tions to instruct model learning. By utilizing the diversity of
protein−ligand chemistry and structure for data augmentation,
the generalization ability of the model is further improved.
PIGNet performs well in both prediction accuracy and
stability. The MGraphDTA59 model utilizes a multiscale
graph neural network with 27 graph convolutional layers to
predict the affinity, which can simultaneously capture the local
and global structures of the compound, and also uses the

gradient weighted affinity activation mapping method for visual
explanation. GIGN60 model uses a graph neural network to
predict protein−ligand binding affinity, considering the 3D
structures of the complexes and protein−ligand physical
interactions. GIGN achieves state-of-the-art performance.
GNN-based frameworks have made good progress in binding
affinity prediction, but most of these frameworks employ
complicated model architecture and intricate geometric
structures data that complicate the model. They are still not
well suited for large-scale application in engineering. Therefore,
it is highly desirable to develop an efficient DTBA prediction
model with simple model architecture to meet the requirement
of high efficiency.

To tackle the above problems, in this paper, we develop a
novel method to improve the DTBA prediction model based
on a GNN named SS-GNN. Compared with the state-of-the-
art methods, it not only achieves good prediction performance
but also has a simple structure and high prediction efficiency.
SS-GNN is equipped with three modules to accomplish affinity
prediction. We apply a single undirected graph to represent
protein−ligand complexes, where nodes are atoms and edges
are the interactions of atoms (Figure 1). The appropriate
distance threshold is obtained by the hyperparameter tuning.
We use a smaller threshold while ensuring model performance.
A smaller threshold will reduce the number of nodes and edges
in a complex graph, and reduce the scale of the graph fed to the
model. We design a hybrid feature extraction module (GNN-
MLP) to extract useful features for atoms and interactions,
respectively, and implement a lightweight feature embedding
process via a two-layer graph isomorphism network (GIN)
submodule and a three-layer multilayer perceptron (MLP)
submodule. By aggregating the embedding information on
each edge and its connected atom pairs, edge-based atom-pair
aggregation features can be obtained, and by applying a simple
MLP, the binding affinity of a single edge can be predicted.
Finally, by summing the individual edge affinity predictions by
employing a graph pooling module, the affinity of the complex
can be obtained. In summary, the main contributions of our
work are as follows:

(1) Protein−ligand complex representation based on a single
undirected graph. The distance threshold is selected by
an experimental approach based on cross-validation. And
the covalent bonds in the ligands are preserved while the
covalent bonds in the proteins are ignored. The model
achieves the best trade-off between prediction accuracy

Figure 1. Graph representation of the protein−ligand complex. (a) 3D structure of the complex. (b) Graph representation ignoring protein atoms
outside the threshold and all covalent bonds in the protein.
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and computational complexity. The discretization of the
interatomic distance improves the computational
efficiency and generalization ability to a certain extent
and further improves the performance of the model.

(2) Hybrid feature extraction based on GNN-MLP. We
regard the feature extraction of atoms and edges in the
graph as two independent processes: the atom features
are extracted by applying a simple and effective two-layer
GIN, and the edge features are extracted by applying a
lightweight MLP. Moreover, the single undirected graph
representation not only simplifies the model but also
makes updating the node information on proteins and
ligands in the GNN more efficient.

(3) Edge-based atom-pair feature aggregation and graph
pooling-based affinity prediction. The embedding
vectors of each edge and its connected atom pairs are
concatenated to achieve feature aggregation and form
the inputs of the affinity prediction module. The
predicted outputs of all individual edges are summed
through a graph pooling layer to obtain the binding
affinity of the complex.

Unlike other models, our data processing procedure avoids
the high complexity caused by extracting complicated geo-
metric structures. As a result, the number of parameters in the
entire model is only 0.6 M. The simplicity of the model and
data processing procedure leads to a simple and low-
complexity SS-GNN. Experiments demonstrate the effective-
ness and efficiency of the proposed model. In section 2, we
introduce the detailed model architecture of SS-GNN. In
section 3, we present the experimental results and compare
them with those of state-of-the-art methods in similar tasks.
Finally, section 4 summarizes our proposed method and briefly
describes our future research plans.

2. SS-GNN
In this section, we introduce the proposed SS-GNN method.
The SS-GNN defines the prediction of DTBA as a regression
task, in which the model’s input is the drug-target
representation, and the output is a continuous value
representing the binding affinity score between the drug and
the target protein. The overall architecture of the SS-GNN is
shown in Figure 2. Our approach consists of graph
representation of complexes based on the distance threshold,
hybrid mode feature extraction, feature aggregation, and
affinity prediction. We first give an overview of the SS-GNN
considering the 3D structure of the protein−ligand complex. In
the following subsections, we elaborate the key modules.

2.1. Protein−Ligand Complex Representation Based
on a Single Undirected Graph. Given a protein−ligand
complex as shown in Figure 1(a), it can be described by the
graph of interactions between atoms. As a rule of thumb, when
the distance between protein−ligand atom pairs is greater than
a certain threshold, the interactions between them do not
contribute much to the interactions of the overall complex. In
the initial stage of the experiment, we have constructed the
complex graph using ligand atoms as well as all protein atoms
and achieved good results. However, the number of atoms in a
protein is much larger than that in a ligand. To verify whether
the ligand features are overwhelmed by excessive protein
features, we remove all the features of the ligand and replace
them with random numbers. Experiments show that the model
is still valid to a certain extent, which led us to think about how
to make better use of ligand features and whether all protein
atoms are required in the model. To this end, we propose a
distance-threshold-based graph representation method that
employs the ligand and its partial protein to construct a
complex interaction graph. We set the distance threshold as an

Figure 2. (a) Detailed steps of the SS-GNN framework. The SS-GNN takes a graph representation of drug−protein complexes as input and the
prediction of binding affinity as output. (b) The two types of edges connected to an example ligand atom. (c) Details of the affinity prediction
module.
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optimizable hyperparameter and experimentally determine a
feasible value.

Unlike some other GNN-based DTBA prediction methods,
our proposed SS-GNN applies only one single protein−ligand
complex graph to characterize the interactions of the
complex instead of building ligand and protein graphs
separately. We first define the atom node set of the ligand as

L. We also define the atom node set of the protein as

= { |

}

a a d a a

a

is a protein atom satisfying ( , ) ,

where

P
j j i j

i
L

where =d a a p p( , )i j i j 2
, pi and pj denote the coordinates

of ai and aj, and θ is a hyperparameter representing distance
threshold. Then, we define the protein−ligand complex as an
undirected graph ( , ), where = L P is the node
set and is the edge set containing two types of edges formed
by atoms in , protein−ligand interactions and covalent
bonds between ligand atoms.

We introduce a distance threshold θ that can significantly
reduce the size of the graph. Furthermore, we do not employ
covalent bonds within the protein, which also greatly reduces
the number of edges in the complex graph. Then, we number
the ligand atoms and the retained protein atoms, and construct
the corresponding adjacency matrix = [ ] ×A A ij where Aij

is defined as eq 1.

=

l

m

oooooooooo

n

oooooooooo

a a
a a i j

a a d a a
A

1, , and there is a covalent bond 
between and and

1, , and ( , )

0, otherwise

ij

i j
L

i j

i
L

j
P

i j

(1)

By introducing the adjacency matrix representing both bond
interactions and atomic nonbonded interactions, our model
can learn how protein−ligand interactions affect the node
features of each atom.

In the graph ( , ), each node includes 11 features, each
feature is represented by a vector, and these vectors are
concatenated to form the initial feature vector of a node. Let xi
denote the initial feature vector of node ai in , the initial
feature vectors of all nodes in form the vector set as

= { | }ax xi i . The types of edges include the covalent
bonds between ligand atoms and protein−ligand interactions.
The features of covalent bonds include the covalent bond type,
whether the bond is in a ring, bond length, bond direction, and
bond stereochemistry. To ensure that the dimensions of the
two types of edges are consistent, the features of protein−
ligand interactions are the same as those of covalent bonds, the
bond length is the distance between two atoms, and other
features take default values. In addition, two different types of
edges are embedded in features using 0−1 codes to distinguish
them. All features of an edge are encoded as vectors and
concatenated to form the initial feature vector of an edge. Let
eij denote the initial feature vector of edge eij in , the initial
feature vectors of all edges in form the vector set as

= { | }ee eij ij . A list of initial features for nodes and edges is
summarized in Table 1.

It is worth noting that the bond length of edge eij in is the
Euclidean distance calculated based on the 3D coordinates of

both atom nodes ai and aj, which is a continuous real value
denoted by d(ai,aj). To further simplify the computation and
improve the model performance, we discretize the distance as
shown in eq 2.

=d a a d a a( , ) ( , )i j i j (2)

where d a a( , )i j denotes the value after discretization. SS-GNN
applies the single undirected graph representation method
based on the distance threshold, which greatly reduces the
amount of computation and makes the model more light-
weight.

2.2. Hybrid Feature Extraction Based on GNN-MLP.
Different from other methods, we propose a hybrid feature
extraction module named GNN-MLP to extract the features of
the complexes. These two modules are independent of each
other; the GNN-based network is applied to learn the latent
features of atoms, and a multilayer perceptron (MLP) is
applied to learn the latent features of edges. Each feature
extraction module is very simple and lightweight.

2.2.1. Node Feature Extraction Based on GIN. Xu et al.
developed a simple and powerful graph learning method, the
graph isomorphism network (GIN), and theoretically proved
that the model has the maximum discriminant ability in
GNNs.61 We utilize a GIN-based module to learn the node
representations of the protein−ligand complex.45,62−67 Given
the adjacency matrix A of graph ( , ) and the initial
feature vectors x of all nodes in . First, the adjacency matrix
A and the initial features x are fed into the GIN module; then,
the representation vector for each node is updated by
aggregating information from its neighboring nodes based on
adjacency matrix A; and finally, iterative message passing is
employed to extract the latent representations of all nodes.
Since the composition of a function can be represented by

Table 1. List of the Initial Features of Nodes and Edges

name description

Node Features
atom type B, C, N, O, S, P, Se, halogens, metals, other
atom charge number formal charge for an atom. range:[−5,5], other
hybridization S, SP, SP2, SP3, SP3D, SP3D2, other
atom valence range:[0,7], other
atom degree total number of bonded atom neighbors

range:[0,10], other
number of

hydrogens
explicit and implicit hydrogens. range:[0,8], other

atom coordinates position coordinates of atoms in 3D space
chirality unspecified, tetrahedral_CW, tetrahedral_CCW,

other
atomic mass mass of a single atom
aromatic whether if the atom is aromatic. 0 or 1
belongs to the

protein
whether the atom belongs to the protein, 0 or 1

Edge Features
covalent bond type single, double, triple, aromatic, unspecified, zero, other
aromatic whether the bond is in an aromatic ring. 0 or 1
bond length distance between connected atoms in 3D space
bond direction none, endupright, enddownright, eitherdouble,

unknown
bond

stereochemistry
stereonone, stereoany, stereoz, stereoe, stereocis,

stereotrans
edge type protein−ligand interaction or a bond between ligand

atoms.
0 or 1
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multilayer perceptions (MLPs), the MLP method is applied to
update all node features in each GIN layer. For any node ai in

, the k-th GIN layer updates its feature representation as eq
3.

= + +
i

k
jjjjjjj

y

{
zzzzzzzx x xMLP (1 )i

k k k
i
k

j i
j
k( ) ( ) ( ) ( 1)

( )

( 1)

(3)

where ε is either a learnable parameter or a fixed scalar, i( ) is
a set of nodes adjacent to node ai, and xi(k) is the updated
feature vector of node ai. xi(0) is initialized as xi. By feeding the
adjacency matrix A and the initial feature vectors x into the
GIN module, we can get the extracted latent feature vectors of
the complex atoms at the module’s output as x′ = GIN(x,A).

In our proposed method, only a single graph of protein−
ligand complexes is fed into the GIN network, resulting in less
input data, thereby reducing model computation. Furthermore,
the GIN module consists of two GIN layers, each of which is
followed by a batch normalization layer to speed up the
training. Only two GIN layers are applied in this module,
resulting in a relatively lightweight model with only 0.039 M
parameters.

2.2.2. Edge Feature Extraction Based on MLP. In this part,
we utilize the MLP1 module (Figure 2(a)) for edge feature
extraction. This MLP-based module consists of three fully
connected layers, where each of the first two layers is followed
by a ReLU activation function for nonlinear transformation.
The MLP1 module is designed to learn the edge features of the
protein−ligand complex, which include two types of edges:
covalent bonds inside the ligand and edges connecting protein
and ligand atoms. Given the initial feature vector eij for any
edge eij in , the extracted edge embedding vector eij′ can be
obtained from the module’s output: eij′ = MLP1(eij).

2.3. Feature Aggregation and Affinity Prediction.
2.3.1. Edge-Based Atom-Pair Feature Aggregation. To well
represent the interactions in the complex, we propose an edge-
based atom-pair feature aggregation module. To get the
aggregated features for any edge eij in , we first concatenate
both feature vectors xi′ and xj′ of its connected atom pair ai and
aj as eq 4, and then in eq 5 we integrate the concatenated
feature vector xij with the edge embedding vector eij′ obtained
by the MLP1 module.

=x x xij i j (4)

= eAGG e x ,ij ij ij ij (5)

where xi′ and xj′ denote latent feature vectors of the atom pair ai
and aj obtained through the GIN module, and ∥ is a
concatenation of two vectors. Finally, the feature vector AGGij
can be interpreted as the final information on aggregated
features and is directly delivered to the followed affinity
prediction module.

2.3.2. Graph Pooling-Based Affinity Prediction. As shown
in Figure 2(c), we utilize the MLP2 module and the graph
pooling module45,68−71 for an affinity prediction. The MLP2
module is a 4-layer feedforward neural network; except for the
output layer, each layer is followed by a ReLU activation
function for nonlinear transformation. To predict protein−
ligand complex binding affinity with graph ( , ), we first
predict the output value of each edge in . For any edge eij in

, by feeding the aggregated feature vector AGGij into MLP2,
the corresponding output value y(eij) can be obtained in eq 6.

Then the output values of all edges in form the output
vector y for graph ( , ). Finally, by passing the vector y to
the graph pooling module, the predicted binding affinity ŷ of
the complex can be estimated as eq 7.

=y e eAGG( ) MLP2( ),ij ij ij (6)

= =y y eyADDPOOL( ) ( )
e

ij
ij (7)

As mentioned above, each module in SS-GNN adopts a
concise network structure. Table 2 shows the size of each

module in the model of SS-GNN. In general, a simplified single
graph representation method based on distance threshold
selection and a simple feature extraction process lead to a
lightweight model.

2.4. Loss Function. In this end-to-end model SS-GNN, we
treat the affinity prediction as a regression task. Given a train
set D with N samples, the predicted value and the truth value
for any sample i are yi and yi, respectively. The training
objective is to minimize the mean-squared-error (MSE) loss
defined as eq 8.

=
=N

y yMSE loss
1

( )
i

N

i i
1

2

(8)

3. RESULTS AND DISCUSSION
In this section, we conduct a comprehensive experimental
evaluation of the recent PDBbind v2016 and v2013 core sets to
explain the benefits of exploiting the proposed model in affinity
prediction. In the following subsections, we first introduce the
distance threshold selection, analyze our proposed model
through extensive ablation studies and then report exper-
imental comparisons with recently proposed state-of-the-art
methods. Finally, we present a detailed discussion of our
experiments and provide useful insights and conclusions.

3.1. Data Sets and Evaluation Protocols. To evaluate
the performance of our proposed method, we adopt the widely
used benchmark PDBbind data set v2019.72,73 This data set is
a well-known public data set used to predict DTBA, and is a
comprehensive database composed of 3D structure data of
drug targets. This data set provides 3D structures of protein−
ligand complexes and the corresponding binding affinity
represented by pKa values determined experimentally. It
includes three overlapping subsets, namely, the general set
Ug, the refined set Ur and the core set Uc, where Uc ⊂ Ur ⊂ Ug.
The general set contains all samples of the data set, while the
refined set is a subset with higher quality data selected from the
general set. The core set is designed as the highest quality
benchmark and is often used as a test set. The protein−ligand
complexes in the core set have high-quality crystal structures
and reliable experimental affinity data.

In this paper, we employ two test sets (the v2016 and v2013
core sets) to test the performance of SS-GNN. The v2016 core
set74 contains 285 structurally diverse ligand−receptor

Table 2. Size of Each Module in the SS-GNN

Network module GIN MLP1 MLP2

network layers 2 3 4
parameters 0.039 M 0.003 M 0.526 M
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complexes (270 samples are used for testing, and 15 samples
fail in the reading and processing of protein or compound
structure information). The v2013 core set75 contains 195
complex samples (189 samples are used for testing, and 6
samples fail in the reading and processing of protein or
compound structure information).

For the experiments with the v2016 core set, we remove the
overlapping part of the corresponding core set from the refined
set, and the remaining samples are employed for model
learning, of which 90% are used as the training set (4,073
samples) and 10% are used as the validation set. Moreover, we
carry out a supplementary experiment on the larger general set
to further analyze the generalizability of our model. Samples in
the general set that overlap with the core set are removed.
Similar to the process with the refined set, 90% of the
remaining samples are used as the training set (15,394
samples), and 10% are used as the validation set. The
processing of the experimental data set for the v2013 core set is
the same as that of the v2016 core set. In the end, 4,005
training samples are obtained in the refined set, and 15,317
training samples are obtained in the general set.

For model evaluation, we follow previous work to evaluate
performance from different perspectives using two main
indicators: root mean squared error (RMSE)76 and Pearson
correlation coefficient (Rp). In addition, to achieve a more
diverse evaluation, the concordance index(CI),77 coefficient of
determination (R2), and mean absolute error (MAE) are
calculated. The smaller the values of RMSE and MAE and the
larger the values of Rp, R2, and CI are, the better is the
performance of the model.

3.2. Implementation Details. We implement our
approach based on the PyTorch toolbox. Experimentally, we
apply the Adam optimizer and set the learning rate to 0.001.
We train our network for 1000 epochs, and in each epoch, the
training set is randomly divided into 192 mini-batches.
Modeling experiments and benchmarking are carried out on
a machine with an Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50
GHz CPU and an NVIDIA GeForce RTX 2080Ti graphics
card.

3.3. Distance Threshold Selection Based on Cross-
Validation. In this subsection, we introduce the method of
distance threshold selection and verify the necessity of distance
threshold selection. We choose the refined set as the training
set and perform 5-fold cross-validation separately for different
thresholds ranging from 4 to 8 Å. Table 3 shows the Rp values

of the model under different thresholds on the PDBbind v2019
refined set. The experimental results show that the model
performs the worst when the threshold is 4 Å, while the
difference in Rp is not significant when the threshold is 5 Å and
larger.

To verify the effect of threshold selection on the size of the
constructed complex graph, we calculate the average values of
the number of atoms and edges for the 285 complex samples in
the v2016 core set at different thresholds, as shown in Figure 3.
As in common practice, all water molecules and hydrogen

atoms in the PDB structures are removed. The number of
ligand atoms and the intramolecular edges do not change with
increasing distance threshold. With an increase in threshold,
the number of protein atoms increases linearly, and the
number of edges between ligands and proteins also rises
dramatically. Figure 4 shows the number of protein covalent
bonds for 50 samples randomly selected from the 285 samples
in the PDBbind v2016 core set.

The number of protein covalent bonds increases significantly
with increasing distance threshold.

Initially, we tried to use all covalent bonds between ligand
atoms and covalent bonds between protein atoms within 5 Å,
and the Rp on the PDBbind v2016 core set is 0.854 (Table S7).
Since we would pay more attention to the interactions between
ligand atoms and protein atoms, we consider removing the
covalent bonds between protein atoms, the Rp on the core set
of PDBbind v2016 is 0.853. It was shown that covalent bonds
between protein atoms contribute little to the prediction of
binding affinity. However, the number of covalent bonds
between protein atoms is very large (Figure 4); therefore, our
model does not use any covalent bonds between protein
atoms, which is obviously different from other models.
Ignoring the covalent bonds between protein atoms will
greatly reduce the number of edges of the graph in the model
input, making the scale of the graph smaller and improving the
model efficiency. Figure 5 depicts the number of ligand−
protein connections for 50 randomly selected samples. The
average number of connections at a distance threshold of 5 Å is
reduced to 1/6 of that at 8 Å. Considering the prediction
performance and computational cost, we finally select 5 Å as
the distance threshold. The subsequent experiments are carried
out under the 5 Å threshold. Compared with other methods,
SS-GNN applies a complex graph representation method
based on a distance threshold, resulting in a substantial
reduction in the size of the graph, which fully illustrates the
computational advantages of SS-GNN.

To verify the validity of the ligand covalent bonds kept in
the model, we removed all covalent bonds, leaving only
noncovalent bonds between protein atoms and ligand atoms.
We use the general set as the training set, and test the
performance of the new model on the core set v2016. The
results show that after removing all covalent bonds from the
model, the performance (average RMSE = 1.460, average Rp =
0.784) decreased compared to the model with ligand covalent
bonds retained (average RMSE = 1.181, average Rp = 0.853).
This illustrates that incorporation of ligand covalent bonds
could make the prediction performance of the model better.
The experiment is also repeated 5 times with different random
seeds. The detailed results are shown in Table S6.

To further illustrate the efficiency of SS-GNN, we test the
model forward propagation runtime on the PDBbind v2019
refined set. When the threshold is 8 Å, the average prediction
time per sample is 0.7 ms, and when the threshold is 5 Å, the
average prediction time per sample is 0.2 ms. The lightweight
model architecture and concise data processing procedure
result in an efficient model.

3.4. Ablation Studies. To better understand the
contribution of each component in the model to the overall
performance, we remove each component from the model and
conduct the ablation experiments using the PDBbind v2016
refined set, and the results are shown in Table 4.

First, we evaluate the usage of MLP1 in the GNN-MLP
module, which is a fully connected neural network for learning

Table 3. Cross-Validation Experimental Results with
Different Thresholds

threshold 4 Å 5 Å 6 Å 7 Å 8 Å

Rp(↑) 0.674 ±
0.033

0.717 ±
0.021

0.716 ±
0.026

0.711 ±
0.022

0.710 ±
0.026
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the latent features of edges. Compared with SS-GNNremove MLP1
(with MLP1 module removed), SS-GNN has a 0.9% increase
in Rp, a 0.3% decrease in RMSE, and a 0.7% increase in CI.
This shows that the MLP1 module can learn the latent
representation of the interactions between atom pairs at a
deeper level and improve the model performance to a certain
extent.

Second, we evaluate the effect of discretization of the
distances between atoms (DDA) on the model performance.

Compared with the model SS-GNNremove DDA without distance
discretization, the RMSE of SS-GNN is reduced by 1.1%, Rp is
improved by 0.5%, and CI is improved by 0.6%. The results
show that the DDA module is necessary for SS-GNN.

Finally, we evaluate the effect of the number of layers of
GIN. SS-GNN using a two-layer GIN shows an advantage over
the model SS-GNNone‑layer GIN using one-layer GIN (RMSE is
reduced by 0.3%, Rp is improved by 0.5% and CI is improved
by 0.5%); however, the improvement is minor. Moreover, SS-

Figure 3. Average values of the number of edges (a) and atoms (b) for the 285 samples in the v2016 core set at different thresholds.

Figure 4. Number of covalent bonds formed by atoms that satisfy the threshold condition in the protein, where distanceL‑P is the distance between
ligand atoms and protein atoms.

Figure 5. Number of connections between ligand atoms and protein atoms satisfying a threshold condition, where distanceL‑P is the distance
between ligand atoms and protein atoms.
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GNN outperforms SS-GNNthree‑layer GIN using a three-layer
GIN (RMSE is reduced by 3.2%, Rp is improved by 1.8%, and
CI is improved by 1.0%), indicating that increasing the number
of GIN layers does not always lead to better performance of
the model.

3.5. Comparison with the State of the Art. In this
subsection, we first test our model on the PDBbind v2016 core
set and then compare the proposed approach with other state-
of-the-art methods on two data sets.

Experiments on the PDBbind Core Set. We employ the
general set and refined set in PDBbind for model training and
test the model on the PDBbind v2016 core set. The results are
shown in Table 5.

All experiments in this paper are repeated 5 times with
different random seeds. Each random seed represents a
random shuffle of the data set. In each experiment, 90% of
the samples are randomly selected as the training set, and the
remaining 10% are selected as the validation set for model
selection. We finally take the mean and standard deviation of
the results of five independent experiments as the result of the
average model SS-GNNaverage and take the model result with
the largest Rp value as the result of the best model SS-GNNbest.
For the PDBbind v2016 core set, the Rp of the best model
trained on the refined set reaches 0.832, and that of the average
model is 0.822; for the general set, the Rp of the best model
reaches 0.870, and that of the average model is 0.853. The
model achieves good performance on the refined set with a
small sample size. Nonetheless, with the expansion of the
training data set, the performance of the model is greatly
improved, which further expands the prediction advantage. For
the PDBbind v2013 core set, the Rp of the average model
trained on the general set reaches 0.816.

To better represent the findings, the predicted binding
affinities obtained using the PDBbind v2016 core set are
shown in Figure 6, which presents the test results for the best

models trained on the general and refined sets based on the
PDBbind v2016 core set. The predicted values are highly
correlated with the ground truth values. To ensure the stability
of model prediction performance, 5 different random seeds are
used in the model experiments in this paper.

Comparison with the State-of-the-Art Methods. We
compare our proposed method with state-of-the-art meth-
ods.19,22−27,35,37−40,44,53−56,74 Table 6 compares the results of
our proposed SS-GNN with those of the state-of-the-art
methods for the PDBbind core set v2016. SS-GNN ranks
second only to TopBP on the general set, which shows that our
lightweight structure can effectively learn deep features of the
interactions of protein−ligand complexes. We select the
chemical and biological attributes that can well represent the
atom information during the data processing procedure and
introduce an edge-based atom-pair feature aggregation module,
which can better represent the interactions between atoms. We
further utilize a GIN-based network and an MLP to learn the
latent features of nodes and edges, respectively, in the complex
graph. Therefore, despite the low number of atoms and
interactions employed by SS-GNN, the model still achieves
good performance. As the amount of training data increases,
our model can provide more accurate predictions. Table 7
further demonstrates the comparison between SS-GNN and
state-of-the-art GNN-based models. Our proposed model
achieves good performance with concise graph representation
and simple model architecture.

Models based on persistent homology and topological
descriptors23−27,44 achieve better results on smaller data sets.
They rely more on expert knowledge and can achieve excellent
results with reasonable feature extraction. There are also some
DL-based models that achieve good results on the PDBbind
v2016 core set, the best model of OnionNet-238 achieved Rp of
0.864 (16,626 training samples, 285 test samples), the best
model of graphDelta56 achieved an Rp of 0.870 (8,766 training
samples, 285 test samples). In addition, the best model of
ECIF::GBT22 based on traditional descriptors and ML
achieved Rp of 0.866 (9,299 training samples, 285 test
samples), and the best model of our SS-GNN achieved Rp of
0.870. We also test the efficiency of HPC/HWPC on the
PDBbind v2019 refined set. The average prediction time per
sample is 1.2 × 104 ms (implemented with our optimized code
which is orders of magnitude faster than the original
implementation), while SS-GNN only needs 0.2 ms. The
feature extraction process of HPC/HWPC is complicated,
computationally intensive and slow. Due to the lack of large-
scale standard data sets, our proposed model has not been
tested on very large-scale data sets, but its superiority in
accuracy and efficiency makes it more suitable for large-scale
molecular docking tasks.

Table 4. Experimental Results Showing the Effect of
Different Components on the Model. In Each Table Cell,
the Mean Value over Five Runs Is Reported as Well as the
Standard Deviation

architecture RMSE (↓) Rp (↑) CI (↑) R2 (↑) MAE (↓)

SS-GNN 1.181 ±
0.047

0.853 ±
0.012

0.833 ±
0.006

0.701 ±
0.024

0.920 ±
0.035

SS-
GNNremove MLP1

1.184 ±
0.035

0.845 ±
0.011

0.827 ±
0.005

0.700 ±
0.018

0.927 ±
0.028

SS-GNNremove DDA 1.194 ±
0.052

0.849 ±
0.006

0.828 ±
0.005

0.694 ±
0.027

0.926 ±
0.048

SS-
GNNone‑layer GIN

1.185 ±
0.046

0.849 ±
0.011

0.829 ±
0.005

0.699 ±
0.024

0.928 ±
0.045

SS-
GNNthree‑layer GIN

1.220 ±
0.018

0.838 ±
0.007

0.825 ±
0.005

0.682 ±
0.010

0.942 ±
0.026

Table 5. Results of PDBbind Dataset Experiments

type test set training set RMSE (↓) Rp (↑) CI (↑) R2 (↑) MAE (↓)

SS-GNNbest v2016/270 4073 1.289 0.832 0.819 0.645 1.011
15394 1.128 0.870 0.839 0.728 0.902

v2013/189 4005 1.444 0.802 0.805 0.584 1.154
15317 1.296 0.831 0.816 0.665 1.026

SS-GNN average v2016/270 4073 1.281 ± 0.021 0.822 ± 0.006 0.813 ± 0.004 0.649 ± 0.011 1.012 ± 0.016
15394 1.181 ± 0.047 0.853 ± 0.012 0.833 ± 0.006 0.701 ± 0.024 0.920 ± 0.035

v2013/189 4005 1.454 ± 0.050 0.795 ± 0.005 0.795 ± 0.010 0.578 ± 0.029 1.165 ± 0.055
15317 1.347 ± 0.049 0.816 ± 0.012 0.808 ± 0.007 0.638 ± 0.027 1.074 ± 0.031

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c00085
ACS Omega 2023, 8, 22496−22507

22503

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c00085?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


4. CONCLUSION
In this paper, we have proposed a novel simple-structured
graph neural network model (SS-GNN) for drug-target
binding affinity (DTBA) prediction. We utilize the single
undirected graph representation method based on the distance
threshold to reduce the size of the complex molecular graph,
thereby reducing the computational complexity of the model.
The process of feature extraction and affinity prediction is
straightforward. The concise graph representation and simple
model architecture improve the efficiency of SS-GNN.
Experiments confirm the superiority of SS-GNN, which

significantly outperforms state-of-the-art methods on the
PDBbind data set. However, it has not been verified which
of the chemical properties we input are critical in constructing
the complex graph. In addition, whether the covalent
interactions between protein atoms have an effect on the
interactions of the complex needs further verification.

5. EXPERIMENTAL SECTION

In this paper, all experiments are conducted according to the
following procedure.

Figure 6. Correlation plot for the PDBbind v2016 core set given by the best SS-GNN models trained on (a) the general set and (b) the refined set.

Table 6. Performance Comparison Using the PDBbind v2016 Core Set and v2013 Core Set

PDBbind v2016 core set PDBbind v2013 core set

architecture training samples test samples RMSE (↓) Rp (↑) test samples RMSE (↓) Rp (↑)

Pafnucy 11906 290 1.420 0.780 195 1.620 0.700
SIGN 3767 290 1.316 0.797
FAST 11717 290 1.308 0.810
TNET-BP 3767 290 1.340 0.810
IGN 8298 262 1.291b 0.811b

ΔVinaRF20 3336 285 0.816 195 0.686
OnionNet 11906 290 1.278 0.816 108 1.503 0.782
KDeep 3767× 24a 290 1.270 0.820
HPC/HWPC 3772 285 1.307 0.831 195/2764 1.483 0.784
AGL-Score 3772 285 1.271 0.833 195/3516 0.792
MP-GNN 4057 285 0.828 0.836 195/2959 0.801 0.805
PerSpect ML 3772 285 1.724 0.840 195/2764 1.956 0.793
DCML 3772 285 1.255 0.843 195/2764 1.432 0.799
Mol-PSI 4057 285 1.278 0.844 195/2959 1.383 0.821
TopBP 3767 290 1.650 0.861 195/2764 1.950 0.808
SS − GNNrefined set 4073 270 1.281 0.822 189/4005 1.454 0.795
SS − GNNgeneral set 15394 270 1.181 0.853 189/15317 1.347 0.816

aThe data sets of KDeep were augmented 24 times by rotation. bThe results of IGN are the indicators of the average model.

Table 7. Comparison of GNN-Based Models on the PDBbind v2016 Core Set

model molecular representation main algorithm special features Rp RMSE

SIGN complex interaction graph polar-inspired graph attention integrate both distance and angle
information

0.797 1.316

FAST 3D voxel and molecular graph
representation

3D-CNN and GNN considering the covalent and noncovalent
bonds

0.810 1.308

IGN three molecular graphs two independent graph convolution modules considering the covalent bonds within
protein atoms.

0.811 1.291

MP-
GNN

multiphysical molecular graph
representation

SAGCN, multiscale predictions with
multiscale stacking

distance-related node features,
featurization

0.836 0.828

SS-GNN a complex graph two-layer GIN ignoring the covalent bonds within
protein atoms.

0.853 1.181
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(1) Get the data set. The training and test data sets are
downloaded from PDB. We use the v2016 and v2013
core sets as the test sets, as well as the PDBbind v2019
data set as the training set.

(2) Generate features. We generate protein−ligand complex
features with the distance threshold of 5 Å, including
atom features and edge features. The data with the
generated features can be directly utilized for model
training.

(3) Multiple hold-out validations for testing. To demon-
strate the stability of the SS-GNN model, we employed
multiple hold-out validations to evaluate the model.

The data sets with generated features, as well as the
comprehensive experimental setups and procedures are
included in the Supporting Information.
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