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ABSTRACT: As a principal energy globally, coal’s quality and variety
critically influence the effectiveness of industrial processes. Different
coal types cater to specific industrial requirements due to their unique
attributes. Traditional methods for coal classification, typically relying
on manual examination and chemical assays, lack efficiency and fail to
offer consistent accuracy. Addressing these challenges, this work
introduces an algorithm based on the reflectance spectrum of coal and
machine learning. This method approach facilitates the rapid and
accurate classification of coal types through the analysis of coal spectral
data. First, the reflection spectra of three types of coal, namely,
bituminous coal, anthracite, and lignite, were collected and
preprocessed. Second, a model utilizing two hidden layer extreme
learning machine (TELM) and affine transformation function is introduced, which is called affine transformation function TELM
(AT-TELM). AT-TELM introduces an affine transformation function on the basis of TELM, so that the hidden layer output satisfies
the maximum entropy principle and improves the recognition performance of the model. Third, we improve AT-TELM by
optimizing the weight matrix and bias of AT-TELM to address the issue of highly skewed distribution caused by randomly assigned
weights and biases. The method is named the improved affine transformation function (IAT-TELM). The experimental findings
demonstrate that IAT-TELM achieves a remarkable coal classification accuracy of 97.8%, offering a cost-effective, rapid, and precise
method for coal classification.

1. INTRODUCTION
Coal, a prominent constituent of the world’s major energy
resources, holds an irreplaceable position in the international
industry and economy. Representing about half of China’s
energy consumption, it serves as a critical energy pillar. Coal’s
unique properties such as calorific value, combustion attributes,
and emission characteristics deeply influence thermal power
plant operations, fuel selection, and environmental conservation
efforts. Furthermore, coal stands as a vital raw material in heavy
industries like steel, chemical, and building materials, where the
coal type directly influences product quality, production
efficiency, and environmental footprint.
Coal classification, centered around its composition, charac-

teristics, and origin, incorporates anthracite, bituminous coal,
and lignite.1 Each exhibits distinct chemical properties, leading
to differing industrial applications. Lignite, though high in
moisture and impurities, generates a low calorific value when
burned and is primarily used as power generation fuel.
Bituminous coal, boasting a high calorific value, serves as an
energy source in heavy industries and also in coke production.
Anthracite, primarily utilized for heating and high-quality coke
production, possesses unique properties.
Existing classification methodologies encompass manual

experience methods, the weighing method, and the chemical

analysis method, each carrying their disadvantages, such as time
intensity, high costs, and sample damage. Hence, the need for a
more efficient coal classification method is self-evident.2

Spectral analysis technology, widely employed and developed
across multiple fields, offers a noninvasive means to analyze coal
properties.3−8 Investigating the interactions between coal and
various light wavelengths allows us to deduce its physical and
chemical properties, enabling a more precise classification.
Additionally, spectral information can facilitate the regression
analysis of coal composition. For instance, Liu et al. integrated
laser-induced breakdown spectroscopy (LIBS) with chemical
analysis to decipher coal types and combustion efficiency,
indicating a promising future for LIBS in coal analysis.9

Similarly, Yao et al. assessed the impact of coal volatiles on
plasma and spectral signals via LIBS, facilitating a comparative
study of coal and char’s primary components.10 Le et al.
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obtained the spectral characteristics of coal through the
spectrometer and then used the extreme learning machine
(ELM) to classify it. By integrating remote sensing principles,
this approach allows us to capture a comprehensive distribution
image of the coal mines.11 Xie et al. explored the Raman spectra
of various coals, analyzing their spectral characteristics, and
employed high-temperature Raman spectroscopy to study the
transformation of coal structure throughout the pyrolysis
process.12

The machine learning landscape has been witnessing
significant transformation in recent years, particularly in the
context of its ability to manage and scrutinize voluminous and
complex data arrays. Therefore, many coal classification
methods combined with machine learning have been proposed.
Zhang et al. measured the coal’s ash content samples by LIBS
and then used the support vector machine (SVM) to identify
coal. Partial least-squares (PLS) regression is then used to build
an accurate model to improve the precision of ash and volatile
matter determination in coal.13 Coal gangue, primarily discarded
waste in coal mining regions, has the potential for utilization to
mitigate environmental contamination while simultaneously
augmenting the economic profitability of coal mines. Song et al.
analyzed the thermal infrared spectrum of coal gangue using
deep learning methods.14 Jayaganthan et al. utilized epoxy
micronano composite specimens to coat four distinct coal
variants. By applying LIBS, they employed the logistic regression
method (LR) for classification of these samples, resulting in
significantly higher accuracy.15

Spectral data, characterized by high dimensionality, strong
correlations, and noise interference, necessitate careful
preprocessing. At present, principal component analysis
(PCA) is a commonly used method for data dimension
reduction, but improper usage can impair model accuracy.
Deep learning has found extensive applications in diverse
domains.16−18 Xiao et al. used the local receptive field (LRF) to
extract key features from spectral data and combines them with
ELM.19 Le et al. converted one-dimensional spectral data into
two-dimensional format and extracted the characteristics of data
through a convolutional neural network (CNN).20

Among many algorithms, the coal classification method
combined with the ELM has achieved good results. ELM,
introduced by Huang et al., is a single hidden layer feedforward
neural network (SLFN).21 Since ELM demonstrates excellent
performance in both classification and regression tasks and has
good generalization ability, many scholars have applied and
improved ELM.22−24 The ELM algorithm performs well in
processing the spectral data. Mao et al. used multilayer ELM to
classify coal by the spectrum of coal and obtained an accurate
and fast classification model.25 Le et al. classified the collected
sandstone, shale, coal gangue, and other coal samples according
to the content of fixed carbon and proposed an incremental
multilayer learning machine algorithm combined with remote
sensing images to identify coal quality, which has achieved good
results.26

ELM is an effective algorithm for coal classification tasks.
However, since ELM’s weights and biases are randomly
assigned, it will lead to extreme conditions in the output
distribution of the hidden layer, resulting in feature loss. In this
paper, we combined the affine transformation function and two-
hidden-layer ELM, which is named affine transformation
function TELM (AT-TELM), to modify the output of the
initial hidden layer satisfying the maximum entropy principle to
improve this phenomenon by estimating the affine parameters s

and t. Furthermore, an innovative method for optimizing the
weight and bias by the affine parameter of the first hidden layer is
proposed and named improved affine transformation function
TELM (IAT-TELM). The preprocessed data set, when
predicted through the model, yields high classification precision.

2. THEORY AND METHODS
2.1. Collection of Spectral Data. The research samples for

this experiment consist of three types of coal collected from
various mining areas, namely, lignite, anthracite, and bituminous
coal, with quantities outlined in Table 1.We label anthracite as 1,

bituminous coal as 2, and lignite as 3. We employed the SVC
HR-1024 spectrometer for capturing spectral data of the coal
within a range of 350−2500 nm. Prior to spectral measurement,
the coal samples were washed, cut, and ground to powder.
Outdoor experiments were conducted under clear, sunlit skies
with a scan time of 1 s, a probe distance of 480 mm from the
sample, and minimal interference from the experimenters. The
resulting raw spectral curves, as depicted in the Figure 1, have
high dimensions and require preprocessing before experimenta-
tion.

2.2. Mahalanobis Distance. The Mahalanobis distance
(MD), indicating the covariance separation of data, provides a
metric for data resemblance. This measure accounts for the
interrelation among attributes and remains unaffected by
dimensionality, such that the distance between any two points
is not tied to the original data’s unit of measurement.
Additionally, it effectively mitigates the disturbance caused by
variables’ correlation.

Let a data set contain m samples, and the mean value of the
data set is ui = (u1, u2, ..., un)T, where any sample is xi = (x1, x2, ...,
xn)T; the MD of the sample is

Table 1. Number of the Coal Samples

types label number

anthracite 1 71
bituminous coal 2 80
lignite 3 58

Figure 1. Raw spectral data of coal samples.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c04999
ACS Omega 2023, 8, 35232−35241

35233

https://pubs.acs.org/doi/10.1021/acsomega.3c04999?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04999?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04999?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c04999?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c04999?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


x u M x uMD ( ) (i i
T

i i
1

)= (1)

where M is the covariance matrix and n is the dimension of data.
In the data set chosen for this study, outlier samples have a

larger MD. The steps of using MD to determine sample outliers
include:

• Spectral dimensionality reduction using PCA
• Calculation of the average spectrum
• Centralization
• Calculation of MD
• Selection of outliers by threshold.
The MD of the data set is shown in Figure 2.

According to the MD of the data set, the threshold is set to 4
to effectively eliminate outliers in order to improve the
prediction accuracy of the model and the removed outlier
samples are shown in Table 2.
2.3. PCA. The obtained spectral data dimension is 973, and

the data correlation is strong. When the raw data are used
directly as input, themodel structure will be complicated and the
training time will be greatly prolonged. Therefore, preprocessing
the data to reduce the data dimensionality while preserving its
essential information as much as possible is the premise of the
experiment. In our study, PCA is employed for data set
dimensionality reduction.
The PCA procedure is as follows:
1. Centralize the m × n data set matrix X:

x x
m

x
1

i i j
m

j1= = (2)

where m signifies the dimensionality of each sample while
n indicates the total count of samples.

2. Calculate the covariance matrix of matrix X:

X
m

XXcov( )
1

1
T=

(3)

3. Determine the eigenvalues λi and eigenvectors βi of the
covariance matrix.

4. Arrange the eigenvalues in descending order to get
( , , ..., )n1 2= , at the same time, the eigenvectors is

arranged in the order of λi to get ( , , ..., )i n1 2= .

5. Compute each principal component’s individual con-
tribution rate and the cumulative contribution rate of
numerous principal components.

i
i

j
m

i1

=
= (4)

i
d

i1= = (5)

where θi is the principal component contribution rate and
Θ is the cumulative principal component contribution
rate.

6. According to the set threshold, the first d feature vectors
are taken to reduce the data from n dimension to d
dimension.

W ( , , ..., )d1 2= (6)

X XWnew = (7)

where Xnew is the data matrix after dimension reduction.
The cumulative contribution rate is set to 99%, so that it can

not only make the information loss little but also reduce the
dimension of the data. As shown in Figure 3, upon considering
seven principal components, the cumulative contribution rate
initially attains 99%. Therefore, selecting seven-dimensional
data as the input of the model can greatly reduce the amount of
calculation and enhance the model’s precision and general-
izability.
2.4. ELM. ELM is a single-hidden-layer feedforward neural

network. Other widely used SLFNs usually use the gradient
descent method. Disadvantages of the gradient descent method
are that (1) multiple iterations are required, resulting in long
calculation time and slow model training, and (2) due to the
existence of the learning rate, the algorithm is easily affected by
the learning rate and is prone to falling into the local optimal
solution. ELM determines the parameters by using the least-
squares solution. This sidesteps the issues of sluggish training
pace, learning rate sensitivity, and propensity to get trapped in
local optimum solutions typically associated with gradient
descent methods.

ELM comprises the input layer, hidden layer, and output
layer. In the input layer, the input matrix Xm×q is represented by

X

x x x

x x x

x x x...

m q

q

q

m m mq

11 12 1

21 22 2

1 2

µ

µ
=×

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (8)

Figure 2. Mahalanobis distance of reflectance spectra of the coal
samples in this paper.

Table 2. Removed Outlier Samples

serial number of removed outlier sample serial number type of removed outlier sample serial number

1,24,94,95,120,124 lignite,lignite,anthracite,anthracite,anthracite,anthracite
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where m represents the sample dimension and q denotes the
sample count. The label matrix is Y y y y

q q
T

1 11 12 1µ= [ ] . X
and Y form a set of samples.
Then, the hidden layer of the ELM is introduced. There is a

weight matrix and a bias between the first two layers of ELM.
The interval of the weight is (−1,1), which is randomly given at
the beginning of the algorithm and obeys a uniform distribution,
while the offset interval is (0,1), which is also randomly given
and obeys a uniform distribution. The weight matrix W and bias
B are shown as follows:

W

w w w

w w w

w w w

...

...
m

m

l l lm

11 12 1

21 22 2

1 2 µ

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (9)

B b b b bm
T

1 2 3 µ= [ ] (10)

where l denotes the count of hidden layer’s nodes.
Under the selected activation function f(x), the output matrix

H of the hidden layer can be expressed as

H f WX B( )= + (11)

An output weight matrix β is present between the hidden layer
and the output layer. The output matrix T t t tq1 2 µ= [ ]
can be obtained by output weight and hidden layer output.

T H= (12)

To enhance model accuracy, the output matrix should be
closer to the true value, since both W and B are randomly given
at the beginning of the algorithm; the loss function is

E H Ymin=
(13)

Then, we obtain the least-squares solution of β by using the
Moore−Penrose generalized inverse method:

H Y= + (14)

where H+ is the Moore−Penrose generalized inverse matrix of
H. The structure of ELM is shown in Figure 4a, and the
workflow of ELM is shown in Figure 4b.

2.5. Two-Hidden-Layer ELM. Building on the structure of
ELM, the TELM algorithm introduces an additional hidden
layer.27 The structure of TELM is shown in Figure 5a, and the

workflow of TELM is shown in Figure 5b. Typically, both
hidden layers have an equal number of nodes. TELM optimizes
the algorithm by calculating the weight matrix and bias between
the first hidden layer and the second hidden layer. Let H be the
output of the first hidden layer. Regarding two hidden layers as
one, the output weight matrix can be expressed as

H Y= + (15)

The expected output of the second hidden layer H1 can be
expressed as

Figure 3. Cumulative contribution rate of different numbers of principal components

Figure 4. Structure and workflow of ELM.

Figure 5. Structure and workflow of TELM.
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H Y1 = + (16)

where W1 and B1 are the weight and bias matrices of the second
hidden layer, respectively. In order to calculate the weight and
bias of the second hidden layer, we use W B WE 1 1= [ ] and
H H1E

T= [ ] to express the weights and bias of the second
hidden layer as

W g H H( )E E
1

1= + (17)

where 1 is a q-dimensional column vector. Then, the output of
the second hidden layer H2 can be calculated as

H g W H( )E E2 = (18)

Therefore, the weight matrix βnew is finally determined by H2
and T as

H Ynew 2= +
(19)

2.6. Maximum Entropy Principle. The concept of entropy
first appeared in physics to describe the degree of disorder of the
system. In information theory, entropy is used to describe the
unpredictability of information content.28 The maximum
entropy principle is a criterion for model learning, advocating
that the optimal model among all potential models is the one
with the greatest entropy. If a random variable X has k states and
its probability distribution is P(X = xi) = Pi, then the entropy of
the random variable is

H P
P

log
1

i i
i

2=
(20)

In order to maximize the entropy, the issue can be solved
utilizing the method of Lagrange multipliers:

( )P
P

Plog
1

1i
k

i
i

i
k

i1 2 1= += = (21)

Cao et al. pointed out that in the hidden layer output of ELM,
the distribution with maximum entropy is uniformly distrib-
uted.29 Let the hidden layer input matrix V = WX + B, so the
expectation of V can be calculated as

E v l E w E x E b( ) ( ) ( ) ( )i i i i= × + (22)

Let W and B satisfy the uniform distribution of (−1,1). Then,
the variance of V can be calculated as

E v l w E x b( ) var( ) ( ) var( )i i i i
2= × + (23)

When the hidden layer output has the maximum entropy, the
output of each node conforms to a uniform distribution.
However, in the first hidden layer of TELM, since both W and B
are randomly given and obey the uniform distribution on (−1,1)
and (0,1), the output is difficult to obey the uniform
distribution; that is, the output is difficult to satisfy the
maximum entropy principle. In order to make the output as
much as possible in line with the maximum entropy principle,
the model is optimized. We will add an affine transformation
function to the hidden layer input to adjust the distribution of
the output after the activation function.
2.7. ImprovedAffineTransformationTELM. 2.7.1. Affine

Transformation TELM. In this section, the functions we use in
the TELM algorithm are all sigmoid functions. The output of the
sigmoid function is shown in Figure 6.

As shown in Figure 6, there is a saturation interval at both ends
of the sigmoid function. To enhance the effectiveness of the
model, we let the expected output range of the network be
[0.2,0.8], avoiding the saturation interval of the sigmoid
function. Let H be the output of the first hidden layer in
TELM, and the activation function is g(x), thenH = g(WX + B).
All elements in the H matrix are sorted from small to large, and
the corresponding elements in H are supplanted by ordinal
numbers to obtain the matrix O1,

O

O O O

O O O

O O O

...

...

...

q

q

l l lq

1

11 12 1

21 22 2

1 2

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (24)

Figure 6. Output of the sigmoid function.
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where Oij is the ordinal number of Hij in H from small to large.
Since the expected output range is [0.2,0.8], the expected output
matrix subject to uniform distribution is

O
l q

O I
(0.8 0.2)

1
( )1= *

*
(25)

where I is a matrix of l × q composed of 1.
To approximate the hidden layer’s distribution as closely as

possible to the uniform distribution, we introduce an affine
transformation function in the activation function to make H
become

H g s WX B T( ) 0= [ + + ] (26)

where s is the stretching coefficient and T0 is the translation
coefficient matrix whose all elements are t. Thus, s and t are
determined by

g s WX B T Oerror ( ) F0= [ + + ] (27)

Next, we need to find the correct parameters s and t by the
gradient descent method to minimize the error. When the
parameters of all nodes are s and t, the partial derivatives of the
loss function error for s and t are

s
g s V t O

g
s

error
( )j

q
i
l

ij ij1 1= [ × + ] ×= = (28)

t
g s V t O

g
t

error
( )j

q
i
l

ij ij1 1= [ × + ] ×= = (29)

where V = WX + B. Then, s and t are transformed as follows in
each iteration:

s s
s

( 1) ( )
error

( )
+ =

(30)

t t
t

( 1) ( )
error

( )
+ =

(31)

where η is the learning rate.
Because the element count in the output matrix of the data in

reality is too large, the complexity of the gradient descent
method and the calculation time is increased. Therefore, the
matrix O and H can be downsampled to reduce the complexity
of the calculation. We arrange the elements in V,O from small to
large into two vector and then sample every p element to obtain
v v v vk1 2 µ= [ ]and o o o ok1 2 µ= [ ]to represent
the vectors obtained after downsampling, where k is the number
of elements obtained by downsampling l × q elements and p is
the sampling interval. Then, eqs 28 and 29 can be expressed as

s
g s v t o

g
s

error
( )j

l q
j j1= [ × + ] ×=

×
(32)

t
g s v t o

g
t

error
( )j

l q
j j1= [ × + ] ×=

×
(33)

After the parameters s and t are determined, the activation
function with an affine transformation function is used in the
first hidden layer of the model.
2.7.2. Improved Affine Transformation TELM. Although the

TELM algorithm can effectively achieve the classification task,
the weights and biases of the first hidden layer are set randomly.
The random distribution of weights and biases will lead to the
fact that in some cases, even if the parameters s and t of the affine
transformation function are effectively estimated, the gap

between the output matrix and the expected output matrix

conforming to the maximum entropy principle is still large.

Therefore, we need to find a way to set the weight and bias so

that the output matrix can better conform to the maximum

entropy principle after the stretching and translation of s and t.
The emphasis of the IAT-TELM algorithm is to reconstruct

the weight matrix and the bias matrix by estimating the

relationship between the output and the expected output after

estimating parameters s and t.
The output is H = g[s(WX + B) + T0], and the expected

output determined by the maximum entropy principle is O. Let

the optimized weights and biases beW0 and B0, then the input of

the first hidden layer can be expressed as

XB W
g O T

s
( )

0 0

1
0[ ] = +

(34)

where 1 is a q-dimensional column vector and

X X1 T= [ ]

The optimizedW0 and B0 are used as the weights and biases of

the first hidden layer to classify the targets. The AT-TELM flow

is shown in Figure 7.

Figure 7. Flow of the IAT-TELM algorithm.
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Figure 8. Classification results of the AT-TELM model.

Figure 9. Classification results of the IAT-TELM model.
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3. RESULTS AND DISCUSSION
All of the experiments in this paper are carried out in the
Windows 10 system. The coal recognition model is established,
and the experimental results are visualized by using MATLAB
R2018a.
3.1. Experimental Results.This study utilizes a total of 209

coal specimens encompassing three categories. After the outliers
were removed, the remaining 203 samples are used to train and
test the model. The training set is composed of 156 samples,
while the test set includes 47 specimens. The accuracy of the two
models proposed in this paper is shown in Figures 8 and 9. In
terms of classification accuracy, the accuracy of AT-TELM
reaches 95.7% and the accuracy of IAT-TELM reaches 97.8%.

AT-TELM incorrectly classifies two anthracites into bituminous
coal, and IAT-TELM incorrectly classifies one anthracite into
bituminous coal. Both methods can completely identify
bituminous coal and lignite correctly and have a high recognition
rate for anthracite. Among them, IAT-TELM is better than AT-
TELM in accuracy. The accuracy of this method can meet the
application of a coal mine in the process of mining and
production.
3.2. Algorithm Comparison. In order to reflect the

accuracy and effectiveness of the proposed method, we compare

the AT-TELM and IAT-TELM algorithms with several other
algorithms commonly used in spectrum-based coal classification
applications, including SVM, backpropagation algorithm (BP),
random forest algorithm (RF), ELM, and TELM. By
comparison with ELM, SVM, BP, and RF, the effectiveness of
TELM in the field of spectrum-based coal classification is
proved. By comparison with TELM, the effectiveness of the
proposed method in the improved ELM algorithm is
demonstrated and it can prove that the affine transformation
function improves the performance of TELM. Table 3 shows the
accuracy of various algorithms for spectral-based coal classi-
fication on the data set that is used in this paper. From the table,
we can see that IAT-TELM achieves the best accuracy of 97.8%
among the compared models. Comparing with TELM, it can be
seen that IAT-TELM has achieved an improvement in accuracy,
which proves the effectiveness of affine transformation function.

Figure 10. Number of prediction errors in coal classification for different models.

Table 3. Comparison of Classification Results of Different
Algorithms

algorithms accuracy

SVM 85.2%
RF 87.2%
BP 70.2%
ELM 85.1%
TELM 89.4%
AF-TELM 95.7%
IAF-TELM 97.8%
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The classification errors of each model on different types of
coal are shown in Figure 10.
It can be seen from the figure that the various models cited in

this section have more classification errors on anthracite and the
least classification errors on lignite. Among them, BP has the
largest number of classification errors in anthracite and lignite
classification and ELM has the largest number of classification
errors in bituminous coal. The proposed method had no errors
in the categories of lignite and anthracite. It can be seen from the
above charts that compared with the methods used in this
section, IAT-TELM has better performance in the classification
of lignite, bituminous coal, and anthracite. In addition,
compared with the traditional manual inspection and chemical
inspection methods, we can see from Table 4 that the coal
classification usingmachine learning has not only the advantages
of improved accuracy but also lower inspection cost.30

4. CONCLUSIONS
The classification of coal is a prerequisite for the application of
coal in industry. In this paper, a method combining machine
learning and reflection spectrum is proposed for the
identification of lignite, bituminous coal, and anthracite coal
and its application. In the data processing stage, we use the MD
method to eliminate outliers in the data set and PCA to reduce
the dimension of the spectral data. In the experiment, it is proved
that the IAT-TELM model has the best performance and high
accuracy for coal classification tasks in these comparison
algorithm. This method is a coal classification method with
low cost, short time consumption, and high accuracy, which can
meet industrial needs. Furthermore, due to the good general-
ization performance of ELM, the research field of this method
can be extended to the reflection spectra of other important
resources such as soil and iron ore.
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